期刊文献+
共找到1,732篇文章
< 1 2 87 >
每页显示 20 50 100
Protonated carbon nitride for rapid photocatalytic sterilization via synergistic oxidative damage and physical destruction
1
作者 Xiaobiao Zhu Chunhong Xu +2 位作者 Jie Mao Yizhen Zhang Yaohui Bai 《Journal of Environmental Sciences》 2025年第3期188-199,共12页
Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments.Numerous strategies have been devised to facilitate the generation of reactive oxygen species(ROS)with... Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments.Numerous strategies have been devised to facilitate the generation of reactive oxygen species(ROS)within photocatalysts,ultimately leading to the eradication of bacteria.However,the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured,and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited.Herein,graphitic carbon nitride(g-C_(3)N_(4))is chemically protonated to expose more sharp edges.PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production.Meanwhile,the sharp edges on the protonated g-C_(3)N_(4)facilitate the physical disruption of cell walls for further promoting oxidative damage.Protonated C_(3)N_(4)demonstrated superior bactericidal performance than that of pristine g-C_(3)N_(4),effectively eliminating Escherichia coli within 40 minutes under irradiation.This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis. 展开更多
关键词 protonated Photocatalytic Sterilization SYNERGISTIC Oxidative Damage Physical Destruction
原文传递
Solid-state NMR of the retinal protonated Schiff base in microbial rhodopsins
2
作者 Sari Kumagai Izuru Kawamura 《Magnetic Resonance Letters》 2024年第3期11-18,共8页
Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chro... Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy. 展开更多
关键词 Membrane proteins Microbial rhodopsin RETINAL Solid-state NMR protonated Schiff base
在线阅读 下载PDF
Synthesis and Characterization of a New Triple-layered PerovskiteKSr_2Nb_3O_(10 )and Its Protonated Compounds
3
作者 方亮 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第2期22-25,共4页
New layered perovskites, KSr2Nb3O10 and two new protonated niobates HSr2 Nb3O10·1.2H2O and HSr2Nb3O10,were synthesized by solid state reaction and ion-exchange reaction. These new compounds -were characterized by... New layered perovskites, KSr2Nb3O10 and two new protonated niobates HSr2 Nb3O10·1.2H2O and HSr2Nb3O10,were synthesized by solid state reaction and ion-exchange reaction. These new compounds -were characterized by EPMA, AAS, XRD, IR, DTA and so on. The structure may be described as treble perovskite sheets [Sr2Nb3O10]- interleaved with K+ ,H3O + or H+. These new compounds are new members of the Dion-Jacob-sonseries with n=3 for the general formula M[An-1 NbnO3n+1], and their indexed X-ray powder diffraction data were first reported in the paper. 展开更多
关键词 NIOBATE peravskite structure ion exchange protonated
在线阅读 下载PDF
Formation and dissociation of protonated cytosine–cytosine base pairs in i-motifs by ab initio quantum chemical calculations
4
作者 张小虎 黎明 +1 位作者 王延颋 欧阳钟灿 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期189-192,共4页
Formation and dissociation mechanisms of C-C+ base pairs in acidic and alkaline environments are investigated, employing ab initio quantum chemical calculations. Our calculations suggest that, in an acidic environmen... Formation and dissociation mechanisms of C-C+ base pairs in acidic and alkaline environments are investigated, employing ab initio quantum chemical calculations. Our calculations suggest that, in an acidic environment, a cytosine monomer is first protonated and then dimerized with an unprotonated cytosine monomer to form a C-C+ base pair; in an alkaline environment, a protonated cytosine dimer is first unprotonated and then dissociated into two cytosine monomers. In addition, the force for detaching a C-C+ base pair was found to be inversely proportional to the distance between the two cytosine monomers. These results provide a microscopic mechanism to qualitatively explain the experimentally observed reversible formation and dissociation of i-motifs. 展开更多
关键词 ab initio quantum chemical calculation I-MOTIF protonated cytosine-cytosine base pair
原文传递
PREPARATION AND PURIFICATION OF SCHIFF BASE AND PROTONATED SCHIFF BASE FROM 9-CIS-RETINAL
5
作者 Long JIANG Institute of Photographic Chemistry, Academia Sinica, Beijing, 100101 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第12期921-924,共4页
A modified method for preparation and purification of Schiff base and protonated Schiff base from 9-cis-retinal has been suggested. Reaction took place in chloroform phase and purification was conducted by using water... A modified method for preparation and purification of Schiff base and protonated Schiff base from 9-cis-retinal has been suggested. Reaction took place in chloroform phase and purification was conducted by using water to remove the excess solvent, base and acid. 展开更多
关键词 HCI CIS PREPARATION AND PURIFICATION OF SCHIFF BASE AND protonated SCHIFF BASE FROM 9-CIS-RETINAL
在线阅读 下载PDF
In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production 被引量:22
6
作者 Haotian Xu Rong Xiao +3 位作者 Jingran Huang Yan Jiang Chengxiao Zhao Xiaofei Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期107-114,共8页
Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to real... Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to realize carbon-free hydrogen production remains a challenge.Heterojunction photocatalysts with well-defined dimensionality and perfectly matched interfaces are promising for achieving highly efficient solar-to-hydrogen conversion.Herein,we report the fabrication of a novel type of protonated graphitic carbon nitride(PCN)/Ti3C2 MXene heterojunctions with strong interfacial interactions.As expected,the two-dimensional(2D)PCN/2D Ti3C2 MXene interface heterojunction achieves a highly improved hydrogen evolution rate(2181μmol∙g‒1)in comparison with bulk g-C3N4(393μmol∙g‒1)and protonated g-C3N4(816μmol∙g‒1).The charge-regulated surfaces of PCN and the accelerated charge transport at the face-to-face 2D/2D Schottky heterojunction interface are the major contributors to the excellent hydrogen evolution performance of the composite photocatalyst. 展开更多
关键词 g-C3N4 Ti3C2 Hybridization Schottky heterojunction PROTONATION Photocatalytic hydrogen production
在线阅读 下载PDF
Structural characterizations of protonated homodimers of amino acids:Revealed by infrared multiple photon dissociation(IRMPD) spectroscopy and theoretical calculations 被引量:3
7
作者 Lifu Ma Juan Ren +2 位作者 Ruxia Feng Kailin Zhang Xianglei Kong 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第9期1333-1339,共7页
Infrared multiple photon dissociation (IRMPD) spectroscopic and theoretical studies of protonated homodimers of amino acids generated by electrospray ionization in the gas phase have been reviewed. Results show that... Infrared multiple photon dissociation (IRMPD) spectroscopic and theoretical studies of protonated homodimers of amino acids generated by electrospray ionization in the gas phase have been reviewed. Results show that proton affinity (PA) may be applied as a probe to predict their structural type: salt- bridged or charge-solvated. Proline can be viewed as a reference. For an amino acid with a PA value higher than that of proline, the most stable conformation of its protonated homodimer tends to prefer salt- bridged conformation; otherwise, charge-solvated conformation is expected to be the most stable. However, side chain effects may cause the inaccuracy in structural determination due to the strong interactions with the charge, which makes the charge-solvated structure more stable even for species with high PA values. Temperature effect on distribution of different isomers is also very important. In lots of cases, the coexistence of multiple isomers is general, which makes the explanation of an overall IRMPD spectrum difficult. So a statistical view on the distribution of optimized isomers is very helpful. 展开更多
关键词 Amino acid HOMODIMER IRMPD spectroscopy Proton affinity Charge-solvated Salt-bridged ESI mass spectrometry
原文传递
Sites of Protonation and Unimolecular Fragmentation of Protonated N-Hydroxyphthalimide in the Gas Phase
8
作者 SHE Yi-min SUN Yu-quan +1 位作者 JI Yi-ping LIU Shu-ying 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1998年第2期63-67,共5页
The low energy collisioninduced dissociation, linked scan techniques and isotopic labeling experiment were used to investigate the unimolecular fragmentation of protonated N-hydroxyphthalimide under electron impact a... The low energy collisioninduced dissociation, linked scan techniques and isotopic labeling experiment were used to investigate the unimolecular fragmentation of protonated N-hydroxyphthalimide under electron impact and chemical ionization conditions. It was found that this compound shows an unusual reactivity towards protonation. Two possible sites of protonation have been proposed to explain the corresponding fragmentation processes, one is that the protonation takes place on the oxygen atom of hydroxyl group, resulting in the loss of water and the other is the formation of an intermediary protonbound complex in the fragmentation process, giving rise to the fragment ions of m/z 133 and m/z 135. The results show both cases are coexistence in the fragmentations of protonated N-hydroxyphthalimide, and the unimolecular fragmentation pathways are available. 展开更多
关键词 Sites of protonation Unimolecular fragmentation Collisioninduced dissociation Nhydroxyphthalimide
在线阅读 下载PDF
Structure and Stability of P_lO_m Cages and Their Highly Charged Protonated Clusters P_lO_mH_n^(n+):Insight from Density Functional Calculations
9
作者 朱纯 曹泽星 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第5期645-654,共10页
Density functional calculations are used to determine structural and electronic properties of P4,P4O6,P4O10,P20O30 and P20O50 clusters and their protonated derivatives.These oxygen-rich phosphorus oxides are predicted... Density functional calculations are used to determine structural and electronic properties of P4,P4O6,P4O10,P20O30 and P20O50 clusters and their protonated derivatives.These oxygen-rich phosphorus oxides are predicted to have relatively high stabilities with respect to their components P4 and O2,and their unsaturated P and end-on O atoms as the proton acceptor can accommodate multiple protons to generate highly positively charged cationic clusters,such as P20O30H1010+.Calculations indicate that P4O6 and P20O30 have higher reactivity toward the proton capture than the P4,P4O10 and P20O50 clusters,and the most stable protonated clusters among these different series of cationic clusters are P4H2……2+,P4O6H2^2+,P4O10H3^3+,P20O30H4^4+ and P20O50H4^4+,respectively.The cage skeleton of the phosphorus oxide clusters shows high stability for the consecutive protonation,and the unsymmetrical stretching of the skeletal P-O bond and the wagging mode of P-H coupled with the P-O bond stretching have strong adsorptions.These computational findings are useful for further experimental and theoretical studies of novel phosphorus oxide clusters and their highly positively charged derivatives. 展开更多
关键词 phosphorus oxide clusters DFT calculations PROTONATION
在线阅读 下载PDF
Covalent organic frameworks with asymmetric unprotonated/protonated structures for efficient photocatalytic hydrogen evolution
10
作者 Xiangyu Zhang Chao Gao +5 位作者 Yongxiang Zhou Rufan Chen Xuhui Guan Zhili Shen Bincheng Hu Qing-Hua Xu 《Science China Chemistry》 2025年第7期3277-3285,共9页
Covalent organic frameworks(COFs)are emerging as promising photocatalysts owing to their tailorable structures,exceptional crystallinity,and robustness.However,the photocatalytic performance of COFs is limited by fast... Covalent organic frameworks(COFs)are emerging as promising photocatalysts owing to their tailorable structures,exceptional crystallinity,and robustness.However,the photocatalytic performance of COFs is limited by fast charge recombination and inefficient charge migration.Herein,a novel post-synthetic partial protonation strategy is proposed to construct COFs with asymmetric unprotonated/protonated homojunctions,which endow them with an enlarged molecular dipole moment,thereby generating a strong built-in electric field that significantly enhances the charge separation and transport efficiencies in COFs.In addition,the protonation process extends the light absorption range and improves the hydrophilicity of COFs.The photocatalytic hydrogen evolution rate of the partially protonated TPE-COF and ETTBA-COF is enhanced by 88-and 175-fold relative to their pristine counterparts,4.3 and 2.48 times those of fully protonated counterparts,respectively.Our results clearly demonstrate the pivotal role of the asymmetric unprotonated/protonated homojunctions within COFs in the photocatalytic hydrogen evolution.This post-synthetic partial protonation strategy provides a novel paradigm for establishing internal electric fields within COFs. 展开更多
关键词 covalent organic framework asymmetry structure build-in electric field partial protonation PHOTOCATALYSIS
原文传递
Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study 被引量:17
11
作者 Wee-Jun Ong Lutfi Kurnianditia Putri +5 位作者 Yoong-Chuen Tan Lling-Lling Tan Neng Li Yun Hau Ng Xiaoming Wen Siang-Piao Chai 《Nano Research》 SCIE EI CAS CSCD 2017年第5期1673-1696,共24页
In this work, we demonstrated the successful construction of metal-free zero- dimensional/two-dimensional carbon nanodot (CND)-hybridized protonatedg=C3N4 (pCN) (CND/pCN) heterojunction photocatalysts b; means o... In this work, we demonstrated the successful construction of metal-free zero- dimensional/two-dimensional carbon nanodot (CND)-hybridized protonatedg=C3N4 (pCN) (CND/pCN) heterojunction photocatalysts b; means of electrostatic attraction. We experimentally found that CNDs with an average diameter of 4.4 nm were uniformly distributed on the surface of pCN using electron microscopy analysis. The CND/pCN-3 sample with a CND content of 3 wt.% showed thehighest catalytic activity in the CO2 photoreduction process under visible and simulated solar light. This process results in the evolution of CH4 and CO. Thetotal amounts of CH4 and CO generated by the CND/pCN-3 photocatalyst after 10 h of visible-light activity were found to be 29.23 and 58.82 molgcatalyst-1, respectively. These values were 3.6 and 2.28 times higher, respectively, than thearn*ounts generated when using pCN alone. The corresponding apparent quantum efficiency (AQE) was calculated to be 0.076%. Furthermore, the CND/pCN-3 sample demonstrated high stability and durability after four consecutive photoreaction cycles, with no significant decrease in the catalytic activity. 展开更多
关键词 protonated graphiticcarbon nitride carbon nanodots photocatalysis carbon dioxide reduction charge carrier dynamics density functional theory(DFT) calculations
原文传递
Boosting high-performance in Zr-rich side protonic solid oxide electrolysis cells by optimizing functional interlayer 被引量:1
12
作者 Chunmei Tang Ning Wang +3 位作者 Sho Kitano Hiroki Habazaki Yoshitaka Aoki Siyu Ye 《Green Energy & Environment》 SCIE EI CAS 2025年第1期150-160,共11页
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO... Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability. 展开更多
关键词 Functional interlayer Zr-rich side electrolyte Protonic solid oxide electrolysis cells Current density Faradaic efficiency
在线阅读 下载PDF
Confined proton transport in water-containing layered manganese oxide electrodes 被引量:1
13
作者 Wenwei Cai Feng Pan Shunning Li 《Chinese Journal of Structural Chemistry》 2025年第5期15-18,共4页
Understanding the proton dynamic behavior in inorganic materials has long been a topic of intense fascination[1],especially in the field of electrochemical energy storage[2].One of the examples is the research of prot... Understanding the proton dynamic behavior in inorganic materials has long been a topic of intense fascination[1],especially in the field of electrochemical energy storage[2].One of the examples is the research of proton transport in transition metal oxides,which dates back to 1971[3]when RuO_(2) was discovered to be capable of storing protons via reversible redox reactions[4].In aqueous electrolytes,the thin film RuO_(2) electrode exhibits a surface pseudocapacitive behavior[5],which could be modified by the structural water in its hydrated form due to the facile Grotthuss hopping mode of protons along the established hydrogen bonds inside the bulk phase[6].Soon later,Goodenough et al.reported the capacitor-like behavior of amorphous MnO_(2)·xH_(2)O electrode in an aqueous KCl electrolyte[7],and further studies on the hydrated MnO_(2) electrodes prepared by sol-gel processes have soon discovered that the intercalation of protons from aqueous electrolytes plays an indispensable role in the charge storage mechanism[8].In recent years,the research interest on rechargeable aqueous batteries has fueled the renaissance of mechanistic study of proton transport in transition metal oxides[9],which can operate as cathodes or anodes via a topotactic insertion mechanism similar to that in Li-ion batteries[10].However,due to the challenges for experimental detection of local chemical environments of the inserted protons,a comprehensive understanding of proton dynamic behavior in these electrodes remains largely lacking. 展开更多
关键词 transition metal oxideswhich storing protons inorganic materials thin film ruo proton transport reversible redox reactions understanding proton dynamic behavior electrochemical energy storage one
原文传递
Precision-Engineered Construction of Proton-Conducting Metal-Organic Frameworks 被引量:1
14
作者 Liyu Zhu Hongbin Yang +2 位作者 Ting Xu Feng Shen Chuanling Si 《Nano-Micro Letters》 2025年第4期230-274,共45页
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices.Among them,metal-organic frameworks(MOFs)present tremendous development ... Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices.Among them,metal-organic frameworks(MOFs)present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity,designability,and porosity.In particular,several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors,such as charged network construction,ligand functionalization,metal-center manipulation,defective engineering,vip molecule incorporation,and pore-space manipulation.With the implementation of these strategies,proton-conducting MOFs have developed significantly and profoundly within the last decade.Therefore,in this review,we critically discuss and analyze the fundamental principles,design strategies,and implementation methods targeted at improving the proton conductivity of MOFs through representative examples.Besides,the structural features,the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously.Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research.We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials. 展开更多
关键词 MOFS Proton conduction Porous materials Fuel cells
在线阅读 下载PDF
Role of Helicobacter pylori infection and the risk of cholelithiasis 被引量:1
15
作者 Nicolò Fabbri Salvatore Greco +3 位作者 Antonio Pesce Francesco Virgilio Danila Romeo Carlo V Feo 《World Journal of Gastroenterology》 2025年第8期152-154,共3页
This article aims to deepen the understanding of the role of Helicobacter pylori(H.pylori)infection in the development of cholelithiasis,initiated by the article by Yao et al,who investigated the potential link betwee... This article aims to deepen the understanding of the role of Helicobacter pylori(H.pylori)infection in the development of cholelithiasis,initiated by the article by Yao et al,who investigated the potential link between H.pylori infection and the development of cholelithiasis through a multicenter retrospective study on an Asian population of over 70000 participants.They also performed a compre-hensive analysis of previously published studies on H.pylori and cholelithiasis,finding a positive association therein[odds ratio(OR)=1.103,P=0.049].Patients positive for H.pylori also had lower levels of total and direct bilirubin,but higher levels of total cholesterol and low-density lipoprotein cholesterol compared to uninfected patients(P<0.05).Cohort studies have confirmed that H.pylori is a risk factor for cholelithiasis(P<0.0001),and aggregate analyses of case-control and cross-sectional studies have shown a positive association between H.pylori and cholelithiasis in Asia(OR=1.599,P=0.034),but not in Europe(OR=1.277,P=0.246).Moreover,H.pylori appears to be related to a higher ratio of choledocho-lithiasis/cholecystolithiasis(OR=3.321,P=0.033).The authors conclude that H.pylori infection is positively correlated with cholelithiasis,particularly with the choledocholithiasis phenotype,especially in Asia,and it is potentially related to bilirubin and cholesterol metabolism. 展开更多
关键词 Helicobacter pylori Helicobacter pylori infection CHOLELITHIASIS Proton pump inhibitors CHOLEDOCHOLITHIASIS
暂未订购
Nanofiber-based polymer electrolyte membranes for fuel cells 被引量:1
16
作者 Ning Liu Shuguang Bi +5 位作者 Yi Zhang Ying Ou Chunli Gong Jianhua Ran Yihuang Chen Yingkui Yang 《Carbon Energy》 2025年第4期1-35,共35页
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr... Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells. 展开更多
关键词 anion exchange membranes fuel cells NANOFIBERS proton exchange membranes
在线阅读 下载PDF
Proton exchange membrane-based electrocatalytic systems for hydrogen production 被引量:1
17
作者 Yangyang Zhou Hongjing Zhong +6 位作者 Shanhu Chen Guobin Wen Liang Shen Yanyong Wang Ru Chen Li Tao Shuangyin Wang 《Carbon Energy》 2025年第1期292-311,共20页
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi... Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs. 展开更多
关键词 ELECTROLYSIS hydrogen production proton exchange membrane
在线阅读 下载PDF
Pulsed dynamic electrolysis enhanced PEMWE hydrogen production:Revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape 被引量:1
18
作者 Xuewei Zhang Wei Zhou +13 位作者 Yuming Huang Liang Xie Tonghui Li Huimin Kang Lijie Wang Yang Yu Yani Ding Junfeng Li Jiaxiang Chen Miaoting Sun Shuo Cheng Xiaoxiao Meng Jihui Gao Guangbo Zhao 《Journal of Energy Chemistry》 2025年第1期201-214,共14页
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for... The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors. 展开更多
关键词 Water electrolysis Hydrogen production Pulsed dynamic electrolysis Proton exchange membrane water electrolysis Mass transport
在线阅读 下载PDF
Currents from relativistic laser-plasma interaction as a novel metrology for the system stability of high-repetition-rate laser secondary sources 被引量:1
19
作者 Michael Ehret Iuliana-Mariana Vladisavlevici +16 位作者 Philip Wykeham Bradford Jakub Cikhardt Evgeny Filippov Jose Luis Henares Rubén Hernández Martín Diego de Luis JoséAntonio Pérez-Hernández Pablo Vicente Tomas Burian Enrique García-García Juan Hernández Cruz Mendez Marta Olivar Ruíz Óscar Varela Maria Dolores Rodríguez Frías João Jorge Santos Giancarlo Gatti 《Matter and Radiation at Extremes》 2025年第2期24-34,共11页
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second... This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers. 展开更多
关键词 relativistic laser plasma interaction pearson linear correlation proton spectrum cutoff energy interaction schemes ion acceleration target normal sheath accelerationthe return current return currents
在线阅读 下载PDF
Syntheses,proton conduction,and transport mechanism of two three‑dimensional lanthanum phosphite‑oxalates
20
作者 LU Yang HUANG Liangliang +2 位作者 ZHAO Wei WANG Xin BI Yanfeng 《无机化学学报》 北大核心 2025年第10期2127-2137,共11页
To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D... To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D frameworks,designated as[La(HPO_(3))(C_(2)O_(4))0.5(H_(2)O)_(2)](La‑1)and(C_(6)H_(16)N_(2))(H_(3)O)[La_(2)(H_(2)PO_(3))_(3)(C_(2)O_(4))_(3)(H_(2)O)](La‑2)(C_(6)H_(14)N_(2)=cis-2,6-dimethylpiperazine),were prepared by hydrothermal and solvothermal conduction,respectively.La‑1 was constructed with lanthanum phosphite 2D layers and C_(2)O_(4)^(2-)groups,whereas La‑2 was constructed with lanthanum oxalate 2D layers and H_(2)PO^(3-)groups.Alternating current(AC)impedance spectra indicate that the pro-ton conductivities of both compounds could reach 10^(-4)S·cm^(-1)and remain highly durable at 75℃and 98%of rela-tive humidity(RH).Due to the abundance of H-bonds in La‑2,theσof La‑2 was higher than that of La‑1.La‑1 exhibited excellent water and pH stability.CCDC:2439965,La‑1;443776,La‑2. 展开更多
关键词 OPEN-FRAMEWORK lanthanum phosphite-oxalate proton conductivity stability
在线阅读 下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部