Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating auto...Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating automotive protocol, performed on five single fuel cells under RH(relative humidity) 100%,RH 80%, RH 64%, and RH 40%, RH 10%, respectively, to study the relationship of MEA decays and humidity and suggest optimized humidity range to extend the durability. With the electrochemical impedance spectroscopy, cyclic voltammetry, X-ray fluorescence, X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, the four degradation mechanisms about catalyst layer, including Pt dissolution, Pt coarsening, carbon corrosion and ionomer degradation, are observed. Pt coarsening and carbon corrosion are accelerated by higher water content at high humidity. Ionomer degradation and Pt dissolution are enhanced in low humidity. With the linear sweep voltammetry, ion chromatography,nuclear magnetic resonance, tensile test and scan electron microscope, chemical and mechanical degradation in proton exchange membrane are all observed in these five fuels. Chemical degradation, characterized by membrane thinning and more fluoride loss, occurred markedly in RH 10%. Mechanical degradation, characterized by the non-uniformity thickness and bad mechanical properties, is more pronounced in RH 100%, RH 80%, RH 64%. These two degradations are in a moderate level in RH 40%. The research suggests that the RH range from 64% to 40% is conductive to mitigate the degradation of MEAs operated in automotive applications.展开更多
The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ...The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.展开更多
基金supported by the National Key Research and Development Program of China (2018YFB1502502)the National Natural Science Foundation of China (22179127)。
文摘Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating automotive protocol, performed on five single fuel cells under RH(relative humidity) 100%,RH 80%, RH 64%, and RH 40%, RH 10%, respectively, to study the relationship of MEA decays and humidity and suggest optimized humidity range to extend the durability. With the electrochemical impedance spectroscopy, cyclic voltammetry, X-ray fluorescence, X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, the four degradation mechanisms about catalyst layer, including Pt dissolution, Pt coarsening, carbon corrosion and ionomer degradation, are observed. Pt coarsening and carbon corrosion are accelerated by higher water content at high humidity. Ionomer degradation and Pt dissolution are enhanced in low humidity. With the linear sweep voltammetry, ion chromatography,nuclear magnetic resonance, tensile test and scan electron microscope, chemical and mechanical degradation in proton exchange membrane are all observed in these five fuels. Chemical degradation, characterized by membrane thinning and more fluoride loss, occurred markedly in RH 10%. Mechanical degradation, characterized by the non-uniformity thickness and bad mechanical properties, is more pronounced in RH 100%, RH 80%, RH 64%. These two degradations are in a moderate level in RH 40%. The research suggests that the RH range from 64% to 40% is conductive to mitigate the degradation of MEAs operated in automotive applications.
基金supported by the National Natural Science Foundation of China (Grant Nos.T2325004 and 52161160330)the National Natural Science Foundation of China (Grants No.12504233)+2 种基金Advanced MaterialsNational Science and Technology Major Project (Grant No.2024ZD0606900)the Talent Hub for “AI+New Materials” Basic Researchthe Key Research and Development Program of Ningbo (Grant No.2025Z088)。
文摘The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework.