Compared with the rice-acid soup inoculated with single starter,the synergistically intensifi ed rice-acid soup inoculated with Lactobacillus paracasei H4-11(L.paracasei H4-11)and Kluyveromyces marxianus L1-1(K.marxia...Compared with the rice-acid soup inoculated with single starter,the synergistically intensifi ed rice-acid soup inoculated with Lactobacillus paracasei H4-11(L.paracasei H4-11)and Kluyveromyces marxianus L1-1(K.marxianus L1-1)contained more fl avor compounds.Organic acids mainly included L-lactic acid and the main volatile fl avor component was ethyl acetate.Moreover,the signal intensity of astringency and bitterness and the total concentration of volatile sulfur compounds were reduced.The combined analysis results of RNA sequencing(RNA-seq)technology and 4D label-free quantitative(4D LFQ)proteomics explained the fl avor formation pathways in rice-acid soup inoculated with L.paracasei H4-11 and K.marxianus L1-1.In L.paracasei H4-11,L-lactate dehydrogenase,phosphoglucomutase,acetate kinase,alcohol dehydrogenase and acetyl-CoA were up-regulated and D-lactate dehydrogenase and N-Acetyltransferase were down-regulated.In K.marxianus L1-1,Acetyl-CoA,acetaldehyde dehydrogenase,acyl-coenzyme A,N-acetyltransferase,and L-lactate dehydrogenase were up-regulated and hexokinase,alcohol dehydrogenase,and alcohol O-acetyltransferase were down-regulated.The above up-regulation and down-regulation synergistically promoted the formation of characteristic fl avor compounds(mainly L-lactic acid and ethyl acetate).Enzyme-linked immunoassay(ELISA)and parallel reaction monitoring(PRM)quantitative analysis respectively verifi ed that 5 key metabolic enzymes and 27 proteins in L.paracasei H4-11 and K.marxianus L1-1 were associated with the characteristic fl avor of rice-acid soup,as confi rmed by the quantitative results of 4D LFQ.展开更多
基金funded by National Natural Science Foundation of China(32060530)Guizhou University,Gui Da Te Gang He Zi(2022)39,Science and Technology Project of Guizhou Province,Qian Ke He Zhicheng[2022]Zhongdian 001-2,Qian Ke He Zhicheng[2022]Zhongdian 003-3+1 种基金Industry-University-Research Cooperation Project of Guizhou University(701/700465172217)China Scholarship Council(201906670006).
文摘Compared with the rice-acid soup inoculated with single starter,the synergistically intensifi ed rice-acid soup inoculated with Lactobacillus paracasei H4-11(L.paracasei H4-11)and Kluyveromyces marxianus L1-1(K.marxianus L1-1)contained more fl avor compounds.Organic acids mainly included L-lactic acid and the main volatile fl avor component was ethyl acetate.Moreover,the signal intensity of astringency and bitterness and the total concentration of volatile sulfur compounds were reduced.The combined analysis results of RNA sequencing(RNA-seq)technology and 4D label-free quantitative(4D LFQ)proteomics explained the fl avor formation pathways in rice-acid soup inoculated with L.paracasei H4-11 and K.marxianus L1-1.In L.paracasei H4-11,L-lactate dehydrogenase,phosphoglucomutase,acetate kinase,alcohol dehydrogenase and acetyl-CoA were up-regulated and D-lactate dehydrogenase and N-Acetyltransferase were down-regulated.In K.marxianus L1-1,Acetyl-CoA,acetaldehyde dehydrogenase,acyl-coenzyme A,N-acetyltransferase,and L-lactate dehydrogenase were up-regulated and hexokinase,alcohol dehydrogenase,and alcohol O-acetyltransferase were down-regulated.The above up-regulation and down-regulation synergistically promoted the formation of characteristic fl avor compounds(mainly L-lactic acid and ethyl acetate).Enzyme-linked immunoassay(ELISA)and parallel reaction monitoring(PRM)quantitative analysis respectively verifi ed that 5 key metabolic enzymes and 27 proteins in L.paracasei H4-11 and K.marxianus L1-1 were associated with the characteristic fl avor of rice-acid soup,as confi rmed by the quantitative results of 4D LFQ.