期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
Analysis of Protein Interactions:Probing the Function of Proteins with Yeast Two-Hybrid System 被引量:1
1
作者 唐巍 罗晓艳 Vanessa Samuls 《Forestry Studies in China》 CAS 2002年第1期49-57,共9页
The yeast two\|hybrid system is a molecular genetic approach for protein interaction and it is widely used to screen for proteins that interact with a protein of interest in recent years.This process includes,construc... The yeast two\|hybrid system is a molecular genetic approach for protein interaction and it is widely used to screen for proteins that interact with a protein of interest in recent years.This process includes,construction and testing of the bait plasmid,screening a plasmid library for interacting fusion protein,elimination of false positives and delection analysis of true positives.This procedure is designed to allow investigators to identify proteins and their encoding cDNAs that have a biologically significant interaction with a protein of interest.More and more studies have demonstrated that the two\|hybrid system is a powerful and sensitive technique for the identification of genes that code for proteins that interact in a biologically significant fashion with a protein of interest in higher plants.This method has been used to identify new interaction protein in many laboratories.The recently reported yeast tri\|brid system,should allow the investigation of more complex protein\|protein interactions.The aim of this review is to outline the recent progress made in protein interactions by using yeast two\|hybrid system. 展开更多
关键词 protein interaction two\|hybrid system YEAST transcription regulation
在线阅读 下载PDF
AAV mediated carboxyl terminus of Hsp70 interacting protein overexpression mitigates the cognitive and pathological phenotypes of APP/PS1 mice 被引量:2
2
作者 Zhengwei Hu Jing Yang +7 位作者 Shuo Zhang Mengjie Li Chunyan Zuo Chengyuan Mao Zhongxian Zhang Mibo Tang Changhe Shi Yuming Xu 《Neural Regeneration Research》 SCIE CAS 2025年第1期253-264,共12页
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed... The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease. 展开更多
关键词 adeno-associated virus Alzheimer’s disease APP/PS1 mice carboxyl terminus of Hsp70 interacting protein gene therapy
暂未订购
Biophysical and NMR analysis reveals binding affinity between HAX1 and CLPB proteins
3
作者 Huiqin Zhang Yong Liu +4 位作者 Yunyan Li Maosen Ruan Shu Zhou Junfeng Wang Jing Yang 《Magnetic Resonance Letters》 2025年第1期12-21,共10页
HCLS1-associated protein X-1(HAX1)is a multifunctional mitochondrial protein involved in the regulation of apoptosis,a crucial process of programmed cell death,and mRNA processing.Despite its significance,limited stru... HCLS1-associated protein X-1(HAX1)is a multifunctional mitochondrial protein involved in the regulation of apoptosis,a crucial process of programmed cell death,and mRNA processing.Despite its significance,limited structural data is available for HAX1,hindering a comprehensive understanding of its biological function.Notably,the caseinolytic mitochondrial matrix peptidase chaperone subunit B(CLPB)has been identified as an interacting partner of HAX1,yet the biophysical properties and binding affinity governing their interaction remain poorly defined.In this study,we present a thorough biophysical characterization of full-length human HAX1 and CLPB,accomplished through recombinant expression and purification.By employing size exclusion chromatography,dynamic light scattering,and circular dichroism spectroscopy,we successfully established their biophysical properties,revealing contrasting structural features,with CLPB displaying a-helical content and HAX1 exhibiting a disordered nature.Moreover,we employed solutionstate nuclear magnetic resonance(NMR)spectroscopy to probe their binding affinity.Our findings demonstrate the formation of stable multimeric complexes between HAX1 and CLPB,and we quantified a dissociation constant in the low range of micro-molar for their high affinity interaction.These results lay the foundation for further in-depth investigations into the dynamics and energetics governing the HAX1-CLPB interaction,ultimately contributing to a comprehensive understanding of their functional mechanisms. 展开更多
关键词 HAX1 CLPB protein interaction Biophysical characterization NMR spectroscopy
在线阅读 下载PDF
Small molecules targeting protein-protein interactions for cancer therapy 被引量:6
4
作者 Defa Wu Yang Li +4 位作者 Lang Zheng Huan Xiao Liang Ouyang Guan Wang Qiu Sun 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第10期4060-4088,共29页
Protein-protein interactions(PPIs)are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases.Targeting the interaction between tumour-related pr... Protein-protein interactions(PPIs)are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases.Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases,especially tumours.Encouragingly,selective PPI-based therapeutic agents have been rapidly advancing over the past decade,providing promising perspectives for novel therapies for patients with cancer.In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects,focusing on PPIs in disease,drug design and discovery strategies,structure-activity relationships,inherent dilemmas,and future directions. 展开更多
关键词 proteinprotein interactions CANCER Small molecules Structure-activity relationships
原文传递
Drug discovery by targeting the protein–protein interactions involved in autophagy 被引量:4
5
作者 Honggang Xiang Mi Zhou +2 位作者 Yan Li Lu Zhou Renxiao Wang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第11期4373-4390,共18页
Autophagy is a cellular process in which proteins and organelles are engulfed in autophagosomal vesicles and transported to the lysosome/vacuole for degradation.Protein–protein interactions(PPIs)play a crucial role a... Autophagy is a cellular process in which proteins and organelles are engulfed in autophagosomal vesicles and transported to the lysosome/vacuole for degradation.Protein–protein interactions(PPIs)play a crucial role at many stages of autophagy,which present formidable but attainable targets for autophagy regulation.Moreover,selective regulation of PPIs tends to have a lower risk in causing undesired off-target effects in the context of a complicated biological network.Thus,small-molecule regulators,including peptides and peptidomimetics,targeting the critical PPIs involved in autophagy provide a new opportunity for innovative drug discovery.This article provides general background knowledge of the critical PPIs involved in autophagy and reviews a range of successful attempts on discovering regulators targeting those PPIs.Successful strategies and existing limitations in this field are also discussed. 展开更多
关键词 Autophagy regulation proteinprotein interactions Small-molecule regulators Drug discovery
原文传递
Protein-mediated interactions in the dynamic regulation of acute inflammation
6
作者 RYAN STARK 《BIOCELL》 SCIE 2023年第6期1191-1198,共8页
Protein-mediated interactions are the fundamental mechanism through which cells regulate health and disease.These interactions require physical contact between proteins and their respective targets of interest.These t... Protein-mediated interactions are the fundamental mechanism through which cells regulate health and disease.These interactions require physical contact between proteins and their respective targets of interest.These targets include not only other proteins but also nucleic acids and other important molecules as well.These proteins are often involved in multibody complexes that work dynamically to regulate cellular health and function.Various techniques have been adapted to study these important interactions,such as affinity-based assays,mass spectrometry,and fluorescent detection.The application of these techniques has led to a greater understanding of how protein interactions are responsible for both the instigation and resolution of acute inflammatory diseases.These pursuits aim to provide opportunities to target specific protein interactions to alleviate acute inflammation. 展开更多
关键词 protein interactions INFLAMMATION SEPSIS RNA DNA THERAPEUTICS
在线阅读 下载PDF
Regulable DNA–Protein Interactions in Vitro and Vivo at Epigenetic DNA Marks
7
作者 Guangrong Zou Chaoxing Liu +5 位作者 Weiwu Zeng Wei Yang Kaiyuan Zhang Yalun Xie Cong Chen Xiang Zhou 《CCS Chemistry》 CAS 2020年第2期54-63,共10页
5-Formyluracil(5fU)is a vital DNA marker that is widely distributed in the cells of organisms.A unique feature of 5fU is the possession of a potentially reactive aldehyde group in its structure that could realize addi... 5-Formyluracil(5fU)is a vital DNA marker that is widely distributed in the cells of organisms.A unique feature of 5fU is the possession of a potentially reactive aldehyde group in its structure that could realize addition and condensation reactions.However,the biological functional details of 5fU remain mostly elusive,especially,regarding its relatedness with proteins.In this current study,we show that 5fU bases have a strong affinity toward nucleosome core particles,and that could yield regulable DNA–protein conjugates(DPCs)via chemical interactions between amino and aldehyde groups,and reductants could be applied to stabilize or dissociate the interactions.Besides,we developed a photocaged method to exploit the relationship between 5fU and nucleosomes.Finally,by applying a combination of the existence of 5fU–histone interactions in vivo by ChIP analysis of histone H4 with liquid chromatography–mass spectrometry(LC–MS),we probed further,the DPCs’influence on nucleosome and enzyme.Collectively,our results showed that the 5fU–protein interactions increase the occupancy and stability of nucleosomes,affect enzyme recognition,and block DNA replication.These might imply that,in vivo,the DPCs between 5fU and nucleosome core particles might play a key role in 5fU-associated pathways such as DNA repair,transcriptional regulation,or development. 展开更多
关键词 DNA–protein interactions epigenetic DNA marks regulable photocaged
暂未订购
Evolution and protein interactions of AP2 proteins in Brassicaceae: Evidence linking development and environmental responses 被引量:3
8
作者 Liping Zeng Yue Yin +5 位作者 Chenjiang You Qianli Pan Duo Xu Taijie Jin Bailong Zhang Hong Ma 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2016年第6期549-563,共15页
Plants have evolved a large number of transcription factors(TF), which are enriched among duplicate genes,highlighting their roles in complex regulatory networks. The APETALA2/EREBP-like genes constitute a large pla... Plants have evolved a large number of transcription factors(TF), which are enriched among duplicate genes,highlighting their roles in complex regulatory networks. The APETALA2/EREBP-like genes constitute a large plant TF family and participate in development and stress responses. To probe the conservation and divergence of AP2/EREBP genes,we analyzed the duplication patterns of this family in Brassicaceae and identified interacting proteins of representative Arabidopsis AP2/EREBP proteins. We found that many AP2/EREBP duplicates generated early in Brassicaceae history were quickly lost, but many others were retained in all tested Brassicaceae species, suggesting early functional divergence followed by persistent conservation. In addition,the sequences of the AP2 domain and exon numbers were highly conserved in rosids. Furthermore, we used 16 A.thaliana AP2/EREBP proteins as baits in yeast screens and identified 1,970 potential AP2/EREBP-interacting proteins,with a small subset of interactions verified in planta. Many AP2 genes also exhibit reduced expression in an antherdefective mutant, providing a possible link to developmental regulation. The putative AP2-interacting proteins participate in many functions in development and stress responses,including photomorphogenesis, flower development, pathogenesis, drought and cold responses, abscisic acid and auxin signaling. Our results present the AP2/EREBP evolution patterns in Brassicaceae, and support a proposed interaction network of AP2/EREBP proteins and their putative interacting proteins for further study. 展开更多
关键词 APETALA2 EREBP evolution Brassicaceae protein interaction
原文传递
Essential proteins identification method based on four-order distances and subcellular localization information
9
作者 卢鹏丽 钟雨 杨培实 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期765-772,共8页
Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have b... Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have been proposed to identify essential proteins. Unfortunately, most methods based on network topology only consider the interactions between a protein and its neighboring proteins, and not the interactions with its higher-order distance proteins. In this paper, we propose the DSEP algorithm in which we integrated network topology properties and subcellular localization information in protein–protein interaction(PPI) networks based on four-order distances, and then used random walks to identify the essential proteins. We also propose a method to calculate the finite-order distance of the network, which can greatly reduce the time complexity of our algorithm. We conducted a comprehensive comparison of the DSEP algorithm with 11 existing classical algorithms to identify essential proteins with multiple evaluation methods. The results show that DSEP is superior to these 11 methods. 展开更多
关键词 proteinprotein interaction(PPI)network essential proteins four-order distances subcellular localization information
原文传递
Construction of a Yeast Hybrid Library and Identification of Proteins Regulating CaABI3/VP1-1 Expression in Capsicum annuum var.conoides
10
作者 Huiru Deng Huan Tian +4 位作者 Liuyan Yang Siyang Ou Hui Wang Guangdong Geng Suqin Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第12期3273-3291,共19页
Hot pepper(Capsicum annuum var.conoides)is a significant vegetable that is widely cultivated around the world.Currently,global climate change has caused frequent severe weather events,and waterlogging stress harms the... Hot pepper(Capsicum annuum var.conoides)is a significant vegetable that is widely cultivated around the world.Currently,global climate change has caused frequent severe weather events,and waterlogging stress harms the pepper industry by affecting the planting period,growth conditions,and disease susceptibility.The gene CaABI3/VP1-1 could improve pepper waterlogging tolerance.In order to explore the upstream regulatory mechanism of CaABI3/VP1-1,a high-quality standardized yeast hybrid library was successfully constructed for yeast one-,two-,and threehybrid screening using pepper‘ZHC2’as the experimental material,with a library recombinant efficiency of up to 100%.The length of inserted fragments varied from 650 to 5000 bp,the library titer was 5.18×10^(6)colony-forming units(CFU)·mL-1,and the library capacity was 1.04×10^(7)CFU of cDNA inserts.The recombinant bait plasmid was used to successfully identify 78 different proteins through the yeast one-hybrid system,including one transcription factor within the ethylene-responsive factor family and the other within the growth-regulating factor family.The interaction happened between LOC124895848 and CaABI3/VP1-1 promoter by point-to-point yeast one-hybrid experiment.The expression level of the 12 selected protein-coding genes was then evaluated by quantitative real-time polymerase chain reaction.Results indicated the protein coding genes showed different responses to waterlogging stress and that the activity of the CaABI3/VP1-1 promoter could be inhibited or activated by up-regulating or down-regulating gene expression,respectively.The identification of these proteins interacting with the promoter provides a new perspective for understanding the gene regulatory network of hot pepper operating under waterlogging stress and provides theoretical support for further analysis of the complex regulatory relationship between transcription factors and promoters. 展开更多
关键词 Capsicum annuum var.conoides CaABI3/VP1-1 PROMOTER yeast one-hybrid interacting protein waterlogging stress
在线阅读 下载PDF
Potential regulatory mechanism and clinical significance of synaptotagmin binding cytoplasmic RNA interacting protein in colorectal cancer
11
作者 Hui Li He-Qing Huang +8 位作者 Zhi-Guang Huang Rong-Quan He Ye-Ying Fang Rui Song Jia-Yuan Luo Da-Tong Zeng Kai Qin Dan-Ming Wei Gang Chen 《World Journal of Clinical Oncology》 2024年第11期1412-1427,共16页
BACKGROUND Colorectal cancer(CRC)causes many deaths worldwide.Synaptotagmin binding cytoplasmic RNA interacting protein(SYNCRIP)is an RNA-binding protein that plays an important role in multiple cancers by epigenetica... BACKGROUND Colorectal cancer(CRC)causes many deaths worldwide.Synaptotagmin binding cytoplasmic RNA interacting protein(SYNCRIP)is an RNA-binding protein that plays an important role in multiple cancers by epigenetically targeting some genes.Our study will examine the expression,potential effect,biological function and clinical value of SYNCRIP in CRC.AIM To examine the expression,potential effect,biological function and clinical value METHODS The expression of SYNCRIP was examined by immunohistochemistry arrays and high-throughput data.The effect of SYNCRIP gene in CRC cell growth was evaluated by CRISPR-Cas9 technology.The target genes of SYNCRIP were calculated using various algorithms,and the molecular mechanism of SYNCRIP in CRC was explored by mutation analysis and pathway analysis.The clinical value of SYNCRIP in prognosis and radiotherapy was revealed via evidence-based medicine methods.RESULTS The protein and mRNA levels of SYNCRIP were both highly expressed in CRC samples compared to nontumorous tissue based on 330 immunohistochemistry arrays and 3640 CRC samples.Cells grew more slowly in eleven CRC cell lines after knocking out the SYNCRIP gene.SYNCRIP could epigenetically target genes to promote the occurrence and development of CRC by boosting the cell cycle and affecting the tumor microenvironment.In addition,CRC patients with high SYNCRIP expression are more sensitive to radiotherapy.CONCLUSION SYNCRIP is upregulated in CRC,and highly expressed SYNCRIP can accelerate CRC cell division by exerting its epigenetic regulatory effects.In addition,SYNCRIP is expected to become a potential biomarker to predict the effect of radiotherapy. 展开更多
关键词 Synaptotagmin binding cytoplasmic RNA interacting protein Colorectal cancer Radiotherapy Cell mitosis Immune microenvironment
暂未订购
Spastin interacts with collapsin response mediator protein 3 to regulate neurite growth and branching 被引量:1
12
作者 Zhi-Sheng Ji Jian-Ping Li +5 位作者 Chao-Hua Fu Jian-Xian Luo Hua Yang Guo-Wei Zhang Wutian Wu Hong-Sheng Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第12期2549-2556,共8页
Cytoskeletal microtubule rearrangement and movement are crucial in the repair of spinal cord injury.Spastin plays an important role in the regulation of microtubule severing.Both spastin and collapsin response mediato... Cytoskeletal microtubule rearrangement and movement are crucial in the repair of spinal cord injury.Spastin plays an important role in the regulation of microtubule severing.Both spastin and collapsin response mediator proteins can regulate neurite growth and branching;however,whether spastin interacts with collapsin response mediator protein 3(CRMP3)during this process remains unclear,as is the mechanism by which CRMP3 participates in the repair of spinal cord injury.In this study,we used a proteomics approach to identify key proteins associated with spinal cord injury repair.We then employed liquid chromatography-mass spectrometry to identify proteins that were able to interact with glutathione S-transferase-spastin.Then,co-immunoprecipitation and staining approaches were used to evaluate potential interactions between spastin and CRMP3.Finally,we co-transfected primary hippocampal neurons with CRMP3 and spastin to evaluate their role in neurite outgrowth.Mass spectrometry identified the role of CRMP3 in the spinal cord injury repair process.Liquid chromatography-mass spectrometry pulldown assays identified three CRMP3 peptides that were able to interact with spastin.CRMP3 and spastin were co-expressed in the spinal cord and were able to interact with one another in vitro and in vivo.Lastly,CRMP3 overexpression was able to enhance the ability of spastin to promote neurite growth and branching.Therefore,our results confirm that spastin and CRMP3 play roles in spinal cord injury repair by regulating neurite growth and branching.These proteins may therefore be novel targets for spinal cord injury repair.The Institutional Animal Care and Use Committee of Jinan University,China approved this study(approval No.IACUS-20181008-03)on October 8,2018. 展开更多
关键词 collapsin response mediator protein 3 liquid chromatography-mass spectrometry MICROTUBULE neurite growth protein interactions proteomics SPASTIN spinal cord injury
暂未订购
Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions 被引量:4
13
作者 Carolina Colleti Talita Diniz Melo-Hanchuk +2 位作者 Flavia Regina Moraes da Silva Angela Saito Jorg Kobarg 《World Journal of Biological Chemistry》 2019年第3期44-64,共21页
The 57 kDa antigen recognized by the Ki-1 antibody,is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7%identity and 67.4%similarity with serpin mRNA binding protein 1,which is also named C... The 57 kDa antigen recognized by the Ki-1 antibody,is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7%identity and 67.4%similarity with serpin mRNA binding protein 1,which is also named CGI-55,or plasminogen activator inhibitor type-1-RNA binding protein-1,indicating that they might be paralog proteins,possibly with similar or redundant functions in human cells.Through the identification of their protein interactomes,both regulatory proteins have been functionally implicated in transcriptional regulation,mRNA metabolism,specifically RNA splicing,the regulation of mRNA stability,especially,in the context of the progesterone hormone response,and the DNA damage response.Both proteins also show a complex pattern of post-translational modifications,involving Ser/Thr phosphorylation,mainly through protein kinase C,arginine methylation and SUMOylation,suggesting that their functions and locations are highly regulated.Furthermore,they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies,upon stress,and nuclear splicing speckles.Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis.This review highlights important aspects of the structure,interactome,post-translational modifications,sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings. 展开更多
关键词 CANCER Cell signaling Regulatory protein protein interactions Post-translational modifications
暂未订购
The critical role of CmCIPK1-CmRbohD1/D2 complexes in generating H_(2)O_(2) signals for enhancing salt tolerance in pumpkin
14
作者 Lanxing Wei Dandi Xu +8 位作者 Lijian Zhou Hui Chen Zhaowen Peng Guoyu Chen Lihui Wang Haishun Cao Yuquan Peng Shouyu Geng Zhilong Bie 《Horticultural Plant Journal》 2025年第2期804-815,共12页
Pumpkin is of great economic importance not only as food resources but also as the most widely used rootstock to graft cucurbit crops.Pumpkin rootstock improves salt tolerance of cucumber scion through respiratory bur... Pumpkin is of great economic importance not only as food resources but also as the most widely used rootstock to graft cucurbit crops.Pumpkin rootstock improves salt tolerance of cucumber scion through respiratory burst oxidase homolog protein D(CmRbohD)-mediated reactive oxygen species(ROS)burst,which further enhances Na^(+)export and K^(+)uptake.Rboh D activation requires calcium signaling.However,the underlying mechanism remains largely unknown.In this study,we discovered two Rboh D members from pumpkin involved in the ROS burst at the early stage of salt stress.CmRbohD1 and CmRbohD2 were functionally redundant and double mutation significantly impaired salt tolerance in pumpkin.Overexpression of CmRbohD1 and CmRbohD2 mitigated salinity-induced damage and maintained a relatively low Na+content and high K+content.We screened the potential calcineurin B-like interacting protein kinases(Cm CIPKs)which could bind with CmRbohD1 and CmRbohD2.Our results revealed that two Rboh Ds formed complexes specifically with CmCIPK1,thereby bursting ROS production.Overexpression of CmCIPK1 promoted the early ROS burst under salt stress condition and maintained a relatively balanced Na+/K+homeostasis.Altogether,we proposed a CmCIPK1-CmRbohD1/D2 complex for pumpkin salt stress signaling transduction,which regulates the ROS burst and Na+/K+homeostasis.Our findings offer unprecedented insights into the general mechanism of pumpkin salt tolerance. 展开更多
关键词 PUMPKIN Rboh Root transformation SALINITY protein interaction
在线阅读 下载PDF
TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C
15
作者 Yuxiang Qin Bao Zhang +2 位作者 Shoufu Cui Xiaochun Qin Genying Li 《Journal of Integrative Agriculture》 2025年第3期1017-1029,共13页
FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especi... FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especially the molecular mechanism through which FLZs function,are not well understood.In this study,we characterized 120FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase(SOD)and peroxidase(POD)activities and soluble sugar content,but a lower Na^(+)/K^(+)ratio and malondialdehyde(MDA)content than the wild type(WT)plants.Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between Ta FLZ54D transgenic wheat and the WT.Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.In summary,TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na^(+)absorption and mitigate oxidative stress.The interaction between TaFLZ54D and TaSGT1,as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins. 展开更多
关键词 WHEAT FLZ salt tolerance protein interaction Na^(+)exclusion
在线阅读 下载PDF
The role of the transcription factor NAC17 in enhancing plant resistance and stress tolerance in Vitis quinquangularis
16
作者 Xiaolin Liu Jie Zhu +3 位作者 Ruixiang Li Yang Feng Qian Yao Dong Duan 《Journal of Integrative Agriculture》 2025年第9期3435-3450,共16页
Stilbenes,a natural plant phytoalexin,are involved in the plant's response to various biotic and abiotic stresses in its environment.STILBENE SYNTHASE(STS)is the key enzyme regulating resveratrol synthesis in grap... Stilbenes,a natural plant phytoalexin,are involved in the plant's response to various biotic and abiotic stresses in its environment.STILBENE SYNTHASE(STS)is the key enzyme regulating resveratrol synthesis in grapevine.However,the regulatory mechanism of STS gene expression remains unclear.In this study,we reported a NAC transcription factor,VqNAC17,in Vitis quinquangularis,which can improve plant resistance to salt stress,drought stress,and Pseudomonas syringae pv.Tomato DC3000(Pst DC3000)in transgenic Arabidopsis thaliana.Additionally,the interaction between the transcription factors VqNAC17 and VqMYB15 was confrmed using yeast two-hybrid and BiFC.In transgenic A.thaliana,VqNAC17 participates in plant immunity through interaction with VqMYB15 to affect the stilbene synthesis.Furthermore,the experimental results of the yeast one-hybrid assay and LUC transient expression assay found that VqNAC17 can also bind to the promoter of VqMYB15.These results indicate that VqNAC17 is a key regulator that can promote the expression of STS by interacting with VqMYB15. 展开更多
关键词 Vitis quinquangularis VqNAC17 VqMYB15 protein interaction STS
在线阅读 下载PDF
NAC family gene CmNAC34 positively regulates fruit ripening through interaction with CmNAC-NOR in Cucumis melo
17
作者 Ming Ma Tingting Hao +4 位作者 Xipeng Ren Chang Liu Gela A Agula Hasi Gen Che 《Journal of Integrative Agriculture》 2025年第7期2601-2618,共18页
Melon(Cucumis melo)is an economically important horticultural crop cultivated worldwide.NAC(NAM/ATAC/CUC)transcription factors play crucial roles in the transcriptional regulation of various developmental stages in pl... Melon(Cucumis melo)is an economically important horticultural crop cultivated worldwide.NAC(NAM/ATAC/CUC)transcription factors play crucial roles in the transcriptional regulation of various developmental stages in plant growth and fruit development,but their gene functions in melon remain largely unknown.Here,we identified 78 CmNAC family genes with an integrated and conserved no apical meristem(NAM)domain in the melon genome by performing genome-wide identification and bioinformatics analysis.Transcriptome data analysis and qRTPCR results showed that most CmNACs are specifically enriched in either the vegetative or reproductive organs of melon.Through genetic transformation,we found that overexpression of CmNAC34 in melons led to early ripening fruits,suggesting its positive role in promoting fruit maturation.Using yeast two-hybrid and bimolecular fluorescence complementation assays,we verified the direct protein interaction between CmNAC34 and CmNACNOR.The expression patterns of CmNAC34 and CmNAC-NOR were similar in melon tissues,and subcellular localization revealed their nuclear protein characteristics.We transformed CmNAC-NOR in melon and found that its overexpression resulted in early ripening fruits.Then,the yeast one-hybrid and dual luciferase reporter gene assays showed that the CmNAC34 protein can bind to the promoters of two glyoxalase(GLY)genes,which are involved in the abscisic acid signal pathway and associated with fruit regulation.These findings revealed the molecular characteristics,expression profiles,and functional patterns of the NAC family genes and provide new insights into the molecular mechanism by which CmNAC34 regulates climacteric fruit ripening. 展开更多
关键词 MELON NAC transcription factors expression profile fruit ripening protein interaction
在线阅读 下载PDF
Involvement of FoVEL1 and FoLAE1 in conidiation,virulence and secondary metabolism of Fusarium oxysporum f.sp.niveum
18
作者 Yang Sun Xuhuan Zhang +6 位作者 Zhenqin Chai Yuying Li Zheng Ren Miaomiao Wang Zhiqing Ma Yong Wang Juntao Feng 《Journal of Integrative Agriculture》 2025年第10期3941-3952,共12页
The velvet protein family serves as a crucial factor in coordinating development and secondary metabolism in numerous pathogenic fungi.However,no previous research has examined the function of the velvet protein famil... The velvet protein family serves as a crucial factor in coordinating development and secondary metabolism in numerous pathogenic fungi.However,no previous research has examined the function of the velvet protein family in Fusarium oxysporum f.sp.niveum(FON),a pathogen causing a highly destructive disease in watermelon.In this study,∆fovel1 and∆folae1 deletion mutants and∆fovel1-C and∆folae1-C corresponding complementation mutants of FON were validated.Additionally,the phenotypic,biochemical,and virulence effects of the deletion mutants were investigated.Compared to the wild-type strains,the∆fovel1 and∆folae1 mutants exhibited altered mycelial phenotype,reduced conidiation,and decreased production of bikaverin and fusaric acid.Furthermore,their virulence on watermelon plant roots significantly decreased.All these alterations in mutants were restored in corresponding complementation strains.Notably,yeast two-hybrid results demonstrated an interaction between FoVel1 and FoLae1.This study reveals that FoVEL1 and FoLAE1 play essential roles in secondary metabolism,conidiation,and virulence in FON.These findings enhance our understanding of the genetic and functional roles of VEL1 and LAE1 in pathogenic fungi. 展开更多
关键词 velvet complex Fusarium oxysporum f.sp.niveum fusaric acid VIRULENCE protein interaction
在线阅读 下载PDF
Albumen/gelatin bio-inks preparation in 3D bio-printing for in situ tissue culture of cultured meat
19
作者 Xiang Guo Feng Yang +3 位作者 Yu Qi Yingying Li Shouwei Wang Baohua Kong 《Food Science and Human Wellness》 2025年第5期1703-1718,共16页
Three-dimensional(3D)bio-printing is an emerging tissue engineering technology,and its printing parameters have been upgraded to enable in-depth application in cell-cultured meat.However,excellent printable and edible... Three-dimensional(3D)bio-printing is an emerging tissue engineering technology,and its printing parameters have been upgraded to enable in-depth application in cell-cultured meat.However,excellent printable and edible bio-inks for cell-cultured meat are in urgent need of development.Therefore,a low-cost bio-ink based on albumin and gelatin was developed.At first,suitable printability of the bio-ink was determined by rheology analysis,excellent mechanical stability,and excellent mechanical stability of the printed scaffold was also proved by water absorption and degradation rate.Next,the biocompatibility of the scaffold and its interaction with cells were clarified through cell proliferation culture,cell status research and omics analysis.Notably,AG7 demonstrated better printability and AGS7 provided better conditions for cell attachment,proliferation and migration,S-shaped exponential growth curve further revealed the significant advantages of AGS7 scaffolds in cell culture.More importantly,the tissue culture process of muscle cells was simulated to organoid culture,which elucidated the interaction information between cells and scaffolds.This work has filled the vacancy in the industry and provides a novel strategy for the development of production of cell cultured meat. 展开更多
关键词 3D bio-printing Bio-ink Tissue culture protein interaction
在线阅读 下载PDF
Protein interaction network related to Helicobacter pylori infection response 被引量:8
20
作者 Kyu Kwang Kim Han Bok Kim 《World Journal of Gastroenterology》 SCIE CAS CSCD 2009年第36期4518-4528,共11页
AIM:To understand the complex reaction of gastric inflammation induced by Helicobacter pylori(H pylori) in a systematic manner using a protein interaction network. METHODS:The expression of genes significantly changed... AIM:To understand the complex reaction of gastric inflammation induced by Helicobacter pylori(H pylori) in a systematic manner using a protein interaction network. METHODS:The expression of genes significantly changed on microarray during H pylori infection was scanned from the web literary database and translated into proteins.A network of protein interactions was constructed by searching the primary interactions of selected proteins.The constructed network was mathematically analyzed and its biological function was examined.In addition,the nodes on the network were checked to determine if they had any further functional importance or relation to other proteins by extending them. RESULTS:The scale-free network showing the relationship between inflammation and carcinogenesis was constructed.Mathematical analysis showed hub and bottleneck proteins,and these proteins were mostly related to immune response.The network contained pathways and proteins related to H pylori infection,such as the JAK-STAT pathway triggered by interleukins.Activation of nuclear factor (NF)-κB,TLR4,and other proteins known to function as core proteins of immune response were also found. These immune-related proteins interacted on the network with pathways and proteins related to the cell cycle,cell maintenance and proliferation,andtranscription regulators such as BRCA1,FOS,REL,and zinc finger proteins.The extension of nodes showed interactions of the immune proteins with cancer- related proteins.One extended network,the core network,a summarized form of the extended network, and cell pathway model were constructed. CONCLUSION:Immune-related proteins activated by H pylori infection interact with proto-oncogene proteins.The hub and bottleneck proteins are potential drug targets for gastric inflammation and cancer. 展开更多
关键词 Gastric cancer Helicobacter pylori INFLAMMATION PATHWAY protein interaction network
暂未订购
上一页 1 2 8 下一页 到第
使用帮助 返回顶部