The human plasma protein binding of water soluble flavonoids in the peels of five spices of citrus fruits was studied by ultrafiltration combined with HPLC.The flavonoids were extracted separately by hot and cold wate...The human plasma protein binding of water soluble flavonoids in the peels of five spices of citrus fruits was studied by ultrafiltration combined with HPLC.The flavonoids were extracted separately by hot and cold water,and higher total flavonoid contents were detected in the former extracts than the latter ones.All the extracts show significant scavenging abilities to both ABTS and DPPH free radicals,which indicates the health benefits of the water extracts of citrus fruits peels.For DPPH radical,the IC50values of hot extract follow as Navel orange(NO)≈Mandarin orange(MO)< Lemon(LE)< Lo tangerine(LO)< Pomelo(PO),while the rank is NO< PO<LE≈MO<LO for ABTS radical.The HPLC results reveal that the kinds and contents of the flavonoids detected in the extracts are different among the species.MO extract has the most neohesperidin dihydrochalcone of 118.76 μmol/L and quercetrin of 211.81 μmol/L of which are much more than the rest extracts.Pomelo extract has the most plentiful flavonoids of naringin with a concentration of 303.28 μmol/L.The high contents of myricetrin and dihydromyricetin which both are potent free radical scavengers may explain the highest free radical scavenging activity of the NO extract.The plasma binding rates decrease with the increasing concentrations of flavonoids,and the flavonoids having plenty hydroxyl groups on both A ring and B ring of the molecular skeleton have relative higher plasma binding rates.In addition,the plasma binding rates of flavonoids with saturated C3-C4 bond decrease significantly with the increasing concentrations.展开更多
A simple and selective ultra performance liquid chromatography--electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) assay was developed for the determination of the human plasma protein binding of four...A simple and selective ultra performance liquid chromatography--electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) assay was developed for the determination of the human plasma protein binding of four bioactive ftavonoids (such as orientin and vitexin) in Polygonum orientale. Protein precipitation was used for sample preparation. Equilibrium dialysis technique was applied to determine the plasma protein binding under physiological conditions. The separation was achieved through a Waters C i s column with a mobile phase composed of 0.1% formic acid in acetonitrile and 0.1% aqueous formic acid using step gradient elution at a flow rate of 0.35 mL/min. A Waters ACQUITYTM TQD system was operated under the multiple reaction monitoring (MRM) mode of positive electrospray ionization. All of the recovery, precision, accuracy and stability of the method met the requirements. Good correlations (r 〉 0.99) of the four compounds were found, which suggested that these compounds can be simultaneously determined with acceptable accuracy. Results showed that the plasma protein bindings of the four bioactive flavonoids were in the range of 74-89% over the six concentrations studied. The binding parameters containing protein binding affinity, protein binding dissociation constant, and protein binding site were studied. The maximum ability to bind with protein was also determined in the assay in order to understand the drug-protein binding of each compound better.展开更多
The stereoselective hydrolysis of esmolol in whole blood and in its separated components from rat,rabbit and human was investigated.Blood esterase activities were variable in different species in the order of rat>r...The stereoselective hydrolysis of esmolol in whole blood and in its separated components from rat,rabbit and human was investigated.Blood esterase activities were variable in different species in the order of rat>rabbit>human.Rat plasma showed the high esterase activity and had no stereoselectivity to enantiomers.Rabbit red blood cell(RBC) membrane,RBC cytosol and plasma all hydrolyzed esmolol but with different esterase activity,whereas the hydrolysis in RBC membrane and cytosol showed significant stereoselectivity towards R-(+)-esmolol.Esterase in RBC cytosol from human blood mainly contributed to the esmolol hydrolysis,which was demonstrated with no stereoselctivity.Esterase in human plasma showed a low activity,but a remarkable stereoselectivity with R-(+)-esmolol.In addition,the protein concentration affected the hydrolysis behavior of esmolol in RBC suspension.Protein binding of esmolol enantiomers in human plasma,human serum albumin(HSA) and α;-acid glycoprotein(AGP) revealed that there was a significant difference in bound fractions between two enantiomers,especially for AGP.Our results indicated that the stereoselective protein binding might play a role in the different hydrolysis rates of esmolol enantiomers in human plasma.展开更多
In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using ...In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method.展开更多
High density lipoprotein binding protein (HBP) plays an important role in lipid metabolism of animals. Lipids are indispensable energy materials for fi- shes, especially for carnivorous fishes with low utilization e...High density lipoprotein binding protein (HBP) plays an important role in lipid metabolism of animals. Lipids are indispensable energy materials for fi- shes, especially for carnivorous fishes with low utilization efficiency of carbohydrates. The single nucleotide polymorphism (SNP) of HBP gene may affect the fat metabolism, thereby exerting an effect on the growth traits of largemouth bass (Micropterus salmoides). Investigating the correlations between SNP and growth traits can provide candidate markers for molecular marker-assisted selection. In this study, partial genomic fraganents of HBP gene ( GenBank accession number: KF652241 ) were amplified based on the sequences of an available contig in the EST-SNP database of largemouth bass. Three SNP mutation loci were identified in the 3' non-ceding region of HBP gene by direct sequencing, including H1 (G + 2782T), 142 (T + 2817C) and H3 (G + 2857A). Three SNP loci of 165 randomly selected largemouth bass individuals were detected and genotyped by SnaPshot assay. Genetic structure was analyzed by POPGENE32 software. By using spssl7.0 software, a general linear model (GLM) was established for correlation analysis between different genotypes at SNP loci of HBP gene and various growth traits. The results showed that three SNP loci were in Hardy-Weinberg equilibrium state. To be specific, loci H1 and H2 formed two haplotypes ( A and B), and three geno- types (AA, AB, and BB) were observed; loci H1, H2 and H3 formed six diplotypes (DI, I)2, D3, D4, D5 and D6). According to the correlations between dif- ferent genotypes and various growth traits, the body weight and total length of largemouth bass individuals with genotype BB were significantly higher than those of individuals with genotype AB ( P 〈 0.05 ) ; the body weight and total length of largemouth bass individuals with diplotype D6 were significantly higher than those of individuals with diplotype D4 (P 〈0.05). In this study, SNP markers correlated with growth traits were obtained in the 3' non-coding region ofHBP gene in large-mouth bass, which could be used as candidate genetic markers for subsequent molecular marker-assisted selection breeding of largemouth bass.展开更多
TM-2 known as a potential antitumor drug is a novel semi-synthetic taxane derivative. As drug-protein interactions contribute to insights into pharmacokinetic and pharmacodynamic properties, we eluci- dated the bindin...TM-2 known as a potential antitumor drug is a novel semi-synthetic taxane derivative. As drug-protein interactions contribute to insights into pharmacokinetic and pharmacodynamic properties, we eluci- dated the binding of TM-2 to plasma protein. In this study, a simple, rapid and reliable method was developed and validated employing equilibrium dialysis for the separation of bound and unbound drugs and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the quantitation. Protein binding reached equilibrium within 24 h of incubation at 37 ℃. After liquid-liquid extraction with methyl tert-butyl ether, the samples were separated on Thermo Syncronis UPLC C18 (2.1 mm× 50 mm, 1.7 μm), and acquisition of mass spectrometric data was performed in multiple re- action monitoring (MRM) mode via positive electrospray ionization. The assay was linear over the concentration rang of 5-2000 nglmL The intra- and inter-day precisions were 0.1%-14.8%, and the accuracy was from -6.4% to Z0%. This assay has been successfully applied to a protein binding study of TM-2 in rat, human and beagle dog plasma. TM-2 showed high protein binding of 81.4% ± 6.5% (rat), 87.9% ± 3.6% (human) and 79.4% ± 4.0% (beagle dog). The results revealed that there was an insignificant difference among the three species.展开更多
Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant...Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders.展开更多
Background Post-weaning diarrhea(PWD)in piglets,often caused by F4^(+)enterotoxigenic Escherichia coli(ETEC),poses significant challenges in pig production.Traditional solutions like antibiotics and zinc oxide face in...Background Post-weaning diarrhea(PWD)in piglets,often caused by F4^(+)enterotoxigenic Escherichia coli(ETEC),poses significant challenges in pig production.Traditional solutions like antibiotics and zinc oxide face increasing restrictions due to growing concerns over antibiotic resistance and environmental sustainability.This study investigates the application of bivalent heavy chain variable domain(V_(H)H)constructs(BL1.2 and BL2.2)targeting ETEC virulence factors,administered in feed to mitigate ETEC-induced PWD in weaned piglets.Results The supplementation of BL1.2 and BL2.2 in both mash and pelleted feed significantly reduced the diarrhea incidence and fecal shedding of F4^(+)ETEC in challenged piglets.Pelleted feed containing V_(H)H constructs helped to preserve gut barrier integrity by maintaining levels of the tight junction protein occludin in the small intestine.Additionally,the constructs maintained blood granulocyte counts at a similar level to the non-challenged control group,including neutrophils,and ameliorated the acute phase protein response after challenge.Notably,even at low feed intake immediately after weaning,V_(H)H constructs helped maintain piglet health by mitigating ETEC-induced inflammation and the resulting diarrhea.Conclusions Our findings demonstrated that using V_(H)H constructs as feed additives could serve as an effective strategy to help manage ETEC-associated PWD,by reducing F4^(+)ETEC gut colonization and supporting gut barrier function of weaned piglets.The high stability of these V_(H)H constructs supports their incorporation into industrial feed manufacturing processes,offering a more sustainable preventive strategy compared to traditional antimicrobial interventions,which could contribute to sustainable farming practices.展开更多
BACKGROUND The Mac-2 binding protein glycosylated isomer(M2BPGi)is a serum marker for fibrosis that correlates with the fibrosis stages in various liver diseases.AIM To examine the M2BPGi’s threshold for staging fibr...BACKGROUND The Mac-2 binding protein glycosylated isomer(M2BPGi)is a serum marker for fibrosis that correlates with the fibrosis stages in various liver diseases.AIM To examine the M2BPGi’s threshold for staging fibrosis in patients with chronic hepatitis B(CHB),and its changes during treatment.METHODS This was a prospective,longitudinal study.A total of 348 eligible patients were recruited from the Hepatology Department,Medic Medical Center between March 2020 and December 2023.Liver enzyme tests,platelet counts,M2BPGi levels,and FibroScan were conducted at baseline and at 3-month intervals until six months post-treatment.Correlation plots of M2BPGi,FibroScan,and the other parameters were generated.Receiver operating characteristic curves were constructed for M2BPGi and the other parameters to evaluate their performance.RESULTS M2BPGi levels correlated well with FibroScan results and increased as the fibrosis stage advanced.The median M2BPGi levels at the different stages of fibrosis showed statistically significant differences.The cut-off values of M2BPGi for diagnosing significant fibrosis(F≥2),advanced fibrosis(F3),and cirrhosis(F4)were determined to be 1.08,1.4,and 1.52,respectively.In the context of fibrosis regression in CHB patients during the first 6-month of treatment,M2BPGi levels appeared to decrease before this pattern occurred in the FibroScan results.CONCLUSION M2BPGi levels were strongly correlated with FibroScan.M2BPGi can be used to assess liver fibrosis,and to serve as a tool for monitoring fibrosis regression in CHB patients undergoing treatment.展开更多
BACKGROUND Mac-2 binding protein glycosylation isomer(M2BPGi)serves as a marker of activated hepatic stellate cells and as such holds potential as a biomarker for liver fibrosis.In Viet Nam,metabolic dysfunction-assoc...BACKGROUND Mac-2 binding protein glycosylation isomer(M2BPGi)serves as a marker of activated hepatic stellate cells and as such holds potential as a biomarker for liver fibrosis.In Viet Nam,metabolic dysfunction-associated steatotic liver disease(MASLD)is rising in prevalence and there is an urgent need for better clinical management,particularly in early detection methods that will improve overall prognosis.AIM To examine M2BPGi cut-off values for staging liver fibrosis in patients with MASLD and risk factors associated with disease progression.METHODS A total of 301 individuals with ultrasound-confirmed or FibroScan-confirmed diagnosis of fatty liver were enrolled in the study.The participants were stratified according to fibrosis stage,measured via magnetic resonance elastography.M2-BPGi,Fibrosis-4(FIB-4)Index score,and routine parameters of liver function were assessed to statistically investigate the correlation of M2BPGi levels in various fibrosis stages and to identify risk factors associated with fibrosis severity.RESULTS M2BPGi levels positively correlated with fibrosis stages,with cut-off indexes of 0.57 for F0-1,0.68 for F2-3,and 0.78 for F4.M2BPGi levels in the F0-1 group were significantly different from those in both the F2-3 group(P=0.038)and the F4 group(P=0.0051);the F2-3 and F4 groups did not show a significant difference(P=0.39).Females exhibited significantly higher M2BPGi levels than males for all fibrosis stages,particularly in the F2-3 group(P=0.01)and F4 group(P=0.0006).In the F4(cirrhosis)group,individuals with diabetes had significantly higher M2BPGi levels than those without.M2BPGi,hemoglobin A1c,and FIB-4 score were identified as independent risk factors for greater fibrosis and cirrhosis.CONCLUSION M2BPGi levels varied significantly throughout fibrosis progression,from early MASLD to cirrhosis,with sex correlation.M2BPGi holds promise as an early biomarker for fibrosis characterization in MASLD adult patient populations.展开更多
BACKGROUND The exact mechanisms underlying diabetic nephropathy(DN)remain incompletely elucidated,prompting researchers to explore new perspectives and identify novel intervention targets in this field.AIM To explore ...BACKGROUND The exact mechanisms underlying diabetic nephropathy(DN)remain incompletely elucidated,prompting researchers to explore new perspectives and identify novel intervention targets in this field.AIM To explore the role and underlying mechanisms of farnesoid X receptor(FXR)in the development of DN by regulating endoplasmic reticulum stress(ERS)molecular chaperone binding immunoglobulin protein(BiP)expression.METHODS Bioinformatics analyses identified potential FXR-binding elements in the BiP promoter.Dual-luciferase and chromatin immunoprecipitation(ChIP)assays confirmed FXR-BiP binding sites.In vitro studies used SV40 MES 13 cells under varying glucose conditions and treatments with FXR modulators[obeticholic acid(INT-747)and guggulsterones]or BiP small interfering RNA.The expression of BiP and ERS-related proteins[protein kinase R-like endoplasmic reticulum kinase(PERK),inositol-requiring enzyme 1(IRE1),activating transcription factor 6(ATF6)]was assessed alongside cell proliferation and extracellular matrix(ECM)synthesis.In vivo studies in DN mice(db/db)examined the effects of FXR activation on renal function and morphology.RESULTS FXR bound to the target sequence in the BiP promoter region,enhancing transcriptional activity,as confirmed by ChIP experiments.FXR expression decreased in SV40 MES 13 cells stimulated with high glucose and in renal tissues of DN mice compared with control.Treatment of SV40 MES 13 cells with the FXR agonist INT-747 significantly increased intracellular BiP expression,whereas silencing the FXR gene led to the downregulation of BiP levels.In vivo administration of INT-747 significantly elevated BiP levels in renal tissues,improved renal function and fibrosis in DN mice,while inhibiting the expression of ERS-related signaling proteins PERK,IRE1,and ATF6.CONCLUSION FXR promotes BiP expression by binding to its promoter,suppressing ERS pathways,and reducing mesangial cell proliferation and ECM synthesis.These findings highlight FXR as a potential therapeutic target for diabetic glomerulosclerosis.展开更多
BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the rol...BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the role of MLKL’s adenosine triphosphate(ATP)-binding pocket in facilitating necroptosis-independent pathways that may contribute to liver disease progression.By focusing on this mechanism,we seek to identify potential therapeutic targets that can modulate MLKL activity,offering new strategies for the prevention and treatment of liver-related pathologies.AIM To investigate the possibility of using the ATP-binding pocket-associated,necro-ptosis-independent MLKL pathway as a target for liver diseases.METHODS Cell death following necroptosis stimuli was evaluated using cell proliferation assays,flow cytometry,and electron microscopy in various cells.The human liver organoid system was used to evaluate whether the MLKL ATP pocket-binding inhibitor could attenuate inflammation.Additionally,alcoholic and non-alcoholic fatty liver diseases animal models were used to determine whether MLKL ATP pocket inhibitors could attenuate liver injury.RESULTS While an MLKL ATP pocket-binding inhibitor did not prevent necroptosis-induced cell death in RAW 264.7 cells,it did reduce the necroptosis-led expression of CXCL2,ICAM,and VCAM.Notably,MLKL ATP pocket inhibitor diminishes the expression of CXCL2,ICAM,and VCAM by inhibiting the IκB kinase and nuclear factor kappa-B pathways without inducing necroptosis-induced cell death in two-dimensional cell culture as well as the human-derived liver organoid system.Although MLKL ATP-binding inhibitor was ineffective in non-alcoholic fatty liver disease animal models,MLKL ATP-binding inhibitor attenuated hepatic inflammation in the alcoholic liver disease model.CONCLUSION MLKL ATP pocket-binding inhibitor exerted anti-inflammatory effects through the necroptosis-independent MLKL pathway in an animal model of alcoholic liver disease.展开更多
BACKGROUND Thrombocytopenia 2,an autosomal dominant inherited disease characterized by moderate thrombocytopenia,predisposition to myeloid malignancies and normal platelet size and function,can be caused by 5’-untran...BACKGROUND Thrombocytopenia 2,an autosomal dominant inherited disease characterized by moderate thrombocytopenia,predisposition to myeloid malignancies and normal platelet size and function,can be caused by 5’-untranslated region(UTR)point mutations in ankyrin repeat domain containing 26(ANKRD26).Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1)have been identified as negative regulators of ANKRD26.However,the positive regulators of ANKRD26 are still unknown.AIM To prove the positive regulatory effect of GATA binding protein 2(GATA2)on ANKRD26 transcription.METHODS Human induced pluripotent stem cells derived from bone marrow(hiPSC-BM)INTRODUCTION Ankyrin repeat domain containing protein 26(ANKRD26)acts as a regulator of adipogenesis and is involved in the regulation of feeding behavior[1-3].The ANKRD26 gene is located on chromosome 10 and shares regions of homology with the primate-specific gene family POTE.According to the Human Protein Atlas database,the ANKRD26 protein is localized to the Golgi apparatus and vesicles,and its expression can be detected in nearly all human tissues[4].Moreover,UniProt annotation revealed that ANKRD26 is localized in the centrosome and contains coiled-coil domains formed by spectrin helices and ankyrin repeats[5,6].The most common disease related to ANKRD26 is thrombocytopenia 2(THC2),which is a rare autosomal dominant inherited disease characterized by lifelong mild-to-moderate thrombocytopenia and mild bleeding[7-9].Caused by the variants in the 5’-untranslated region(UTR)of ANKRD26,THC2 is defined by a decrease in the number of platelets in circulating blood and results in increased bleeding and decreased clotting ability[8,10].Due to the point mutations that occur in the 5’-UTR of ANKRD26,its negative transcription factors(TFs),Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1),lose their repression effect[11].The persistent expression of ANKRD26 increases the activity of the mitogen activated protein kinase and extracellular signal regulated kinase 1/2 signaling pathways,which are potentially involved in the regulation of thrombopoietin-dependent signaling and further impair proplatelet formation by megakaryocytes(MKs)[11].However,the positive regulators of ANKRD26,which might be associated with THC2 pathology,are still unknown.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is an aggressive subtype of liver cancer and is one of the most common cancers with high mortality worldwide.Reprogrammed lipid metabolism plays crucial roles in HCC cancer cell...BACKGROUND Hepatocellular carcinoma(HCC)is an aggressive subtype of liver cancer and is one of the most common cancers with high mortality worldwide.Reprogrammed lipid metabolism plays crucial roles in HCC cancer cell survival,growth,and evolution.Emerging evidence suggests the importance of fatty acid binding proteins(FABPs)in contribution to cancer progression and metastasis;however,how these FABPs are dysregulated in cancer cells,especially in HCC,and the roles of FABPs in cancer progression have not been well defined.AIM To understand the genetic alterations and expression of FABPs and their associated cancer hallmarks and oncogenes in contributing to cancer malignancies.METHODS We used The Cancer Genome Atlas datasets of pan cancer and liver hepatocellular carcinoma(LIHC)as well as patient cohorts with other cancer types in this study.We investigated genetic alterations of FABPs in various cancer types.mRNA expression was used to determine if FABPs are abnormally expressed in tumor tissues compared to non-tumor controls and to investigate whether their expression correlates with patient clinical outcome,enriched cancer hallmarks and oncogenes previously reported for patients with HCC.We determined the protein levels of FABP5 and its correlated genes in two HCC cell lines and assessed the potential of FABP5 inhibition in treating HCC cells.RESULTS We discovered that a gene cluster including five FABP family members(FABP4,FABP5,FABP8,FABP9 and FABP12)is frequently co-amplified in cancer.Amplification,in fact,is the most common genetic alteration for FABPs,leading to overexpression of FABPs.FABP5 showed the greatest differential mRNA expression comparing tumor with non-tumor tissues.High FABP5 expression correlates well with worse patient outcomes(P<0.05).FABP5 expression highly correlates with enrichment of G2M checkpoint(r=0.33,P=1.1e-10),TP53 signaling pathway(r=0.22,P=1.7e-5)and many genes in the gene sets such as CDK1(r=0.56,P=0),CDK4(r=0.49,P=0),and TP53(r=0.22,P=1.6e-5).Furthermore,FABP5 also correlates well with two co-expressed oncogenes PLK1 and BIRC5 in pan cancer especially in LIHC patients(r=0.58,P=0;r=0.58,P=0;respectively).FABP5high Huh7 cells also expressed higher protein levels of p53,BIRC5,CDK1,CDK2,and CDK4 than FABP5low HepG2 cells.FABP5 inhibition more potently inhibited the tumor cell growth in Huh7 cells than in HepG2 cells.CONCLUSION We discovered that FABP5 gene is frequently amplified in cancer,especially in HCC,leading to its significant elevated expression in HCC.Its high expression correlates well with worse patient outcome,enriched cancer hallmarks and oncogenes in HCC.FABP5 inhibition impaired the cell viability of FABP5high Huh7 cells.All these support that FABP5 is a novel therapeutic target for treating FABP5high HCC.展开更多
BACKGROUND Colorectal cancer(CRC)causes many deaths worldwide.Synaptotagmin binding cytoplasmic RNA interacting protein(SYNCRIP)is an RNA-binding protein that plays an important role in multiple cancers by epigenetica...BACKGROUND Colorectal cancer(CRC)causes many deaths worldwide.Synaptotagmin binding cytoplasmic RNA interacting protein(SYNCRIP)is an RNA-binding protein that plays an important role in multiple cancers by epigenetically targeting some genes.Our study will examine the expression,potential effect,biological function and clinical value of SYNCRIP in CRC.AIM To examine the expression,potential effect,biological function and clinical value METHODS The expression of SYNCRIP was examined by immunohistochemistry arrays and high-throughput data.The effect of SYNCRIP gene in CRC cell growth was evaluated by CRISPR-Cas9 technology.The target genes of SYNCRIP were calculated using various algorithms,and the molecular mechanism of SYNCRIP in CRC was explored by mutation analysis and pathway analysis.The clinical value of SYNCRIP in prognosis and radiotherapy was revealed via evidence-based medicine methods.RESULTS The protein and mRNA levels of SYNCRIP were both highly expressed in CRC samples compared to nontumorous tissue based on 330 immunohistochemistry arrays and 3640 CRC samples.Cells grew more slowly in eleven CRC cell lines after knocking out the SYNCRIP gene.SYNCRIP could epigenetically target genes to promote the occurrence and development of CRC by boosting the cell cycle and affecting the tumor microenvironment.In addition,CRC patients with high SYNCRIP expression are more sensitive to radiotherapy.CONCLUSION SYNCRIP is upregulated in CRC,and highly expressed SYNCRIP can accelerate CRC cell division by exerting its epigenetic regulatory effects.In addition,SYNCRIP is expected to become a potential biomarker to predict the effect of radiotherapy.展开更多
Background:Circular RNAs(circRNAs)are considered to be important regulators in cancer biology.In this study,we focused on the effect of circRNA baculoviral inhibitor of apoptosis protein(IAP)repeat containing 6(circBI...Background:Circular RNAs(circRNAs)are considered to be important regulators in cancer biology.In this study,we focused on the effect of circRNA baculoviral inhibitor of apoptosis protein(IAP)repeat containing 6(circBIRC6)on non-small cell lung cancer(NSCLC)progression.Methods:The NSCLC and adjacent non-tumor tissues were collected at Shanghai Ninth People's Hospital.Quantitative real-time polymerase chain reaction was conducted for assessing the levels of circBIRC6,amyloid beta precursor protein binding protein 2(APPBP2)messenger RNA(mRNA),baculoviral IAP repeat containing 6 mRNA(BIRC6),and microRNA-217(miR-217).Western blot assay was adopted for measuring the protein levels of APPBP2,E-cadherin,N-cadherin,and vimentin.Colony formation assay,transwell assay,and flow cytometry analysis were utilized for evaluating cell colony formation,metastasis,and apoptosis.Dualluciferase reporter assay and RNA immunoprecipitation assay were carried out to determine the interaction between miR-217 and circBIRC6 and APPBP2 in NSCLC tissues.The murine xenograft model assay was used to investigate the function of circBIRC6 in tumor formation in vivo.Differences were analyzed via Student's t test or one-way analysis of variance.Pearson's correlation coefficient analysis was used to analyze linear correlation.Results:CircBIRC6 was overexpressed in NSCLC tissues and cells.Knockdown of circBIRC6 repressed the colony formation and metastasis and facilitated apoptosis of NSCLC cells in vitro and restrained tumorigenesis in vivo.Mechanically,circBIRC6 functioned as miR-217 sponge to promote APPBP2 expression in NSCLC cells.MiR-217 inhibition rescued circBIRC6 knockdown-mediated effects on NSCLC cell colony formation,metastasis,and apoptosis.Overexpression of miR-217 inhibited the malignant phenotypes of NSCLC cells,while the effects were abrogated by elevating APPBP2.Conclusion:CircBIRC6 aggravated NSCLC cell progression by elevating APPBP2 via sponging miR-217,which might provide a fresh perspective on NSCLC therapy.展开更多
[Objective] The research aimed to find the extracellular binding proteins of CR4.[Method] The extracellular domain of OsCR4 was as the bait protein,and the yeast two-hybrid was used to screen cDNA library of seedling ...[Objective] The research aimed to find the extracellular binding proteins of CR4.[Method] The extracellular domain of OsCR4 was as the bait protein,and the yeast two-hybrid was used to screen cDNA library of seedling which was cultivated 14 d.[Result] A lot of proteins which included a peroxide B(D26484),a methionine thioredoxin reductase(ABF96078)and an unknown function protein were gained.[Conclusion] It provided the theory basis for studying the signal transduction mechanism of CR4.展开更多
The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane pr...The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins aremembers of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.展开更多
The association of retinol binding protein 4 (RBP4) with atherosclerosis of the carotid artery in type 2 diabetes mellitus (T2DM) remains undefined. We aimed to investigate the correlation of RBP4 expression with ...The association of retinol binding protein 4 (RBP4) with atherosclerosis of the carotid artery in type 2 diabetes mellitus (T2DM) remains undefined. We aimed to investigate the correlation of RBP4 expression with atherosclerosis of the carotid artery in T2DM. A total of 1,076 subjects were investigated for intima-media thickness of the bilateral common carotid arteries, and they were divided into three groups: in group Ⅰ, patients had normal neck vascular ultra- sound, in group Ⅱ, intimal carotid artery media thickness was equal to or more than 1 mm, and in group Ⅲ, carotid artery plaque was present. Height, weight, blood pressure (BP), fasting plasma glucose (FPG), hemoglobin Alc (HbA1c), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipopro- tein cholesterol (HDL-C), apolipoprotein A-1 (apoA-1), apolipoprotein B (apoB) and lipoprotein (a) [Lp(a)] were determined by routine laboratory methods. RBP4 and high sensitivity C reactive protein (HsCRP) were measured by an enzyme-linked immuno-sorbent assay, and insulin concentration was measured by an electrochemiluminescence sandwich immunoassay. Duration of diabetes, waist and BP, FPG, HbAlc, TG, TC, LDL-C, APOB, Lp(a), HsCRP, RBP4 and homeostasis model assessment insulin resistance index (HOMA-IR) were significantly lower in group I than in the other two groups (P〈0.01, P〈0.01). Plasma levels of HbAlc, RBP4, LDL-C, TC, HOMA-IR, HsCRP and Lp(a), waist and BP were significantly increased in group III than in group II (P〈0.01). Multivariate logistic regression analysis showed that there were seven factors associated with the occurrence of carotid artery atherosclero- sis and its risks in descending order were: high LDL-C, high waist, high HsCRP, duration of diabetes, high HOMA-IR, HbAlc and high RBP4. Our finding supported that RBP4 was positively correlated with carotid atherosclerosis in patients with T2DM and could be used as an early predictor of cardiovascular disease.展开更多
Protein binding is essential to the transport,decay and regulation of almost all RNA molecules.However,the structural preference of protein binding on RNAs and their cellular functions and dynamics upon changing envir...Protein binding is essential to the transport,decay and regulation of almost all RNA molecules.However,the structural preference of protein binding on RNAs and their cellular functions and dynamics upon changing environmental conditions are poorly understood.Here,we integrated various high-throughput data and introduced a computational framework to describe the global interactions between RNA binding proteins(RBPs)and structured RNAs in yeast at single-nucleotide resolution.We found that on average,in terms of percent total lengths,~15%of mRNA untranslated regions(UTRs),~37%of canonical non-coding RNAs(ncRNAs)and^11%of long ncRNAs(lncRNAs)are bound by proteins.The RBP binding sites,in general,tend to occur at single-stranded loops,with evolutionarily conserved signatures,and often facilitate a specific RNA structure conformation in vivo.We found that four nucleotide modifications of tRNA are significantly associated with RBP binding.We also identified various structural motifs bound by RBPs in the UTRs of mRNAs,associated with localization,degradation and stress responses.Moreover,we identified>200 novel lncRNAs bound by RBPs,and about half of them contain conserved secondary structures.We present the first ensemble pattern of RBP binding sites in the structured non-coding regions of a eukaryotic genome,emphasizing their structural context and cellular functions.展开更多
基金Project(21176263) supported by the National Natural Science Foundation of China
文摘The human plasma protein binding of water soluble flavonoids in the peels of five spices of citrus fruits was studied by ultrafiltration combined with HPLC.The flavonoids were extracted separately by hot and cold water,and higher total flavonoid contents were detected in the former extracts than the latter ones.All the extracts show significant scavenging abilities to both ABTS and DPPH free radicals,which indicates the health benefits of the water extracts of citrus fruits peels.For DPPH radical,the IC50values of hot extract follow as Navel orange(NO)≈Mandarin orange(MO)< Lemon(LE)< Lo tangerine(LO)< Pomelo(PO),while the rank is NO< PO<LE≈MO<LO for ABTS radical.The HPLC results reveal that the kinds and contents of the flavonoids detected in the extracts are different among the species.MO extract has the most neohesperidin dihydrochalcone of 118.76 μmol/L and quercetrin of 211.81 μmol/L of which are much more than the rest extracts.Pomelo extract has the most plentiful flavonoids of naringin with a concentration of 303.28 μmol/L.The high contents of myricetrin and dihydromyricetin which both are potent free radical scavengers may explain the highest free radical scavenging activity of the NO extract.The plasma binding rates decrease with the increasing concentrations of flavonoids,and the flavonoids having plenty hydroxyl groups on both A ring and B ring of the molecular skeleton have relative higher plasma binding rates.In addition,the plasma binding rates of flavonoids with saturated C3-C4 bond decrease significantly with the increasing concentrations.
基金This work was supported by the National Science Foundation of China (No. 30860366) Guizhou Province Municipal Science and Technology Project (No. 2007-6010).
文摘A simple and selective ultra performance liquid chromatography--electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) assay was developed for the determination of the human plasma protein binding of four bioactive ftavonoids (such as orientin and vitexin) in Polygonum orientale. Protein precipitation was used for sample preparation. Equilibrium dialysis technique was applied to determine the plasma protein binding under physiological conditions. The separation was achieved through a Waters C i s column with a mobile phase composed of 0.1% formic acid in acetonitrile and 0.1% aqueous formic acid using step gradient elution at a flow rate of 0.35 mL/min. A Waters ACQUITYTM TQD system was operated under the multiple reaction monitoring (MRM) mode of positive electrospray ionization. All of the recovery, precision, accuracy and stability of the method met the requirements. Good correlations (r 〉 0.99) of the four compounds were found, which suggested that these compounds can be simultaneously determined with acceptable accuracy. Results showed that the plasma protein bindings of the four bioactive flavonoids were in the range of 74-89% over the six concentrations studied. The binding parameters containing protein binding affinity, protein binding dissociation constant, and protein binding site were studied. The maximum ability to bind with protein was also determined in the assay in order to understand the drug-protein binding of each compound better.
基金supported by National Major Projects of Ministry Science and Technology of China(2011CB710800,2012ZX09506001-004)Zhejiang Education Department(Y200909571)
文摘The stereoselective hydrolysis of esmolol in whole blood and in its separated components from rat,rabbit and human was investigated.Blood esterase activities were variable in different species in the order of rat>rabbit>human.Rat plasma showed the high esterase activity and had no stereoselectivity to enantiomers.Rabbit red blood cell(RBC) membrane,RBC cytosol and plasma all hydrolyzed esmolol but with different esterase activity,whereas the hydrolysis in RBC membrane and cytosol showed significant stereoselectivity towards R-(+)-esmolol.Esterase in RBC cytosol from human blood mainly contributed to the esmolol hydrolysis,which was demonstrated with no stereoselctivity.Esterase in human plasma showed a low activity,but a remarkable stereoselectivity with R-(+)-esmolol.In addition,the protein concentration affected the hydrolysis behavior of esmolol in RBC suspension.Protein binding of esmolol enantiomers in human plasma,human serum albumin(HSA) and α;-acid glycoprotein(AGP) revealed that there was a significant difference in bound fractions between two enantiomers,especially for AGP.Our results indicated that the stereoselective protein binding might play a role in the different hydrolysis rates of esmolol enantiomers in human plasma.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674172 and 10874229)
文摘In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method.
基金Supported by National Natural Science Foundation of China(No.31201985)National Key Technology Support Program of China(2012BAD26B03)"948"Key Program of the Ministry of Agriculture of China(2011-G12)
文摘High density lipoprotein binding protein (HBP) plays an important role in lipid metabolism of animals. Lipids are indispensable energy materials for fi- shes, especially for carnivorous fishes with low utilization efficiency of carbohydrates. The single nucleotide polymorphism (SNP) of HBP gene may affect the fat metabolism, thereby exerting an effect on the growth traits of largemouth bass (Micropterus salmoides). Investigating the correlations between SNP and growth traits can provide candidate markers for molecular marker-assisted selection. In this study, partial genomic fraganents of HBP gene ( GenBank accession number: KF652241 ) were amplified based on the sequences of an available contig in the EST-SNP database of largemouth bass. Three SNP mutation loci were identified in the 3' non-ceding region of HBP gene by direct sequencing, including H1 (G + 2782T), 142 (T + 2817C) and H3 (G + 2857A). Three SNP loci of 165 randomly selected largemouth bass individuals were detected and genotyped by SnaPshot assay. Genetic structure was analyzed by POPGENE32 software. By using spssl7.0 software, a general linear model (GLM) was established for correlation analysis between different genotypes at SNP loci of HBP gene and various growth traits. The results showed that three SNP loci were in Hardy-Weinberg equilibrium state. To be specific, loci H1 and H2 formed two haplotypes ( A and B), and three geno- types (AA, AB, and BB) were observed; loci H1, H2 and H3 formed six diplotypes (DI, I)2, D3, D4, D5 and D6). According to the correlations between dif- ferent genotypes and various growth traits, the body weight and total length of largemouth bass individuals with genotype BB were significantly higher than those of individuals with genotype AB ( P 〈 0.05 ) ; the body weight and total length of largemouth bass individuals with diplotype D6 were significantly higher than those of individuals with diplotype D4 (P 〈0.05). In this study, SNP markers correlated with growth traits were obtained in the 3' non-coding region ofHBP gene in large-mouth bass, which could be used as candidate genetic markers for subsequent molecular marker-assisted selection breeding of largemouth bass.
基金partly supported by the National High Technology Research and Development Program of China(No.2012AA020305)
文摘TM-2 known as a potential antitumor drug is a novel semi-synthetic taxane derivative. As drug-protein interactions contribute to insights into pharmacokinetic and pharmacodynamic properties, we eluci- dated the binding of TM-2 to plasma protein. In this study, a simple, rapid and reliable method was developed and validated employing equilibrium dialysis for the separation of bound and unbound drugs and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the quantitation. Protein binding reached equilibrium within 24 h of incubation at 37 ℃. After liquid-liquid extraction with methyl tert-butyl ether, the samples were separated on Thermo Syncronis UPLC C18 (2.1 mm× 50 mm, 1.7 μm), and acquisition of mass spectrometric data was performed in multiple re- action monitoring (MRM) mode via positive electrospray ionization. The assay was linear over the concentration rang of 5-2000 nglmL The intra- and inter-day precisions were 0.1%-14.8%, and the accuracy was from -6.4% to Z0%. This assay has been successfully applied to a protein binding study of TM-2 in rat, human and beagle dog plasma. TM-2 showed high protein binding of 81.4% ± 6.5% (rat), 87.9% ± 3.6% (human) and 79.4% ± 4.0% (beagle dog). The results revealed that there was an insignificant difference among the three species.
基金supported by the National Natural Science Foundation of China(Nos.82171552 and 82170479)the Natural Science Foundation of Shanghai Ctiy(No.21ZR1457500)the Science and Technology Bureau of Shanghai Putuo District(No.ptkwws202102).
文摘Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders.
基金financially supported by the Green Development and Demonstration Programme(GUDP)(case number 34009-19-1585)。
文摘Background Post-weaning diarrhea(PWD)in piglets,often caused by F4^(+)enterotoxigenic Escherichia coli(ETEC),poses significant challenges in pig production.Traditional solutions like antibiotics and zinc oxide face increasing restrictions due to growing concerns over antibiotic resistance and environmental sustainability.This study investigates the application of bivalent heavy chain variable domain(V_(H)H)constructs(BL1.2 and BL2.2)targeting ETEC virulence factors,administered in feed to mitigate ETEC-induced PWD in weaned piglets.Results The supplementation of BL1.2 and BL2.2 in both mash and pelleted feed significantly reduced the diarrhea incidence and fecal shedding of F4^(+)ETEC in challenged piglets.Pelleted feed containing V_(H)H constructs helped to preserve gut barrier integrity by maintaining levels of the tight junction protein occludin in the small intestine.Additionally,the constructs maintained blood granulocyte counts at a similar level to the non-challenged control group,including neutrophils,and ameliorated the acute phase protein response after challenge.Notably,even at low feed intake immediately after weaning,V_(H)H constructs helped maintain piglet health by mitigating ETEC-induced inflammation and the resulting diarrhea.Conclusions Our findings demonstrated that using V_(H)H constructs as feed additives could serve as an effective strategy to help manage ETEC-associated PWD,by reducing F4^(+)ETEC gut colonization and supporting gut barrier function of weaned piglets.The high stability of these V_(H)H constructs supports their incorporation into industrial feed manufacturing processes,offering a more sustainable preventive strategy compared to traditional antimicrobial interventions,which could contribute to sustainable farming practices.
文摘BACKGROUND The Mac-2 binding protein glycosylated isomer(M2BPGi)is a serum marker for fibrosis that correlates with the fibrosis stages in various liver diseases.AIM To examine the M2BPGi’s threshold for staging fibrosis in patients with chronic hepatitis B(CHB),and its changes during treatment.METHODS This was a prospective,longitudinal study.A total of 348 eligible patients were recruited from the Hepatology Department,Medic Medical Center between March 2020 and December 2023.Liver enzyme tests,platelet counts,M2BPGi levels,and FibroScan were conducted at baseline and at 3-month intervals until six months post-treatment.Correlation plots of M2BPGi,FibroScan,and the other parameters were generated.Receiver operating characteristic curves were constructed for M2BPGi and the other parameters to evaluate their performance.RESULTS M2BPGi levels correlated well with FibroScan results and increased as the fibrosis stage advanced.The median M2BPGi levels at the different stages of fibrosis showed statistically significant differences.The cut-off values of M2BPGi for diagnosing significant fibrosis(F≥2),advanced fibrosis(F3),and cirrhosis(F4)were determined to be 1.08,1.4,and 1.52,respectively.In the context of fibrosis regression in CHB patients during the first 6-month of treatment,M2BPGi levels appeared to decrease before this pattern occurred in the FibroScan results.CONCLUSION M2BPGi levels were strongly correlated with FibroScan.M2BPGi can be used to assess liver fibrosis,and to serve as a tool for monitoring fibrosis regression in CHB patients undergoing treatment.
文摘BACKGROUND Mac-2 binding protein glycosylation isomer(M2BPGi)serves as a marker of activated hepatic stellate cells and as such holds potential as a biomarker for liver fibrosis.In Viet Nam,metabolic dysfunction-associated steatotic liver disease(MASLD)is rising in prevalence and there is an urgent need for better clinical management,particularly in early detection methods that will improve overall prognosis.AIM To examine M2BPGi cut-off values for staging liver fibrosis in patients with MASLD and risk factors associated with disease progression.METHODS A total of 301 individuals with ultrasound-confirmed or FibroScan-confirmed diagnosis of fatty liver were enrolled in the study.The participants were stratified according to fibrosis stage,measured via magnetic resonance elastography.M2-BPGi,Fibrosis-4(FIB-4)Index score,and routine parameters of liver function were assessed to statistically investigate the correlation of M2BPGi levels in various fibrosis stages and to identify risk factors associated with fibrosis severity.RESULTS M2BPGi levels positively correlated with fibrosis stages,with cut-off indexes of 0.57 for F0-1,0.68 for F2-3,and 0.78 for F4.M2BPGi levels in the F0-1 group were significantly different from those in both the F2-3 group(P=0.038)and the F4 group(P=0.0051);the F2-3 and F4 groups did not show a significant difference(P=0.39).Females exhibited significantly higher M2BPGi levels than males for all fibrosis stages,particularly in the F2-3 group(P=0.01)and F4 group(P=0.0006).In the F4(cirrhosis)group,individuals with diabetes had significantly higher M2BPGi levels than those without.M2BPGi,hemoglobin A1c,and FIB-4 score were identified as independent risk factors for greater fibrosis and cirrhosis.CONCLUSION M2BPGi levels varied significantly throughout fibrosis progression,from early MASLD to cirrhosis,with sex correlation.M2BPGi holds promise as an early biomarker for fibrosis characterization in MASLD adult patient populations.
基金Supported by the Talent Launch Fund of Chongqing Medical University Affiliated University City HospitalChongqing Medical University Affiliated University City Hospital Youth Program,No.2021ZD05.
文摘BACKGROUND The exact mechanisms underlying diabetic nephropathy(DN)remain incompletely elucidated,prompting researchers to explore new perspectives and identify novel intervention targets in this field.AIM To explore the role and underlying mechanisms of farnesoid X receptor(FXR)in the development of DN by regulating endoplasmic reticulum stress(ERS)molecular chaperone binding immunoglobulin protein(BiP)expression.METHODS Bioinformatics analyses identified potential FXR-binding elements in the BiP promoter.Dual-luciferase and chromatin immunoprecipitation(ChIP)assays confirmed FXR-BiP binding sites.In vitro studies used SV40 MES 13 cells under varying glucose conditions and treatments with FXR modulators[obeticholic acid(INT-747)and guggulsterones]or BiP small interfering RNA.The expression of BiP and ERS-related proteins[protein kinase R-like endoplasmic reticulum kinase(PERK),inositol-requiring enzyme 1(IRE1),activating transcription factor 6(ATF6)]was assessed alongside cell proliferation and extracellular matrix(ECM)synthesis.In vivo studies in DN mice(db/db)examined the effects of FXR activation on renal function and morphology.RESULTS FXR bound to the target sequence in the BiP promoter region,enhancing transcriptional activity,as confirmed by ChIP experiments.FXR expression decreased in SV40 MES 13 cells stimulated with high glucose and in renal tissues of DN mice compared with control.Treatment of SV40 MES 13 cells with the FXR agonist INT-747 significantly increased intracellular BiP expression,whereas silencing the FXR gene led to the downregulation of BiP levels.In vivo administration of INT-747 significantly elevated BiP levels in renal tissues,improved renal function and fibrosis in DN mice,while inhibiting the expression of ERS-related signaling proteins PERK,IRE1,and ATF6.CONCLUSION FXR promotes BiP expression by binding to its promoter,suppressing ERS pathways,and reducing mesangial cell proliferation and ECM synthesis.These findings highlight FXR as a potential therapeutic target for diabetic glomerulosclerosis.
基金Supported by the National Research Foundation of Korea Grant Funded by the Korea Government,No.RS-2024-00440477the Korea Institute of Science and Technology Institutional Program,No.2E33111-24-042.
文摘BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the role of MLKL’s adenosine triphosphate(ATP)-binding pocket in facilitating necroptosis-independent pathways that may contribute to liver disease progression.By focusing on this mechanism,we seek to identify potential therapeutic targets that can modulate MLKL activity,offering new strategies for the prevention and treatment of liver-related pathologies.AIM To investigate the possibility of using the ATP-binding pocket-associated,necro-ptosis-independent MLKL pathway as a target for liver diseases.METHODS Cell death following necroptosis stimuli was evaluated using cell proliferation assays,flow cytometry,and electron microscopy in various cells.The human liver organoid system was used to evaluate whether the MLKL ATP pocket-binding inhibitor could attenuate inflammation.Additionally,alcoholic and non-alcoholic fatty liver diseases animal models were used to determine whether MLKL ATP pocket inhibitors could attenuate liver injury.RESULTS While an MLKL ATP pocket-binding inhibitor did not prevent necroptosis-induced cell death in RAW 264.7 cells,it did reduce the necroptosis-led expression of CXCL2,ICAM,and VCAM.Notably,MLKL ATP pocket inhibitor diminishes the expression of CXCL2,ICAM,and VCAM by inhibiting the IκB kinase and nuclear factor kappa-B pathways without inducing necroptosis-induced cell death in two-dimensional cell culture as well as the human-derived liver organoid system.Although MLKL ATP-binding inhibitor was ineffective in non-alcoholic fatty liver disease animal models,MLKL ATP-binding inhibitor attenuated hepatic inflammation in the alcoholic liver disease model.CONCLUSION MLKL ATP pocket-binding inhibitor exerted anti-inflammatory effects through the necroptosis-independent MLKL pathway in an animal model of alcoholic liver disease.
基金Supported by General Program of National Natural Science Foundation of China,No.81770197Scientific and Technological Research Major Program of Chongqing Municipal Education Commission,No.KJZD-M202312802+1 种基金Chongqing Natural Science Foundation of China,No.CSTB2022NSCQ-MSX0190,No.CSTB2022NSCQ-MSX0176,and No.cstc2020jcyj-msxmX0051Xinqiao Young Postdoc Talent Incubation Program,No.2022YQB098.
文摘BACKGROUND Thrombocytopenia 2,an autosomal dominant inherited disease characterized by moderate thrombocytopenia,predisposition to myeloid malignancies and normal platelet size and function,can be caused by 5’-untranslated region(UTR)point mutations in ankyrin repeat domain containing 26(ANKRD26).Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1)have been identified as negative regulators of ANKRD26.However,the positive regulators of ANKRD26 are still unknown.AIM To prove the positive regulatory effect of GATA binding protein 2(GATA2)on ANKRD26 transcription.METHODS Human induced pluripotent stem cells derived from bone marrow(hiPSC-BM)INTRODUCTION Ankyrin repeat domain containing protein 26(ANKRD26)acts as a regulator of adipogenesis and is involved in the regulation of feeding behavior[1-3].The ANKRD26 gene is located on chromosome 10 and shares regions of homology with the primate-specific gene family POTE.According to the Human Protein Atlas database,the ANKRD26 protein is localized to the Golgi apparatus and vesicles,and its expression can be detected in nearly all human tissues[4].Moreover,UniProt annotation revealed that ANKRD26 is localized in the centrosome and contains coiled-coil domains formed by spectrin helices and ankyrin repeats[5,6].The most common disease related to ANKRD26 is thrombocytopenia 2(THC2),which is a rare autosomal dominant inherited disease characterized by lifelong mild-to-moderate thrombocytopenia and mild bleeding[7-9].Caused by the variants in the 5’-untranslated region(UTR)of ANKRD26,THC2 is defined by a decrease in the number of platelets in circulating blood and results in increased bleeding and decreased clotting ability[8,10].Due to the point mutations that occur in the 5’-UTR of ANKRD26,its negative transcription factors(TFs),Runt related transcription factor 1(RUNX1)and friend leukemia integration 1(FLI1),lose their repression effect[11].The persistent expression of ANKRD26 increases the activity of the mitogen activated protein kinase and extracellular signal regulated kinase 1/2 signaling pathways,which are potentially involved in the regulation of thrombopoietin-dependent signaling and further impair proplatelet formation by megakaryocytes(MKs)[11].However,the positive regulators of ANKRD26,which might be associated with THC2 pathology,are still unknown.
基金Tianjin Key Medical Discipline Construction Project,No.TJYXZDXK-034A.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is an aggressive subtype of liver cancer and is one of the most common cancers with high mortality worldwide.Reprogrammed lipid metabolism plays crucial roles in HCC cancer cell survival,growth,and evolution.Emerging evidence suggests the importance of fatty acid binding proteins(FABPs)in contribution to cancer progression and metastasis;however,how these FABPs are dysregulated in cancer cells,especially in HCC,and the roles of FABPs in cancer progression have not been well defined.AIM To understand the genetic alterations and expression of FABPs and their associated cancer hallmarks and oncogenes in contributing to cancer malignancies.METHODS We used The Cancer Genome Atlas datasets of pan cancer and liver hepatocellular carcinoma(LIHC)as well as patient cohorts with other cancer types in this study.We investigated genetic alterations of FABPs in various cancer types.mRNA expression was used to determine if FABPs are abnormally expressed in tumor tissues compared to non-tumor controls and to investigate whether their expression correlates with patient clinical outcome,enriched cancer hallmarks and oncogenes previously reported for patients with HCC.We determined the protein levels of FABP5 and its correlated genes in two HCC cell lines and assessed the potential of FABP5 inhibition in treating HCC cells.RESULTS We discovered that a gene cluster including five FABP family members(FABP4,FABP5,FABP8,FABP9 and FABP12)is frequently co-amplified in cancer.Amplification,in fact,is the most common genetic alteration for FABPs,leading to overexpression of FABPs.FABP5 showed the greatest differential mRNA expression comparing tumor with non-tumor tissues.High FABP5 expression correlates well with worse patient outcomes(P<0.05).FABP5 expression highly correlates with enrichment of G2M checkpoint(r=0.33,P=1.1e-10),TP53 signaling pathway(r=0.22,P=1.7e-5)and many genes in the gene sets such as CDK1(r=0.56,P=0),CDK4(r=0.49,P=0),and TP53(r=0.22,P=1.6e-5).Furthermore,FABP5 also correlates well with two co-expressed oncogenes PLK1 and BIRC5 in pan cancer especially in LIHC patients(r=0.58,P=0;r=0.58,P=0;respectively).FABP5high Huh7 cells also expressed higher protein levels of p53,BIRC5,CDK1,CDK2,and CDK4 than FABP5low HepG2 cells.FABP5 inhibition more potently inhibited the tumor cell growth in Huh7 cells than in HepG2 cells.CONCLUSION We discovered that FABP5 gene is frequently amplified in cancer,especially in HCC,leading to its significant elevated expression in HCC.Its high expression correlates well with worse patient outcome,enriched cancer hallmarks and oncogenes in HCC.FABP5 inhibition impaired the cell viability of FABP5high Huh7 cells.All these support that FABP5 is a novel therapeutic target for treating FABP5high HCC.
基金Supported by Guangxi Zhuang Autonomous Region Health Commission Scientific Research Project,No.Z-A20220415 and No.Z20210442The First Affiliated Hospital of Guangxi Medical University Provincial and Ministerial Key Laboratory Cultivation Project:Guangxi Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer,No.21-220-18.
文摘BACKGROUND Colorectal cancer(CRC)causes many deaths worldwide.Synaptotagmin binding cytoplasmic RNA interacting protein(SYNCRIP)is an RNA-binding protein that plays an important role in multiple cancers by epigenetically targeting some genes.Our study will examine the expression,potential effect,biological function and clinical value of SYNCRIP in CRC.AIM To examine the expression,potential effect,biological function and clinical value METHODS The expression of SYNCRIP was examined by immunohistochemistry arrays and high-throughput data.The effect of SYNCRIP gene in CRC cell growth was evaluated by CRISPR-Cas9 technology.The target genes of SYNCRIP were calculated using various algorithms,and the molecular mechanism of SYNCRIP in CRC was explored by mutation analysis and pathway analysis.The clinical value of SYNCRIP in prognosis and radiotherapy was revealed via evidence-based medicine methods.RESULTS The protein and mRNA levels of SYNCRIP were both highly expressed in CRC samples compared to nontumorous tissue based on 330 immunohistochemistry arrays and 3640 CRC samples.Cells grew more slowly in eleven CRC cell lines after knocking out the SYNCRIP gene.SYNCRIP could epigenetically target genes to promote the occurrence and development of CRC by boosting the cell cycle and affecting the tumor microenvironment.In addition,CRC patients with high SYNCRIP expression are more sensitive to radiotherapy.CONCLUSION SYNCRIP is upregulated in CRC,and highly expressed SYNCRIP can accelerate CRC cell division by exerting its epigenetic regulatory effects.In addition,SYNCRIP is expected to become a potential biomarker to predict the effect of radiotherapy.
文摘Background:Circular RNAs(circRNAs)are considered to be important regulators in cancer biology.In this study,we focused on the effect of circRNA baculoviral inhibitor of apoptosis protein(IAP)repeat containing 6(circBIRC6)on non-small cell lung cancer(NSCLC)progression.Methods:The NSCLC and adjacent non-tumor tissues were collected at Shanghai Ninth People's Hospital.Quantitative real-time polymerase chain reaction was conducted for assessing the levels of circBIRC6,amyloid beta precursor protein binding protein 2(APPBP2)messenger RNA(mRNA),baculoviral IAP repeat containing 6 mRNA(BIRC6),and microRNA-217(miR-217).Western blot assay was adopted for measuring the protein levels of APPBP2,E-cadherin,N-cadherin,and vimentin.Colony formation assay,transwell assay,and flow cytometry analysis were utilized for evaluating cell colony formation,metastasis,and apoptosis.Dualluciferase reporter assay and RNA immunoprecipitation assay were carried out to determine the interaction between miR-217 and circBIRC6 and APPBP2 in NSCLC tissues.The murine xenograft model assay was used to investigate the function of circBIRC6 in tumor formation in vivo.Differences were analyzed via Student's t test or one-way analysis of variance.Pearson's correlation coefficient analysis was used to analyze linear correlation.Results:CircBIRC6 was overexpressed in NSCLC tissues and cells.Knockdown of circBIRC6 repressed the colony formation and metastasis and facilitated apoptosis of NSCLC cells in vitro and restrained tumorigenesis in vivo.Mechanically,circBIRC6 functioned as miR-217 sponge to promote APPBP2 expression in NSCLC cells.MiR-217 inhibition rescued circBIRC6 knockdown-mediated effects on NSCLC cell colony formation,metastasis,and apoptosis.Overexpression of miR-217 inhibited the malignant phenotypes of NSCLC cells,while the effects were abrogated by elevating APPBP2.Conclusion:CircBIRC6 aggravated NSCLC cell progression by elevating APPBP2 via sponging miR-217,which might provide a fresh perspective on NSCLC therapy.
基金Supported by Science Technology Research and Development Project in Shijiazhuang City in2010(10120803)Scientific Research Starting Fund Project of Shijiazhuang University in2007(2007012),Education Reform Research Item of Shijiazhuang University in2008(2008006)~~
文摘[Objective] The research aimed to find the extracellular binding proteins of CR4.[Method] The extracellular domain of OsCR4 was as the bait protein,and the yeast two-hybrid was used to screen cDNA library of seedling which was cultivated 14 d.[Result] A lot of proteins which included a peroxide B(D26484),a methionine thioredoxin reductase(ABF96078)and an unknown function protein were gained.[Conclusion] It provided the theory basis for studying the signal transduction mechanism of CR4.
文摘The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins aremembers of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.
文摘The association of retinol binding protein 4 (RBP4) with atherosclerosis of the carotid artery in type 2 diabetes mellitus (T2DM) remains undefined. We aimed to investigate the correlation of RBP4 expression with atherosclerosis of the carotid artery in T2DM. A total of 1,076 subjects were investigated for intima-media thickness of the bilateral common carotid arteries, and they were divided into three groups: in group Ⅰ, patients had normal neck vascular ultra- sound, in group Ⅱ, intimal carotid artery media thickness was equal to or more than 1 mm, and in group Ⅲ, carotid artery plaque was present. Height, weight, blood pressure (BP), fasting plasma glucose (FPG), hemoglobin Alc (HbA1c), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipopro- tein cholesterol (HDL-C), apolipoprotein A-1 (apoA-1), apolipoprotein B (apoB) and lipoprotein (a) [Lp(a)] were determined by routine laboratory methods. RBP4 and high sensitivity C reactive protein (HsCRP) were measured by an enzyme-linked immuno-sorbent assay, and insulin concentration was measured by an electrochemiluminescence sandwich immunoassay. Duration of diabetes, waist and BP, FPG, HbAlc, TG, TC, LDL-C, APOB, Lp(a), HsCRP, RBP4 and homeostasis model assessment insulin resistance index (HOMA-IR) were significantly lower in group I than in the other two groups (P〈0.01, P〈0.01). Plasma levels of HbAlc, RBP4, LDL-C, TC, HOMA-IR, HsCRP and Lp(a), waist and BP were significantly increased in group III than in group II (P〈0.01). Multivariate logistic regression analysis showed that there were seven factors associated with the occurrence of carotid artery atherosclero- sis and its risks in descending order were: high LDL-C, high waist, high HsCRP, duration of diabetes, high HOMA-IR, HbAlc and high RBP4. Our finding supported that RBP4 was positively correlated with carotid atherosclerosis in patients with T2DM and could be used as an early predictor of cardiovascular disease.
基金supported by the National Natural Science Foundation of China(31271402 and 31100601)the National Key Basic Research Program(2012CB316503)
文摘Protein binding is essential to the transport,decay and regulation of almost all RNA molecules.However,the structural preference of protein binding on RNAs and their cellular functions and dynamics upon changing environmental conditions are poorly understood.Here,we integrated various high-throughput data and introduced a computational framework to describe the global interactions between RNA binding proteins(RBPs)and structured RNAs in yeast at single-nucleotide resolution.We found that on average,in terms of percent total lengths,~15%of mRNA untranslated regions(UTRs),~37%of canonical non-coding RNAs(ncRNAs)and^11%of long ncRNAs(lncRNAs)are bound by proteins.The RBP binding sites,in general,tend to occur at single-stranded loops,with evolutionarily conserved signatures,and often facilitate a specific RNA structure conformation in vivo.We found that four nucleotide modifications of tRNA are significantly associated with RBP binding.We also identified various structural motifs bound by RBPs in the UTRs of mRNAs,associated with localization,degradation and stress responses.Moreover,we identified>200 novel lncRNAs bound by RBPs,and about half of them contain conserved secondary structures.We present the first ensemble pattern of RBP binding sites in the structured non-coding regions of a eukaryotic genome,emphasizing their structural context and cellular functions.