Myocytes power the movement of all organs in the body.Damage to and degradation of myocytes causes hypokinesia and muscle-related degenerative diseases.Apigenin,a kind of flavone,is being used to treat many disorders....Myocytes power the movement of all organs in the body.Damage to and degradation of myocytes causes hypokinesia and muscle-related degenerative diseases.Apigenin,a kind of flavone,is being used to treat many disorders.It exerts a host of different pharmacological activities,such as anti-inflammatory,anti-mutagenic,cardioprotective,and antioxidant effects.Accordingly,apigenin is considered a promising candidate for myocyte protection.In this review,we introduced the characteristics of apigenin.The means of apigenin protection of myocytes as well as the mechanism were summarized and discussed.The protective effects can be classified into proliferation-promoting,anti-inflammatory,atrophy-preventing,metabolism-increasing,and antioxidative effects.Additionally,we provided some outlook on the valuable applications of apigenin in sports medicine,which eagerly require further fundamental research.展开更多
This study determined the effects of initial infestation of cowpea seeds (Ife brown variety) with different insect densities (0, 2, 4 and 6 pairs per 50 g seeds) of Callosobruchus maculatus (F.) and evaluated th...This study determined the effects of initial infestation of cowpea seeds (Ife brown variety) with different insect densities (0, 2, 4 and 6 pairs per 50 g seeds) of Callosobruchus maculatus (F.) and evaluated the effects of aqueous leaf extract of Nicotiana tabacum L. on C. maculatus in the laboratory. It was observed that adult beetle population increased significantly (p〈0.05) with increase in insect density. The increase in population of beetles and corresponding weight loss of the seeds in different levels of infestation showed that the cowpea variety was susceptible to beetle infestation, emergence and survival of progeny. Significantly more adults emerged on higher infestation compared to lower and no infestation. In Nigeria, Nicotiana tabacum L. is a locally available plant, with known insecticidal properties. The plant leaf extract was easily extracted with water and confirmed its effectiveness as a protective agent for stored cowpea seeds. Experiment was conducted to assess the effects of aqueous extracts ofN. tabacum at 0, 0.1, 0.2 and 0.3 mL" 50 g-1 cowpea seeds on C. maculatus. Data was recorded and showed varying levels of effectiveness against C. maculatus. Result showed that seed appearance was dependent on levels of insect population, while N. tabacum aqueous extract exerted effects on survival of C. maculatus. Aqueous leaf extract of N. tabacum probably contained some insecticidal properties which might have significantly conferred beetle mortality and reduced beetle emergence leading to a decrease in seed weight loss.展开更多
In the delicate normative balance, at European Union (EU) level of the borderline products (i.e., between plant protectants and bio-fertilizers/bio-effectors) containing microbial consortia (MC) instead of singl...In the delicate normative balance, at European Union (EU) level of the borderline products (i.e., between plant protectants and bio-fertilizers/bio-effectors) containing microbial consortia (MC) instead of single microbial strains, the most relevant factors influencing the categorization of the products are the intention of use, the cell density and the mode of action. For the latter, the basic difference between the two types of products is that a plant protectant has a targeted activity on plant pathogens, while a bio-fertilizer acts indirectly by nourishing and fortifying the host plant (healthier plant), thus inducing a generalized resistance to the onset of pathological status, irrespective of its origin and nature. Case-studies are presented on the effectiveness of MC as bio-fertilizers/bio-effectors on different crops. Bio-fertilizers exhibit a double effect--biotic and abiotic, leading to the fortification of the crop plant linked to its more effective water and nutrient uptakes as well asto a generalized healthier status. This in turn leads to a higher resistance to diseases. In addition, bio-fertilizers play a relevant role on the reduction of environmental impacts due to chemical fertilizers, e.g., by facilitating the uptake of phosphorus (P), thus reducing the need of P fertilization. Although finding a scientifically-based balance between regulatory need and marketing constraint is not always an easy task, the availability of scientific advancements combined to common sense should help in describing positive effects and risk profiles of MC in agriculture.展开更多
Cryopreservation plays an essential role in biobanking and cell therapy,but the physiological toxicity of traditional cryoprotectants such as glycerol and dimethyl sulfoxide(DMSO)has raised safety issues for biomedica...Cryopreservation plays an essential role in biobanking and cell therapy,but the physiological toxicity of traditional cryoprotectants such as glycerol and dimethyl sulfoxide(DMSO)has raised safety issues for biomedical applications.Trehalose,a nonreducing disaccharide that accumulates in desiccation-or cold-tolerant organisms,has been considered as a biocompatible cryoprotectant.Herein,a naturally occurring membrane-active cationic peptide,melittin,was utilized to facilitate membraneimpermeable trehalose entry into cells for effective cell cryopreservation.Poly(ethylene glycol)and poly(vinyl pyrrolidone)were applied as macromolecular protectants to improve the stabilization of cell membranes.Upon the optimal protocol,the postthaw recovery of human red blood cells in freezing bags at a hematocrit of~50%could achieve 82.9%with favorable cell morphologies and physiological functions.Furthermore,the cryosurvival of L929 fibroblasts reached 84.3%compared to the conventional method using 10%(v/v)DMSO.In short,this work by using trehalose and melittin provides a biocompatible solvent-free approach for long-term cryostorage of cells.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,whic...Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,which requires metal materials with robust corrosion resistance.This review covers an in-depth and all-around overview of the up-to-date advances in corrosion and protection of metals in deep-sea environment.Firstly,the unique characteristics of deep-sea environment are summarized in detail.Subsequently,the corrosion performances of metals in both in situ and simulated deep-sea environments are illustrated systematically.Furthermore,corrosion prevent strategies of metals,including sacrificial anode protection,organic coatings,as well as coatings achieved by physical vapor deposition(PVD coatings),are highlighted.Finally,we outline current challenges and development trends of corrosion and protection of metals in deep-sea environment in the future.The purpose of this review is not only to summarize the recent progress on metal corrosion and protection in deep sea,but also to aid us in understanding them more comprehensively and deeply in a short time,so as to boost their fast development.展开更多
It has previously been shown that tryptophan, the biosynthesis precursor ofPeganum harmala alkaloids, and its derivatives have anti-TMV activity bothin vitro and in vivo. Further exploration of this led to the identif...It has previously been shown that tryptophan, the biosynthesis precursor ofPeganum harmala alkaloids, and its derivatives have anti-TMV activity bothin vitro and in vivo. Further exploration of this led to the identification of NK0238as a highly effective agent for the prevention and control of diseases caused byplant viruses, but the existing routes are unsuitable for its large-scale synthesis.This study optimized a route for two-step synthesis of this virucide candidate viareaction of L-tryptophan with triphosgene to produce L-tryptophan-N-carboxylicanhydride, which then reacts with n-octylamine to give NK0238 at up to 94%yield and nearly 97% HPLC purity. In addition, the route was used for thepreparation of NK0238 on a > 40 g scale permitting further assessment of itsantivirus activity in the greenhouse and field experiments, and toxicity tests.NK0238 exhibited useful antiviral activities against a variety of viruses both ingreenhouse and field experiments. The toxicity tests showed that NK0238 wasnot acutely toxic to birds, fish, honey bees and silkworms. The optimized routeprovides a solid foundation for its large-scale synthesis and subsequent efficacyand toxicity studies, its excellent activity and safety make NK0238 a promisingdrug candidate for further development.展开更多
In recent decades,annual urban fire incidents,including those involving ancient wooden buildings burned,transportation,and solar panels,have increased,leading to significant loss of human life and property.Addressing ...In recent decades,annual urban fire incidents,including those involving ancient wooden buildings burned,transportation,and solar panels,have increased,leading to significant loss of human life and property.Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge.Herein,we present a transparent,low thickness,ceramifiable nanosystem coating composed of a highly adhesive base(poly(SSS1-co-HEMA1)),nanoscale layered double hydroxide sheets as ceramic precursors,and supramolecular melamine di-borate as an accelerator.We demonstrate that this hybrid coating can transform into a porous,fire-resistant protective layer with a highly thermostable vitreous phase upon exposure to flame/heat source.A nanosystem coating of just~100μm thickness can significantly increase the limiting oxygen index of wood(Pine)to 37.3%,dramatically reduce total heat release by 78.6%,and maintain low smoke toxicity(CIT_G=0.016).Detailed molecular force analysis,combined with a comprehensive examination of the underlying flame-retardant mechanisms,underscores the effectiveness of this coating.This work offers a strategy for creating efficient,environmentally friendly coatings with fire safety applications across various industries.展开更多
BACKGROUND The development of slow transit constipation(STC)is associated with intestinal barrier damage.Huangqi decoction(HQD)is effective in treating STC,but me-chanisms are unclear.AIM To investigate whether HQD al...BACKGROUND The development of slow transit constipation(STC)is associated with intestinal barrier damage.Huangqi decoction(HQD)is effective in treating STC,but me-chanisms are unclear.AIM To investigate whether HQD alleviates STC by downregulating the nuclear factorκB(NF-κB)signaling pathway and restoring intestinal barrier function.METHODS KM mice were divided into control,model,and HQD treatment groups.Fresh colonic tissues were collected for single-cell RNA sequencing and spatial tra-nscriptome sequencing.The expressions of claudin-1,mucin 2,and NF-κB P65 proteins were detected by immunohistochemistry.In vitro experiments evaluated the effects of HQD on the LS174T cell line.RESULTS HQD improved intestinal motility,restored mucosal epithelium function and morphology.Single-cell RNA sequencing and spatial transcriptome sequencing data showed a reduction in goblet cells,decreased mucin 2 secretion,and activated apoptotic pathways in STC mice.The population of intestinal stem cells was reduced,and proliferation along with Wnt/β-catenin pathways were inhibited.STC also altered the distribution of intestinal cell states,increasing immune-associated Enterocyte_C3.Aberrant NF-κB pathway activation was noted across various cell types.After HQD treatment,NF-κB pathway activity was down-regulated,while cell proliferation pathways were up-regulated,alongside an increase in Enterocyte_C1 related to material transport.Immunocytochemical,Western blot,and immunohistochemistry analyses confirmed NF-κB pathway activation in goblet cells of STC mice,with HQD inhibiting this aberrant activation.CONCLUSION STC involves intestinal mucosal barrier damage.HQD may treat STC by suppressing NF-κB signaling in epithelial cells,restoring intestinal epithelial cell function,and promoting mucosal barrier repair.展开更多
Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side react...Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side reactions during zinc plating or stripping greatly reduce the capacity and cycle life of a battery and subsequently limit its practical application.To address these issues,we modified the surface of a zinc anode with a functional bilayer composed of zincophilic Cu and flexible polymer layers.The zincophilic Cu interfacial layer was prepared through CuSO_(4)solution pretreatment to serve as a nucleation site to facilitate uniform Zn deposition.Meanwhile,the polymer layer was coated onto the Cu interface layer to serve as a protective layer that would prevent side reactions between zinc and electrolytes.Benefiting from the synergistic effect of the zincophilic Cu and protective polymer layers,the symmetric battery exhibits an impressive cycle life,lasting over 2900 h at a current density of 1 m A·cm^(-2)with a capacity of 1 m A·h·cm^(-2).Moreover,a full battery paired with a vanadium oxide cathode achieves a remarkable capacity retention of 72%even after 500 cycles.展开更多
Myelin is the protective sheath surrounding nerve fibers, and its damage(demyelination) occurs in many central nervous system(CNS) diseases, including multiple sclerosis(MS), traumatic injury, neurodegenerative diseas...Myelin is the protective sheath surrounding nerve fibers, and its damage(demyelination) occurs in many central nervous system(CNS) diseases, including multiple sclerosis(MS), traumatic injury, neurodegenerative diseases such as Alzheimer's disease, and mental disorders such as schizophrenia(Barateiro et al., 2016). Repair of damaged myelin sheaths(remyelination) often fails in MS, leading to neuronal loss and irreversible functional deficits.展开更多
Neonatal hypoxic-ischemic encephalopathy(HIE)is a significant cause of disability in children.Improving brain function and accelerating neurological recovery may require a combination of neuroprotective and pro-regene...Neonatal hypoxic-ischemic encephalopathy(HIE)is a significant cause of disability in children.Improving brain function and accelerating neurological recovery may require a combination of neuroprotective and pro-regenerative treatments at different stages of HIE.While the first hours after the neonatal insult are the most critical period for neuroprotection,the existence of secondary and tertiary mechanisms of brain injury offers the possibility of preventing delayed neurodegeneration in the subsequent days,weeks,or months(Levison et al.,2022).展开更多
Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological cond...Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.展开更多
Mesenchymal stem cells(MSCs)are multipotent adult stem cells of mesodermal origin that can be isolated from various tissues,including bone marrow,tooth pulp,adipose tissue,and umbilical cord.MSCs have gained significa...Mesenchymal stem cells(MSCs)are multipotent adult stem cells of mesodermal origin that can be isolated from various tissues,including bone marrow,tooth pulp,adipose tissue,and umbilical cord.MSCs have gained significant attention in regenerative medicine due to their ability to modulate the immune system and favor tissue repair.MSCs enrich the medium in which they are cultivated with a broad range of bioactive molecules,including growth factors,cytokines,chemokines,enzymes,nucleic acids,and extracellular vesicles that collectively compose the MSC secretome.An increasing number of pre-clinical studies suggest that delivering in vivo an MSC-conditioned medium(i.e.,the medium collected from MSC cultures after at least 3 days of exposure)exerts neuroprotective and anti-inflammatory effects in a variety of neurological conditions.展开更多
Induced brain oscillations in the gamma range have recently garnered attention due to their reported neuroprotective effects in the treatment of Alzheimer’s disease.This method differs from pharmacological approaches...Induced brain oscillations in the gamma range have recently garnered attention due to their reported neuroprotective effects in the treatment of Alzheimer’s disease.This method differs from pharmacological approaches by tapping into the neuronal population dynamics that underlie the homeostatic processes in the brain that are crucial for the recovery of function.Recently,induced gamma-range oscillations have been used to improve cerebral blood flow,motor function,and synaptic plasticity in a mouse model of focal stroke,highlighting the broad potential of recruiting intrinsic recovery processes for the treatment of neurological conditions.Addressing open questions,such as the frequency specificity of the benefits,will shed light on the intrinsic processes involved and allow clinicians to optimize recovery after stroke.展开更多
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance...Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.展开更多
Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive s...Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.展开更多
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use...As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.展开更多
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt...Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.展开更多
基金supported by the China Postdoctoral Science Foundation(Grant No.2019M653494)Special Field Projects of Guizhou Education Committee(Grant No.KY2019072)High-level Innovative Talents in Guizhou Province(Grant No.2018-2016-023).
文摘Myocytes power the movement of all organs in the body.Damage to and degradation of myocytes causes hypokinesia and muscle-related degenerative diseases.Apigenin,a kind of flavone,is being used to treat many disorders.It exerts a host of different pharmacological activities,such as anti-inflammatory,anti-mutagenic,cardioprotective,and antioxidant effects.Accordingly,apigenin is considered a promising candidate for myocyte protection.In this review,we introduced the characteristics of apigenin.The means of apigenin protection of myocytes as well as the mechanism were summarized and discussed.The protective effects can be classified into proliferation-promoting,anti-inflammatory,atrophy-preventing,metabolism-increasing,and antioxidative effects.Additionally,we provided some outlook on the valuable applications of apigenin in sports medicine,which eagerly require further fundamental research.
文摘This study determined the effects of initial infestation of cowpea seeds (Ife brown variety) with different insect densities (0, 2, 4 and 6 pairs per 50 g seeds) of Callosobruchus maculatus (F.) and evaluated the effects of aqueous leaf extract of Nicotiana tabacum L. on C. maculatus in the laboratory. It was observed that adult beetle population increased significantly (p〈0.05) with increase in insect density. The increase in population of beetles and corresponding weight loss of the seeds in different levels of infestation showed that the cowpea variety was susceptible to beetle infestation, emergence and survival of progeny. Significantly more adults emerged on higher infestation compared to lower and no infestation. In Nigeria, Nicotiana tabacum L. is a locally available plant, with known insecticidal properties. The plant leaf extract was easily extracted with water and confirmed its effectiveness as a protective agent for stored cowpea seeds. Experiment was conducted to assess the effects of aqueous extracts ofN. tabacum at 0, 0.1, 0.2 and 0.3 mL" 50 g-1 cowpea seeds on C. maculatus. Data was recorded and showed varying levels of effectiveness against C. maculatus. Result showed that seed appearance was dependent on levels of insect population, while N. tabacum aqueous extract exerted effects on survival of C. maculatus. Aqueous leaf extract of N. tabacum probably contained some insecticidal properties which might have significantly conferred beetle mortality and reduced beetle emergence leading to a decrease in seed weight loss.
文摘In the delicate normative balance, at European Union (EU) level of the borderline products (i.e., between plant protectants and bio-fertilizers/bio-effectors) containing microbial consortia (MC) instead of single microbial strains, the most relevant factors influencing the categorization of the products are the intention of use, the cell density and the mode of action. For the latter, the basic difference between the two types of products is that a plant protectant has a targeted activity on plant pathogens, while a bio-fertilizer acts indirectly by nourishing and fortifying the host plant (healthier plant), thus inducing a generalized resistance to the onset of pathological status, irrespective of its origin and nature. Case-studies are presented on the effectiveness of MC as bio-fertilizers/bio-effectors on different crops. Bio-fertilizers exhibit a double effect--biotic and abiotic, leading to the fortification of the crop plant linked to its more effective water and nutrient uptakes as well asto a generalized healthier status. This in turn leads to a higher resistance to diseases. In addition, bio-fertilizers play a relevant role on the reduction of environmental impacts due to chemical fertilizers, e.g., by facilitating the uptake of phosphorus (P), thus reducing the need of P fertilization. Although finding a scientifically-based balance between regulatory need and marketing constraint is not always an easy task, the availability of scientific advancements combined to common sense should help in describing positive effects and risk profiles of MC in agriculture.
文摘Cryopreservation plays an essential role in biobanking and cell therapy,but the physiological toxicity of traditional cryoprotectants such as glycerol and dimethyl sulfoxide(DMSO)has raised safety issues for biomedical applications.Trehalose,a nonreducing disaccharide that accumulates in desiccation-or cold-tolerant organisms,has been considered as a biocompatible cryoprotectant.Herein,a naturally occurring membrane-active cationic peptide,melittin,was utilized to facilitate membraneimpermeable trehalose entry into cells for effective cell cryopreservation.Poly(ethylene glycol)and poly(vinyl pyrrolidone)were applied as macromolecular protectants to improve the stabilization of cell membranes.Upon the optimal protocol,the postthaw recovery of human red blood cells in freezing bags at a hematocrit of~50%could achieve 82.9%with favorable cell morphologies and physiological functions.Furthermore,the cryosurvival of L929 fibroblasts reached 84.3%compared to the conventional method using 10%(v/v)DMSO.In short,this work by using trehalose and melittin provides a biocompatible solvent-free approach for long-term cryostorage of cells.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金the National Key R&D Program of China(No.2022YFB3808800)the National Natural Science Foundation of China(Nos.52301406 and 52375219)+2 种基金the Natural Science Foundation of Zhejiang Province(No.LR21E050001)the China Postdoctoral Science Foundation(No.2023M733600)the Ningbo Natural Science Foundation(No.2023J329).
文摘Deep sea,with rich oil,gas,and mineral resources,plays an increasingly crucial role in scientific and industrial realms.However,the highly corrosive feature of deep sea hinders further exploration and development,which requires metal materials with robust corrosion resistance.This review covers an in-depth and all-around overview of the up-to-date advances in corrosion and protection of metals in deep-sea environment.Firstly,the unique characteristics of deep-sea environment are summarized in detail.Subsequently,the corrosion performances of metals in both in situ and simulated deep-sea environments are illustrated systematically.Furthermore,corrosion prevent strategies of metals,including sacrificial anode protection,organic coatings,as well as coatings achieved by physical vapor deposition(PVD coatings),are highlighted.Finally,we outline current challenges and development trends of corrosion and protection of metals in deep-sea environment in the future.The purpose of this review is not only to summarize the recent progress on metal corrosion and protection in deep sea,but also to aid us in understanding them more comprehensively and deeply in a short time,so as to boost their fast development.
基金The authors are grateful to the National Natural Science Foundation of China(21977056,21732002)the Fundamental Research Funds for the Central Universities,Nankai University(63201043)for generous financial support for their programs.
文摘It has previously been shown that tryptophan, the biosynthesis precursor ofPeganum harmala alkaloids, and its derivatives have anti-TMV activity bothin vitro and in vivo. Further exploration of this led to the identification of NK0238as a highly effective agent for the prevention and control of diseases caused byplant viruses, but the existing routes are unsuitable for its large-scale synthesis.This study optimized a route for two-step synthesis of this virucide candidate viareaction of L-tryptophan with triphosgene to produce L-tryptophan-N-carboxylicanhydride, which then reacts with n-octylamine to give NK0238 at up to 94%yield and nearly 97% HPLC purity. In addition, the route was used for thepreparation of NK0238 on a > 40 g scale permitting further assessment of itsantivirus activity in the greenhouse and field experiments, and toxicity tests.NK0238 exhibited useful antiviral activities against a variety of viruses both ingreenhouse and field experiments. The toxicity tests showed that NK0238 wasnot acutely toxic to birds, fish, honey bees and silkworms. The optimized routeprovides a solid foundation for its large-scale synthesis and subsequent efficacyand toxicity studies, its excellent activity and safety make NK0238 a promisingdrug candidate for further development.
基金the financial support from the National Natural Science Foundation of China(524B2168,U22A20149,52173081,and 52273275)。
文摘In recent decades,annual urban fire incidents,including those involving ancient wooden buildings burned,transportation,and solar panels,have increased,leading to significant loss of human life and property.Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge.Herein,we present a transparent,low thickness,ceramifiable nanosystem coating composed of a highly adhesive base(poly(SSS1-co-HEMA1)),nanoscale layered double hydroxide sheets as ceramic precursors,and supramolecular melamine di-borate as an accelerator.We demonstrate that this hybrid coating can transform into a porous,fire-resistant protective layer with a highly thermostable vitreous phase upon exposure to flame/heat source.A nanosystem coating of just~100μm thickness can significantly increase the limiting oxygen index of wood(Pine)to 37.3%,dramatically reduce total heat release by 78.6%,and maintain low smoke toxicity(CIT_G=0.016).Detailed molecular force analysis,combined with a comprehensive examination of the underlying flame-retardant mechanisms,underscores the effectiveness of this coating.This work offers a strategy for creating efficient,environmentally friendly coatings with fire safety applications across various industries.
基金Supported by the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars,No.2022B1515020003the National Natural Science Foundation of China,No.82174369,No.82405397,No.82374442,and No.81973847+2 种基金Postdoctoral Fellowship Program of CPSF No.GZC20233247National Key Clinical Disciplineand the Program of Guangdong Provincial Clinical Research Center for Digestive Diseases,No.2020B1111170004.
文摘BACKGROUND The development of slow transit constipation(STC)is associated with intestinal barrier damage.Huangqi decoction(HQD)is effective in treating STC,but me-chanisms are unclear.AIM To investigate whether HQD alleviates STC by downregulating the nuclear factorκB(NF-κB)signaling pathway and restoring intestinal barrier function.METHODS KM mice were divided into control,model,and HQD treatment groups.Fresh colonic tissues were collected for single-cell RNA sequencing and spatial tra-nscriptome sequencing.The expressions of claudin-1,mucin 2,and NF-κB P65 proteins were detected by immunohistochemistry.In vitro experiments evaluated the effects of HQD on the LS174T cell line.RESULTS HQD improved intestinal motility,restored mucosal epithelium function and morphology.Single-cell RNA sequencing and spatial transcriptome sequencing data showed a reduction in goblet cells,decreased mucin 2 secretion,and activated apoptotic pathways in STC mice.The population of intestinal stem cells was reduced,and proliferation along with Wnt/β-catenin pathways were inhibited.STC also altered the distribution of intestinal cell states,increasing immune-associated Enterocyte_C3.Aberrant NF-κB pathway activation was noted across various cell types.After HQD treatment,NF-κB pathway activity was down-regulated,while cell proliferation pathways were up-regulated,alongside an increase in Enterocyte_C1 related to material transport.Immunocytochemical,Western blot,and immunohistochemistry analyses confirmed NF-κB pathway activation in goblet cells of STC mice,with HQD inhibiting this aberrant activation.CONCLUSION STC involves intestinal mucosal barrier damage.HQD may treat STC by suppressing NF-κB signaling in epithelial cells,restoring intestinal epithelial cell function,and promoting mucosal barrier repair.
基金financially supported by the Science and Technology Development Project of Henan Province,China(No.242102241042)the Joint Fund of Henan Province Science and Technology R&D Program(No.225200810093)+1 种基金the Startup Research of Henan Academy of Sciences(No.231817001)the Key Innovation Projects for Postgraduates of Henan Academy of Sciences(No.24331712)。
文摘Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side reactions during zinc plating or stripping greatly reduce the capacity and cycle life of a battery and subsequently limit its practical application.To address these issues,we modified the surface of a zinc anode with a functional bilayer composed of zincophilic Cu and flexible polymer layers.The zincophilic Cu interfacial layer was prepared through CuSO_(4)solution pretreatment to serve as a nucleation site to facilitate uniform Zn deposition.Meanwhile,the polymer layer was coated onto the Cu interface layer to serve as a protective layer that would prevent side reactions between zinc and electrolytes.Benefiting from the synergistic effect of the zincophilic Cu and protective polymer layers,the symmetric battery exhibits an impressive cycle life,lasting over 2900 h at a current density of 1 m A·cm^(-2)with a capacity of 1 m A·h·cm^(-2).Moreover,a full battery paired with a vanadium oxide cathode achieves a remarkable capacity retention of 72%even after 500 cycles.
基金supported by a grant from Aston University,Birmingham,UK (to DM)。
文摘Myelin is the protective sheath surrounding nerve fibers, and its damage(demyelination) occurs in many central nervous system(CNS) diseases, including multiple sclerosis(MS), traumatic injury, neurodegenerative diseases such as Alzheimer's disease, and mental disorders such as schizophrenia(Barateiro et al., 2016). Repair of damaged myelin sheaths(remyelination) often fails in MS, leading to neuronal loss and irreversible functional deficits.
基金supported by Fundação de AmparoàPesquisa do Estado do Rio de Janeiro(FAPERJ,E-26/010.002160/2019,E-26/203.227/2017,E-260003/001177/2020,and E-26/201.279/2021)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq,313757/2020-8,311188/2023-0)(to PMPC).
文摘Neonatal hypoxic-ischemic encephalopathy(HIE)is a significant cause of disability in children.Improving brain function and accelerating neurological recovery may require a combination of neuroprotective and pro-regenerative treatments at different stages of HIE.While the first hours after the neonatal insult are the most critical period for neuroprotection,the existence of secondary and tertiary mechanisms of brain injury offers the possibility of preventing delayed neurodegeneration in the subsequent days,weeks,or months(Levison et al.,2022).
基金supported by Fonds Clinatec and COVEA France(to JM).
文摘Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.
基金supported by the National Centre for the Replacement Refinement & Reduction of Animals in Research Crack It solution “Neuroinflammation and nociception in a dish”(https://nc3rs.org.uk/crackit/news/new-solutionneuroinflammation-and-nociception-dish) fund(to AM)。
文摘Mesenchymal stem cells(MSCs)are multipotent adult stem cells of mesodermal origin that can be isolated from various tissues,including bone marrow,tooth pulp,adipose tissue,and umbilical cord.MSCs have gained significant attention in regenerative medicine due to their ability to modulate the immune system and favor tissue repair.MSCs enrich the medium in which they are cultivated with a broad range of bioactive molecules,including growth factors,cytokines,chemokines,enzymes,nucleic acids,and extracellular vesicles that collectively compose the MSC secretome.An increasing number of pre-clinical studies suggest that delivering in vivo an MSC-conditioned medium(i.e.,the medium collected from MSC cultures after at least 3 days of exposure)exerts neuroprotective and anti-inflammatory effects in a variety of neurological conditions.
基金supported by the Brazil Family Program for Neurology(to MB),Alastair Rushworth Research Fund(to MS),Australian Government Research Training Program Scholarship(to MS),the National Natural Science Foundation of China(82202787)(to CW).
文摘Induced brain oscillations in the gamma range have recently garnered attention due to their reported neuroprotective effects in the treatment of Alzheimer’s disease.This method differs from pharmacological approaches by tapping into the neuronal population dynamics that underlie the homeostatic processes in the brain that are crucial for the recovery of function.Recently,induced gamma-range oscillations have been used to improve cerebral blood flow,motor function,and synaptic plasticity in a mouse model of focal stroke,highlighting the broad potential of recruiting intrinsic recovery processes for the treatment of neurological conditions.Addressing open questions,such as the frequency specificity of the benefits,will shed light on the intrinsic processes involved and allow clinicians to optimize recovery after stroke.
文摘Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.
文摘Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.
基金supported by the National Key R&D Program of China(No.2023YFB2703700)the National Natural Science Foundation of China(Nos.U21A20465,62302457,62402444,62172292)+4 种基金the Fundamental Research Funds of Zhejiang Sci-Tech University(Nos.23222092-Y,22222266-Y)the Program for Leading Innovative Research Team of Zhejiang Province(No.2023R01001)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ24F020008,LQ24F020012)the Foundation of State Key Laboratory of Public Big Data(No.[2022]417)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2023C01119).
文摘As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.
基金support from the National Natural Science Foundation of China(22209089,22178187)Natural Science Foundation of Shandong Province(ZR2022QB048,ZR2021MB006)+2 种基金Excellent Youth Science Foundation of Shandong Province(Overseas)(2023HWYQ-089)the Taishan Scholars Program of Shandong Province(tsqn201909091)Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University.
文摘Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.