Programmed cell death protein 1/programmed cell death 1 ligand 1(PD-1/PD-L1)protein-protein interaction represents an appealing target for cancer therapy.Several antibody drugs have been developed to target this inter...Programmed cell death protein 1/programmed cell death 1 ligand 1(PD-1/PD-L1)protein-protein interaction represents an appealing target for cancer therapy.Several antibody drugs have been developed to target this interaction,but they are less effective in the treatment of melanoma.To overcome the limitations,the first proteolysis-targeting chimeric(PROTAC)small molecules simultaneously targeting PD-L1and Src homology phosphotyrosyl phosphatase 2(SHP2)were designed.By employment of PD-1/PD-L1inhibitors BMS01 or BMS-37,SHP2 inhibitor SHP099 and E3 ligase ligands,a series of potent PD-L1 and SHP2 dual PROTACs were synthesized.The most promising compounds BS-7C-V2 and BS327V2 efficiently induced PD-L1 and SHP2 degradation and demonstrated significantly improved immune potency in B16-F10 and A375 cell lines.More importantly,the efficacy of BS-7C-V2 and BS327V2 in a B16-F10 transplanted mouse model was further evaluated based on their degradation ability in vivo.Taken together,our work qualifies the new dual PROTACs as a potent degrader of PD-L1 and SHP2.The biological and mechanism investigations with BS-7C-V2 and BS327V2 prove that dual PROTACs can play an anti-tumor role in vivo and in vitro,and can provide a new therapeutic strategy for melanoma.展开更多
Proteolysis-targeting chimera(PROTAC)has emerged as an efficient strategy to accurately control intracellular protein levels.However,conventional PROTACs are generally limited by nonspecific protein degradation and of...Proteolysis-targeting chimera(PROTAC)has emerged as an efficient strategy to accurately control intracellular protein levels.However,conventional PROTACs are generally limited by nonspecific protein degradation and off-tissue side effects.Particularly,there is a lack of effective chemical tools for visualizing protein degradation.Herein,a near-infrared fluorescent and theranostic PROTAC(PRO-S-DCM)was designed for imaging the degradation of bromodomain-containing protein 4(BRD4).PRO-S-DCM could be tumor-specifically activated and exhibited favorable imaging effects both in vitro and in vivo.PRO-S-DCM was proven to be a theranostic probe,which potently inhibited growth,invasion and migration of He La cells and induced cell apoptosis.展开更多
The Kirsten rat sarcoma virus—son of sevenless 1(KRAS-SOS1)axis drives tumor growth preferentially in pancreatic,colon,and lung cancer.Now,KRAS G12C mutated tumors can be successfully treated with inhibitors that cov...The Kirsten rat sarcoma virus—son of sevenless 1(KRAS-SOS1)axis drives tumor growth preferentially in pancreatic,colon,and lung cancer.Now,KRAS G12C mutated tumors can be successfully treated with inhibitors that covalently block the cysteine of the switch II binding pocket of KRAS.However,the range of other KRAS mutations is not amenable to treatment and the G12C-directed agents Sotorasib and Adragrasib show a response rate of only approximately 40%,lasting for a mean period of 8 months.One approach to increase the efficacy of inhibitors is their inclusion into proteolysis-targeting chimeras(PROTACs),which degrade the proteins of interest and exhibit much higher antitumor activity through multiple cycles of activity.Accordingly,PROTACs have been developed based on KRAS-or SOS1-directed inhibitors coupled to either von Hippel-Lindau(VHL)or Cereblon(CRBN)ligands that invoke the proteasomal degradation.Several of these PROTACs show increased activity in vitro and in vivo compared to their cognate inhibitors but their toxicity in normal tissues is not clear.The CRBN PROTACs containing thalidomide derivatives cannot be tested in experimental animals.Resistance to such PROTACS arises through downregulation or inactivation of CRBN or factors of the functional VHL E3 ubiquitin ligase.Although highly active KRAS and SOS1 PROTACs have been formulated their clinical application remains difficult.展开更多
Focal adhesion kinase(FAK)is an intracellular tyrosine kinase that plays a critical role in the occurrence,development,and metastasis of cancer through both its kinase-dependent catalytic functions and kinase-independ...Focal adhesion kinase(FAK)is an intracellular tyrosine kinase that plays a critical role in the occurrence,development,and metastasis of cancer through both its kinase-dependent catalytic functions and kinase-independent scaffolding functions.Current kinase inhibitors target only its catalytic activity,leaving the scaffolding functions unaffected.However,proteolysis targeting chimeras(PROTACs)offers a promising approach by degrading the entire FAK protein,thereby inhibiting both functions simultaneously.In this study,we designed and synthesized novel PROTAC degraders,utilizing a defactinib derivative(compound 12)as the FAK ligand and a lenalidomide analog as the E3 ligase ligand.The structures of these compounds were confirmed through^(1)H NMR,^(13)C NMR,and high-resolution mass spectrometry(HRMS).Among the synthesized compounds,the optimized compound 16b exhibited potent degradation activity against FAK protein in A549 cells,with a DC_(50)of 6.16±1.13 n M,significantly inhibiting the proliferation and colony formation of these cells.Compared to defactinib,16b showed enhanced inhibition of A549 cell migration and invasion.Furthermore,our research demonstrated that the rapid and effective FAK degradation induced by 16b was mediated by a CRBN-dependent proteasome mechanism.展开更多
Cyclin-dependent kinases(CDKs) have become potential targets for treating various diseases, especially cancer. Compound i CDK9 is an excellent and selective CDK9 inhibitor, but its major limitation is the potential to...Cyclin-dependent kinases(CDKs) have become potential targets for treating various diseases, especially cancer. Compound i CDK9 is an excellent and selective CDK9 inhibitor, but its major limitation is the potential toxicity and poor understanding of the underlying mechanism. The PROTAC(proteolysis targeting chimera) degraders of bioactive molecules can significantly induce in vitro and in vivo degradation of their target protein with high selectivity and effectively reduce the dose-limiting toxicity of small molecule drugs. Therefore, we designed and synthesized the bifunctional PROTAC molecules of i CDK9, being used for identifying its previously unknown target and revealing the underlying pharmacological mechanism.The PROTAC bifunctional molecule CD-5 could selectively and significantly degrade CDK9 with low cell toxicity. Therefore, we selected CD-5 as a chemical prober in the SILAC quantitative proteomic analysis, which disclosed that CD-5 could enormously lessen the lysine acetyltransferase KAT6A. Furthermore,KAT6A degradation induced by CD-5 repressed the levels of H3K14Ac and H3K23Ac. Lastly, the streptavidin immunoprecipitation(IP) assay confirmed a direct interaction between KAT6A and i CDK9. Collectively, our results uncover that KAT6A is a potential non-kinase target of i CDK9. Notably, this study also demonstrates that the PROTAC-SILAC strategy is an alternative approach for cellular target identification of bioactive molecules.展开更多
基金the National Natural Science Foundation of China(NSFC,No.82141216)Chunhui Program-Cooperative Research Project of the Ministry of Education+2 种基金Project of Frontier Technology Platform for Research Projects of Liaoning Provincial Department of Education in 2024Shenyang Young and Middle-aged Innovative Talents Support Program(No.RC210446)for financial supportsthe support from National-Local Joint Engineering Research Center for Molecular Biotechnology of Fujian&Taiwan TCM at Fujian University of Traditional Chinese Medicine。
文摘Programmed cell death protein 1/programmed cell death 1 ligand 1(PD-1/PD-L1)protein-protein interaction represents an appealing target for cancer therapy.Several antibody drugs have been developed to target this interaction,but they are less effective in the treatment of melanoma.To overcome the limitations,the first proteolysis-targeting chimeric(PROTAC)small molecules simultaneously targeting PD-L1and Src homology phosphotyrosyl phosphatase 2(SHP2)were designed.By employment of PD-1/PD-L1inhibitors BMS01 or BMS-37,SHP2 inhibitor SHP099 and E3 ligase ligands,a series of potent PD-L1 and SHP2 dual PROTACs were synthesized.The most promising compounds BS-7C-V2 and BS327V2 efficiently induced PD-L1 and SHP2 degradation and demonstrated significantly improved immune potency in B16-F10 and A375 cell lines.More importantly,the efficacy of BS-7C-V2 and BS327V2 in a B16-F10 transplanted mouse model was further evaluated based on their degradation ability in vivo.Taken together,our work qualifies the new dual PROTACs as a potent degrader of PD-L1 and SHP2.The biological and mechanism investigations with BS-7C-V2 and BS327V2 prove that dual PROTACs can play an anti-tumor role in vivo and in vitro,and can provide a new therapeutic strategy for melanoma.
基金supported by the National Key Research and Development Program of China(No.2022YFC3401500 to C.Sheng)the National Natural Science Foundation of China(No.82030105 to C.Sheng and Nos.22077138,22377145 to S.Wu)Shanghai Rising-Star Program(No.22QA1411300 to S.Wu)。
文摘Proteolysis-targeting chimera(PROTAC)has emerged as an efficient strategy to accurately control intracellular protein levels.However,conventional PROTACs are generally limited by nonspecific protein degradation and off-tissue side effects.Particularly,there is a lack of effective chemical tools for visualizing protein degradation.Herein,a near-infrared fluorescent and theranostic PROTAC(PRO-S-DCM)was designed for imaging the degradation of bromodomain-containing protein 4(BRD4).PRO-S-DCM could be tumor-specifically activated and exhibited favorable imaging effects both in vitro and in vivo.PRO-S-DCM was proven to be a theranostic probe,which potently inhibited growth,invasion and migration of He La cells and induced cell apoptosis.
文摘The Kirsten rat sarcoma virus—son of sevenless 1(KRAS-SOS1)axis drives tumor growth preferentially in pancreatic,colon,and lung cancer.Now,KRAS G12C mutated tumors can be successfully treated with inhibitors that covalently block the cysteine of the switch II binding pocket of KRAS.However,the range of other KRAS mutations is not amenable to treatment and the G12C-directed agents Sotorasib and Adragrasib show a response rate of only approximately 40%,lasting for a mean period of 8 months.One approach to increase the efficacy of inhibitors is their inclusion into proteolysis-targeting chimeras(PROTACs),which degrade the proteins of interest and exhibit much higher antitumor activity through multiple cycles of activity.Accordingly,PROTACs have been developed based on KRAS-or SOS1-directed inhibitors coupled to either von Hippel-Lindau(VHL)or Cereblon(CRBN)ligands that invoke the proteasomal degradation.Several of these PROTACs show increased activity in vitro and in vivo compared to their cognate inhibitors but their toxicity in normal tissues is not clear.The CRBN PROTACs containing thalidomide derivatives cannot be tested in experimental animals.Resistance to such PROTACS arises through downregulation or inactivation of CRBN or factors of the functional VHL E3 ubiquitin ligase.Although highly active KRAS and SOS1 PROTACs have been formulated their clinical application remains difficult.
基金National Natural Science Foundation of China(Grant No.82204222,81973378 and 82073909)China Postdoctoral Science Foundation(Grant No.2022M722012)+1 种基金Shanxi Province Science Foundation for Youths(Grant No.20210302124191)Open Fund from Medicinal Basic Research Innovation Center of Chronic Kidney Disease,Ministry of Education,Shanxi Medical University(Grant No.CKD/SXMU-2024-02)。
文摘Focal adhesion kinase(FAK)is an intracellular tyrosine kinase that plays a critical role in the occurrence,development,and metastasis of cancer through both its kinase-dependent catalytic functions and kinase-independent scaffolding functions.Current kinase inhibitors target only its catalytic activity,leaving the scaffolding functions unaffected.However,proteolysis targeting chimeras(PROTACs)offers a promising approach by degrading the entire FAK protein,thereby inhibiting both functions simultaneously.In this study,we designed and synthesized novel PROTAC degraders,utilizing a defactinib derivative(compound 12)as the FAK ligand and a lenalidomide analog as the E3 ligase ligand.The structures of these compounds were confirmed through^(1)H NMR,^(13)C NMR,and high-resolution mass spectrometry(HRMS).Among the synthesized compounds,the optimized compound 16b exhibited potent degradation activity against FAK protein in A549 cells,with a DC_(50)of 6.16±1.13 n M,significantly inhibiting the proliferation and colony formation of these cells.Compared to defactinib,16b showed enhanced inhibition of A549 cell migration and invasion.Furthermore,our research demonstrated that the rapid and effective FAK degradation induced by 16b was mediated by a CRBN-dependent proteasome mechanism.
基金supported by grants from the National Key R&D Program of China (Nos. 2018YFA0107303 and 2020YFA0908100)the National Natural Science Foundation of China (Nos. 81773600and 82102746)+1 种基金the China Postdoctoral Science Foundation (No.2021M690095)the Fundamental Research Funds for the Central Universities (No. 20720180051)。
文摘Cyclin-dependent kinases(CDKs) have become potential targets for treating various diseases, especially cancer. Compound i CDK9 is an excellent and selective CDK9 inhibitor, but its major limitation is the potential toxicity and poor understanding of the underlying mechanism. The PROTAC(proteolysis targeting chimera) degraders of bioactive molecules can significantly induce in vitro and in vivo degradation of their target protein with high selectivity and effectively reduce the dose-limiting toxicity of small molecule drugs. Therefore, we designed and synthesized the bifunctional PROTAC molecules of i CDK9, being used for identifying its previously unknown target and revealing the underlying pharmacological mechanism.The PROTAC bifunctional molecule CD-5 could selectively and significantly degrade CDK9 with low cell toxicity. Therefore, we selected CD-5 as a chemical prober in the SILAC quantitative proteomic analysis, which disclosed that CD-5 could enormously lessen the lysine acetyltransferase KAT6A. Furthermore,KAT6A degradation induced by CD-5 repressed the levels of H3K14Ac and H3K23Ac. Lastly, the streptavidin immunoprecipitation(IP) assay confirmed a direct interaction between KAT6A and i CDK9. Collectively, our results uncover that KAT6A is a potential non-kinase target of i CDK9. Notably, this study also demonstrates that the PROTAC-SILAC strategy is an alternative approach for cellular target identification of bioactive molecules.