The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry ...The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry and can significantly enhance the energy efficiency of aircraft propulsion system.Electric motor is the most critical electromechanical energy conversion component in an aircraft electric propulsion system(EPS).High-performance electric motors,power electronic converters and EPS control form the foundation of the EPA.This paper provides an overview of the characteristics of electric motors for EPA,analyzes the inverter topologies of EPSs,and reviews ongoing EPA projects.The article highlights the latest advancements in three types of motors:superconducting motors(SCMs),permanent magnet synchronous motors(PMSMs),and induction motors(IMs).It summarizes the control system architectures of current EPA initiatives and,building on this foundation,proposes future research directions for EPSs.These include cutting-edge areas such as high-performance motors and advanced manufacturing technologies,Ga N-or Si C-based inverter integration and innovation,electric propulsion control systems,and optimization of wiring systems.展开更多
Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion...Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.展开更多
The performance of a water jet propulsion system is related to the inlet duct,rotor,stator,and nozzle.Generally,the flow inlet design must fit the bottom line of the hull,and the design of the inlet duct is often limi...The performance of a water jet propulsion system is related to the inlet duct,rotor,stator,and nozzle.Generally,the flow inlet design must fit the bottom line of the hull,and the design of the inlet duct is often limited by stern space.The entire section,from the rotor to the nozzle through the stator,must be designed based on system integration in that the individual performance of these three components will influence each other.Particularly,the section from the rotor to the nozzle significantly impacts the performance of a water jet propulsion system.This study focused on nozzle design and established referable analysis results to facilitate subsequent integrated studies on the design parameters regarding nozzle contour.Most existing studies concentrate on discussions on rotor design and the tip leakage flow of rotors or have replaced the existing complex computational domain with a simple flow field.However,research has yet to implement an integrated,optimal design of the section from the rotor to the nozzle.Given the above,our program conducted preliminary research on this system integration design issue,discussed the optimal nozzle for this section in-depth,and proposed design suggestions based on the findings.This program used an existing model as the design case.This study referred to the actual trial data as the design conditions for the proposed model.Unlike prior references’simple flow field form,this study added a jet ski geometry and free surface to the computational domain.After the linear hull shape was considered,the inflow in the inlet duct would be closer to the actual condition.Based on the numerical calculation result,this study recommends that the optimal nozzle outlet area should be 37%of the inlet area and that the nozzle contour should be linear.Furthermore,for the pump head,static pressure had a more significant impact than dynamic pressure.展开更多
Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma sour...Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma source to imitate the ionization section.The effect of inflow rate and Radio Frequency(RF)power on the plasma discharge mode transition is experimentally studied.A discharge mode detection method is proposed,which determines the discharge mode by identifying the morphology of the plasma core.By using the method,the discharge mode transition is quantified and a control model based on the parameter sensitivity is constructed.To verify the method,the spectra are measured and the electron temperature spatial distribution is calculated.And the method has been proven effective.The results show that the inductively coupled discharge contains capacitive components affected by the mass flow rate and the radio frequency power.The plasma characteristics can be maintained stably by controlling the radio frequency power when the mass flow rate randomly changes in a certain range.It is demonstrated that the application of detection method effectively identifies the discharge mode,which is a promising active control method for the plasma discharge mode.展开更多
Flight vehicle conceptual design appears to be a promising area for application of the Genetic Algorithm (GA) as an approach to help to automate part of the design process. This computational research effort strives...Flight vehicle conceptual design appears to be a promising area for application of the Genetic Algorithm (GA) as an approach to help to automate part of the design process. This computational research effort strives to develop a propulsion system design strategy for liquid rocket to optimize take-off mass, satisfying the mission range under the constraint of axial overload. The method by which this process is accomplished by using GA as optimizer is outlined in this paper. Convergence of GA is improved by introducing initial population based on Design of Experiments Technique.展开更多
The hydrodynamic performance of a hybrid CRP pod propulsion system was studied by RANS method with SST k ?? turbulence model and sliding mesh. The effect of axial spacing on the hydrodynamic performance of the hybri...The hydrodynamic performance of a hybrid CRP pod propulsion system was studied by RANS method with SST k ?? turbulence model and sliding mesh. The effect of axial spacing on the hydrodynamic performance of the hybrid CRP pod propulsion system was investigated numerically and experimentally. It shows that RANS with the sliding mesh method and SST k -ω turbulence model predicts accurately the hydrodynamic performance of the hybrid CRP pod propulsion system. The axial spacing has little influence on the hydrodynamic performance of the forward propeller, but great influence on that of the pod unit. Thrust coefficient of the pod unit declines with the increase of the axial spacing, but the trend becomes weaker, and the decreasing amplitude at the lower advance coefficient is larger than that at the higher advance coefficient. The thrust coefficient and open water efficiency of the hybrid CRP pod propulsion system decrease with the increase of the axial spacing, while the torque coefficient keeps almost constant. On this basis, the design principle of axial spacing of the hybrid CRP pod propulsion system was proposed.展开更多
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com...A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.展开更多
In order to obtain the dynamic characteristics of a differential piston warm gas selfpressurization system for liquid attitude and divert propulsion system, a transient model is developed using the modular modeling me...In order to obtain the dynamic characteristics of a differential piston warm gas selfpressurization system for liquid attitude and divert propulsion system, a transient model is developed using the modular modeling method. The system includes the solid start cartridge,pressure-amplified tank with liquid monopropellant, liquid regulator, gas generator, and pipes.The one-dimensional finite-element state-variable model is applied to the pipes and the lumped parameter method is adopted for the other modules. The variations of the system operation parameters over time during the startup, steady-state, and pulsing operational processes are obtained from the transient model, and the characteristics of starting time changing with different system parameters are also analyzed. It is shown that the system startup process can be divided into three distinct processes. The starting time monotonically changes with variations of the liquid regulator parameters, first decreasing and then increasing with the mass change of the solid propellant charge of the start cartridge, initial gas cavity volume of the pressure amplified tank and initial gas cushion of the propellant tank. The starting time can be reduced to less than 1.0 s(0.68–0.75 s for the current system). For meeting the deviation requirements of ±10% of the steady-state propellant tank pressure, the positive deviation requirement is assured by the self-locking pressure and the negative deviation can be assured within an allowable maximum propellant tank volume flowrate(1.6 times the design value for the proposed system) for downstream thrusters for a designed system. The results from the simulation are useful as a guide for further system design and testing.展开更多
A new marine propulsion system is proposed . A small liquid sodium cooled reactor acts as prime mover; alkali-metal thermal-to-electric conversion ( AMTEC) cells are employed to convert the heat energy to electricity;...A new marine propulsion system is proposed . A small liquid sodium cooled reactor acts as prime mover; alkali-metal thermal-to-electric conversion ( AMTEC) cells are employed to convert the heat energy to electricity; superconducting magneto-hydrodynamic thruster combined with spray-water thruster works as pr opulsion. The configuration and characteristics of this system are described. Such a nuclear-powered propulsion system is not only free of noise, but also has high reliability and efficiency. It would be a preferable propulsion system for ships in the future.展开更多
Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be signi...Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future.展开更多
To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a syn...To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.展开更多
As the development tends towards high-speed, large-scale and high-power, power of the ship main engine becomes larger and larger. This make the engine design and cabin arrangement become more and more difficult. Ship ...As the development tends towards high-speed, large-scale and high-power, power of the ship main engine becomes larger and larger. This make the engine design and cabin arrangement become more and more difficult. Ship maneuverability becomes bad. A new ship propulsion system, integrated hydraulic propulsion (IHP), is put forward to meet the development of modem ship. Principle of IHP system is discussed. Working condition matching characteristic of IHP ship is studied based on its matching characteristic charts. According to their propulsion principle, dynamic mathematic models of IHP ship and direct propulsion (DP) ship are developed. These two models are verified by test sailing and test stand data. Based on the software Matlab/Simulink, comparison research between IHP ship and DP ship is conducted. The results show that cabin arrangement of IHP ship is very flexible, working condition matching characteristic of IHP ship is good, the ratio of power to weight of IHP ship is larger than DP ship, and maneuverability is excellent. IHP system is suitable for engineering ship, superpower ship and warship, etc.展开更多
Modern satellite propulsion systems are generally designed to fulfill multiphase-missions.Traditional reliability modelling methods have problems of inadequate depict capacity considering complex systems such as satel...Modern satellite propulsion systems are generally designed to fulfill multiphase-missions.Traditional reliability modelling methods have problems of inadequate depict capacity considering complex systems such as satellite propulsion system.An extended object-oriented Petri net(EOOPN)method was proposed to facilitate the reliability modelling of satellite propulsion system in the paper.The proposed method was specified for modelling of phased mission system,and it could be implemented by generating combination of Petri net(PN)principles and object-oriented(OO)programming.The effectiveness of the proposed method was demonstrated through the reliability modelling of a satellite propulsion system with EOOPN.The major advantage of the proposed method is that the dimension of net model can be reduced significantly,and phased mission system at system,phase,or component levels can be respectively depicted.Furthermore,the state-space explosion problem is solved by the proposed EOOPN model efficiently.展开更多
The paper presents a technical solution which provides energy saving at full speed, as well as duplication of screw propeller and main propulsion system incase it's out of order. The description of the corresponding ...The paper presents a technical solution which provides energy saving at full speed, as well as duplication of screw propeller and main propulsion system incase it's out of order. The description of the corresponding device, designed for transport refrigerator ship, is shown as well as its location on board. Value of energy saving from the use of contra propeller is estimated. The results of the assessment required power to move the ship at low speed by the action of the contra propeller operating in the reactive mode are demonstrated. It is shown, that the ship equipped with the proposed device will get the additional class notation related to the redundancy or duplication of the propulsion system of Russian Maritime Register of Shipping.展开更多
Based on the requirements of manned spaceships,this paper introduces the characteristics of the propulsion system from the perspectives of design scheme,basic composition,safety and reliability measures,and also intro...Based on the requirements of manned spaceships,this paper introduces the characteristics of the propulsion system from the perspectives of design scheme,basic composition,safety and reliability measures,and also introduces the ground test verification and on-orbit flight characteristics of the Shenzhou 13 propulsion system.According to the flight results,it was seen that the performance of the Shenzhou 13 propulsion system fully met the engineering requirements for the manned space mission.展开更多
Developed by the Academy of Aerospace Liquid Propulsion Technology (AALPT), the propulsion system for the new-generation light-lift liquid launch vehicle passed its first ground test firing on November 27, 2012 at the...Developed by the Academy of Aerospace Liquid Propulsion Technology (AALPT), the propulsion system for the new-generation light-lift liquid launch vehicle passed its first ground test firing on November 27, 2012 at the Beijing Institute of Aerospace Testing Technology. The event signifies that this is the only domestic static test-firing facility for rocket propulsion systems that can meet the development requirements for new-generation launch vehicles,展开更多
CubeSats have attracted more research interest recently due to their lower cost and shorter production time.A promising technology for CubeSat application is atmosphere-breathing electric propulsion,which can capture ...CubeSats have attracted more research interest recently due to their lower cost and shorter production time.A promising technology for CubeSat application is atmosphere-breathing electric propulsion,which can capture the atmospheric particles as propulsion propellant to maintain longterm mission at very low Earth orbit.This paper designs an atmosphere-breathing electric propulsion system for a 3 U CubeSat,which consists of an intake device and an electric thruster based on the inductively coupled plasma.The capture performance of intake device is optimized considering both particles capture efficiency and compression ratio.The plasma source is also analyzed by experiment and simulation.Then,the thrust performance is also estimated when taking into account the intake performance.The results show that it is feasible to use atmosphere-breathing electric propulsion technology for CubeSats to compensate for aerodynamic drag at lower Earth orbit.展开更多
Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thru...Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.展开更多
基金supported by the National Nature Science Foundation of China(Grant No.52302507)。
文摘The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry and can significantly enhance the energy efficiency of aircraft propulsion system.Electric motor is the most critical electromechanical energy conversion component in an aircraft electric propulsion system(EPS).High-performance electric motors,power electronic converters and EPS control form the foundation of the EPA.This paper provides an overview of the characteristics of electric motors for EPA,analyzes the inverter topologies of EPSs,and reviews ongoing EPA projects.The article highlights the latest advancements in three types of motors:superconducting motors(SCMs),permanent magnet synchronous motors(PMSMs),and induction motors(IMs).It summarizes the control system architectures of current EPA initiatives and,building on this foundation,proposes future research directions for EPSs.These include cutting-edge areas such as high-performance motors and advanced manufacturing technologies,Ga N-or Si C-based inverter integration and innovation,electric propulsion control systems,and optimization of wiring systems.
基金performed at large-scale research facility"Beam-M"of Bauman Moscow State Technical University following the government task by the Ministry of Science and Higher Education of the Russian Federation(No.FSFN-2024-0007).
文摘Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.
基金the financial support from the National Science and Technology Council,Taiwan(Grant No.MOST 111-2221-E-019-035-).
文摘The performance of a water jet propulsion system is related to the inlet duct,rotor,stator,and nozzle.Generally,the flow inlet design must fit the bottom line of the hull,and the design of the inlet duct is often limited by stern space.The entire section,from the rotor to the nozzle through the stator,must be designed based on system integration in that the individual performance of these three components will influence each other.Particularly,the section from the rotor to the nozzle significantly impacts the performance of a water jet propulsion system.This study focused on nozzle design and established referable analysis results to facilitate subsequent integrated studies on the design parameters regarding nozzle contour.Most existing studies concentrate on discussions on rotor design and the tip leakage flow of rotors or have replaced the existing complex computational domain with a simple flow field.However,research has yet to implement an integrated,optimal design of the section from the rotor to the nozzle.Given the above,our program conducted preliminary research on this system integration design issue,discussed the optimal nozzle for this section in-depth,and proposed design suggestions based on the findings.This program used an existing model as the design case.This study referred to the actual trial data as the design conditions for the proposed model.Unlike prior references’simple flow field form,this study added a jet ski geometry and free surface to the computational domain.After the linear hull shape was considered,the inflow in the inlet duct would be closer to the actual condition.Based on the numerical calculation result,this study recommends that the optimal nozzle outlet area should be 37%of the inlet area and that the nozzle contour should be linear.Furthermore,for the pump head,static pressure had a more significant impact than dynamic pressure.
基金funded by the National Natural Science Foundation of China (No. T2221002)the Hunan Provincial Natural Science Foundation, China (No. 2024JJ5405)
文摘Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma source to imitate the ionization section.The effect of inflow rate and Radio Frequency(RF)power on the plasma discharge mode transition is experimentally studied.A discharge mode detection method is proposed,which determines the discharge mode by identifying the morphology of the plasma core.By using the method,the discharge mode transition is quantified and a control model based on the parameter sensitivity is constructed.To verify the method,the spectra are measured and the electron temperature spatial distribution is calculated.And the method has been proven effective.The results show that the inductively coupled discharge contains capacitive components affected by the mass flow rate and the radio frequency power.The plasma characteristics can be maintained stably by controlling the radio frequency power when the mass flow rate randomly changes in a certain range.It is demonstrated that the application of detection method effectively identifies the discharge mode,which is a promising active control method for the plasma discharge mode.
文摘Flight vehicle conceptual design appears to be a promising area for application of the Genetic Algorithm (GA) as an approach to help to automate part of the design process. This computational research effort strives to develop a propulsion system design strategy for liquid rocket to optimize take-off mass, satisfying the mission range under the constraint of axial overload. The method by which this process is accomplished by using GA as optimizer is outlined in this paper. Convergence of GA is improved by introducing initial population based on Design of Experiments Technique.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51479207 and 51179198)the High Technology Marine Scientific Research Project of the Ministry of Industry and Information Technology of China(Grant No.[2012]534)
文摘The hydrodynamic performance of a hybrid CRP pod propulsion system was studied by RANS method with SST k ?? turbulence model and sliding mesh. The effect of axial spacing on the hydrodynamic performance of the hybrid CRP pod propulsion system was investigated numerically and experimentally. It shows that RANS with the sliding mesh method and SST k -ω turbulence model predicts accurately the hydrodynamic performance of the hybrid CRP pod propulsion system. The axial spacing has little influence on the hydrodynamic performance of the forward propeller, but great influence on that of the pod unit. Thrust coefficient of the pod unit declines with the increase of the axial spacing, but the trend becomes weaker, and the decreasing amplitude at the lower advance coefficient is larger than that at the higher advance coefficient. The thrust coefficient and open water efficiency of the hybrid CRP pod propulsion system decrease with the increase of the axial spacing, while the torque coefficient keeps almost constant. On this basis, the design principle of axial spacing of the hybrid CRP pod propulsion system was proposed.
基金Supported by the National Natural Sciences Foundation of China (No. 50975213 and No. 50705070)Doctoral Fund for the New Teachers of Ministry of Education of China (No. 20070497029)the Program of Introducing Talents of Discipline to Universities (No. B08031)
文摘A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.
文摘In order to obtain the dynamic characteristics of a differential piston warm gas selfpressurization system for liquid attitude and divert propulsion system, a transient model is developed using the modular modeling method. The system includes the solid start cartridge,pressure-amplified tank with liquid monopropellant, liquid regulator, gas generator, and pipes.The one-dimensional finite-element state-variable model is applied to the pipes and the lumped parameter method is adopted for the other modules. The variations of the system operation parameters over time during the startup, steady-state, and pulsing operational processes are obtained from the transient model, and the characteristics of starting time changing with different system parameters are also analyzed. It is shown that the system startup process can be divided into three distinct processes. The starting time monotonically changes with variations of the liquid regulator parameters, first decreasing and then increasing with the mass change of the solid propellant charge of the start cartridge, initial gas cavity volume of the pressure amplified tank and initial gas cushion of the propellant tank. The starting time can be reduced to less than 1.0 s(0.68–0.75 s for the current system). For meeting the deviation requirements of ±10% of the steady-state propellant tank pressure, the positive deviation requirement is assured by the self-locking pressure and the negative deviation can be assured within an allowable maximum propellant tank volume flowrate(1.6 times the design value for the proposed system) for downstream thrusters for a designed system. The results from the simulation are useful as a guide for further system design and testing.
文摘A new marine propulsion system is proposed . A small liquid sodium cooled reactor acts as prime mover; alkali-metal thermal-to-electric conversion ( AMTEC) cells are employed to convert the heat energy to electricity; superconducting magneto-hydrodynamic thruster combined with spray-water thruster works as pr opulsion. The configuration and characteristics of this system are described. Such a nuclear-powered propulsion system is not only free of noise, but also has high reliability and efficiency. It would be a preferable propulsion system for ships in the future.
基金This work was supported by the National Natural Science Foundation of China(No.50106005)
文摘Fault diagnosis of liquid rocket propulsion systems (LRPSs) is a very important issue in space launch activities particularly when manned space missions are accompanied, since the safety and reliability can be significantly enhanced by exploiting an efficient fault diagnosis system. Currently, inverse problem-based diagnosis has attracted a great deal of research attention in fault diagnosis domain. This methodology provides a new strategy to model-based fault diagnosis for monitoring the health of propulsion systems. To solve the inverse problems arising from the fault diagnosis of LRPSs, GAs have been adopted in recent years as the first and effective choice of available numerical optimization tools. However, the GA has many control parameters to be chosen in advance and there still lack sound theoretical tools to analyze the effects of these parameters on diagnostic performance analytically. In this paper a comparative study of the influence of GA parameters on diagnostic results is conducted by performing a series of numerical experiments. The objective of this study is to investigate the contribution of individual algorithm parameter to final diagnostic result and provide reasonable estimates for choosing GA parameters in the inverse problem-based fault diagnosis of LRPSs. Some constructive remarks are made in conclusion and will be helpful for the implementation of GA to the fault diagnosis practice of LRPSs in the future.
基金the National Natural Science Foundation of China under Grant 52007071 and 51907073the China Postdoctoral Science Foundation under Grant 3004131154 and 2020M672355the Applied Basic Frontier Program of Wuhan under Grant 2020010601012207。
文摘To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.
基金supported by National Natural Science Foundation of China(Grant No. 50575027)Ministry of Transportation and Communications Foundation of China (Grant No. 200332922502)
文摘As the development tends towards high-speed, large-scale and high-power, power of the ship main engine becomes larger and larger. This make the engine design and cabin arrangement become more and more difficult. Ship maneuverability becomes bad. A new ship propulsion system, integrated hydraulic propulsion (IHP), is put forward to meet the development of modem ship. Principle of IHP system is discussed. Working condition matching characteristic of IHP ship is studied based on its matching characteristic charts. According to their propulsion principle, dynamic mathematic models of IHP ship and direct propulsion (DP) ship are developed. These two models are verified by test sailing and test stand data. Based on the software Matlab/Simulink, comparison research between IHP ship and DP ship is conducted. The results show that cabin arrangement of IHP ship is very flexible, working condition matching characteristic of IHP ship is good, the ratio of power to weight of IHP ship is larger than DP ship, and maneuverability is excellent. IHP system is suitable for engineering ship, superpower ship and warship, etc.
文摘Modern satellite propulsion systems are generally designed to fulfill multiphase-missions.Traditional reliability modelling methods have problems of inadequate depict capacity considering complex systems such as satellite propulsion system.An extended object-oriented Petri net(EOOPN)method was proposed to facilitate the reliability modelling of satellite propulsion system in the paper.The proposed method was specified for modelling of phased mission system,and it could be implemented by generating combination of Petri net(PN)principles and object-oriented(OO)programming.The effectiveness of the proposed method was demonstrated through the reliability modelling of a satellite propulsion system with EOOPN.The major advantage of the proposed method is that the dimension of net model can be reduced significantly,and phased mission system at system,phase,or component levels can be respectively depicted.Furthermore,the state-space explosion problem is solved by the proposed EOOPN model efficiently.
文摘The paper presents a technical solution which provides energy saving at full speed, as well as duplication of screw propeller and main propulsion system incase it's out of order. The description of the corresponding device, designed for transport refrigerator ship, is shown as well as its location on board. Value of energy saving from the use of contra propeller is estimated. The results of the assessment required power to move the ship at low speed by the action of the contra propeller operating in the reactive mode are demonstrated. It is shown, that the ship equipped with the proposed device will get the additional class notation related to the redundancy or duplication of the propulsion system of Russian Maritime Register of Shipping.
文摘Based on the requirements of manned spaceships,this paper introduces the characteristics of the propulsion system from the perspectives of design scheme,basic composition,safety and reliability measures,and also introduces the ground test verification and on-orbit flight characteristics of the Shenzhou 13 propulsion system.According to the flight results,it was seen that the performance of the Shenzhou 13 propulsion system fully met the engineering requirements for the manned space mission.
文摘Developed by the Academy of Aerospace Liquid Propulsion Technology (AALPT), the propulsion system for the new-generation light-lift liquid launch vehicle passed its first ground test firing on November 27, 2012 at the Beijing Institute of Aerospace Testing Technology. The event signifies that this is the only domestic static test-firing facility for rocket propulsion systems that can meet the development requirements for new-generation launch vehicles,
基金funded by the National Natural Science Foundation of China (No. T2221002)
文摘CubeSats have attracted more research interest recently due to their lower cost and shorter production time.A promising technology for CubeSat application is atmosphere-breathing electric propulsion,which can capture the atmospheric particles as propulsion propellant to maintain longterm mission at very low Earth orbit.This paper designs an atmosphere-breathing electric propulsion system for a 3 U CubeSat,which consists of an intake device and an electric thruster based on the inductively coupled plasma.The capture performance of intake device is optimized considering both particles capture efficiency and compression ratio.The plasma source is also analyzed by experiment and simulation.Then,the thrust performance is also estimated when taking into account the intake performance.The results show that it is feasible to use atmosphere-breathing electric propulsion technology for CubeSats to compensate for aerodynamic drag at lower Earth orbit.
基金Supported by the Natural Science Foundation of China under Grant No.50675162the Program of Introducing Talents of Discipline to Universities under Grant No.B08031the Key Project of Hubei Province Science & Technology Fund under Grant No.2008CAD027
文摘Thrust bearing is a key component of the propulsion system of a ship. It transfers the propulsive forces from the propeller to the ship's hull, allowing the propeller to push the ship ahead. The performance of a thrust bearing pad is critical. When the thrust bearing becomes damaged, it can cause the ship to lose power and can also affect its operational safety. For this paper, the distribution of the pressure field of a thrust pad was calculated with numerical method, applying Reynolds equation. Thrust bearing properties for loads were analyzed, given variations in outlet thickness of the pad and variations between the load and the slope of the pad. It was noticed that the distribution of pressure was uneven. As a result, increases of both the outlet thickness and the slope coefficient of the pad were able to improve load beating capability.