期刊文献+
共找到1,038篇文章
< 1 2 52 >
每页显示 20 50 100
Experiment on proppant transport into fractures of unconventional reservoirs using stereoscopic particle image velocimetry
1
作者 GUO Jianchun ZUO Hengbo +4 位作者 ZHANG Tao TANG Tang ZHOU Hangyu LIU Yuxuan LI Mingfeng 《Petroleum Exploration and Development》 2025年第5期1340-1350,共11页
Stereoscopic particle image velocimetry technology was employed to investigate the planar three-dimensional velocity field and the process of proppant entry into branch fractures in a fracture configuration of“vertic... Stereoscopic particle image velocimetry technology was employed to investigate the planar three-dimensional velocity field and the process of proppant entry into branch fractures in a fracture configuration of“vertical main fracture-vertical branch fracture”intersecting at a 90°angle.This study analyzed the effects of pumping rate,fracturing fluid viscosity,proppant particle size,and fracture width on the transport behavior of proppant into branch fractures.Based on the deflection behavior of proppant,the main fractures can be divided into five regions:pre-entry transition,pre-entry stabilization,deflection entry at the fracture mouth,rear absorption entry,and movement away from the fracture mouth.Proppant primarily deflects into the branch fracture at the fracture mouth,with a small portion drawn in from the rear of the intersection.Increasing the pumping rate,reducing the proppant particle size,and widening the branch fracture are conducive to promoting proppant deflection into the branch.With increasing fracturing fluid viscosity,the ability of proppant to enter the branch fracture first improves and then declines,indicating that excessively high viscosity is unfavorable for proppant entry into the branch.During field operations,a high pumping rate and micro-to small-sized proppant can be used in the early stage to ensure effective placement in the branch fractures,followed by medium-to large-sized proppant to ensure adequate placement in the main fracture and enhance the overall conductivity of the fracture network. 展开更多
关键词 hydraulic fracturing vertical main fracture vertical branch fracture stereoscopic particle image velocimetry three-dimensional velocity field proppant deflection proppant transport
在线阅读 下载PDF
Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method 被引量:1
2
作者 Chengyong Peng JianshuWu +2 位作者 Mao Jiang Biao Yin Yishan Lou 《Energy Engineering》 EI 2025年第1期185-201,共17页
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract... To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures. 展开更多
关键词 Hydraulic fracturing discrete element method proppant SPHERICITY CFD-DEM
在线阅读 下载PDF
Mechanism of proppant transport and deposition in rough intersecting fractures after offshore fracturing
3
作者 Biao Yin Yi-Shan Lou +1 位作者 Shan-Yong Liu Yan Zhang 《Petroleum Science》 2025年第3期1270-1288,共19页
To accurately analyze proppant transport in rough intersecting fractures and elucidate the interaction mechanisms among liquid,particles,and rough walls,this study reconstructed a numerical model of fractures in inhom... To accurately analyze proppant transport in rough intersecting fractures and elucidate the interaction mechanisms among liquid,particles,and rough walls,this study reconstructed a numerical model of fractures in inhomogeneous reservoirs with varying brittleness index(BI).Various auto-correlation Gaussian rough fracture models were created using Matlab to assess roughness through the fractal dimension method.This research innovatively combined Boolean operations to establish three-dimensional rough fracture models,incorporating(Computational Fluid Dynamics)CFD-DEM(Discrete Element Method)with a bidirectional method for cosimulation.The proppant transport in fractures was categorized into three zones based on the difference in the turbulent kinetic energy.Artificially induced fracture roughness increases fluid retention and turbulence,causing plugging effects and limiting proppant flow into branch fractures.Additionally,compared with the superior deposition and significant support effects of the spherical proppant,the low-sphericity proppant traveled farther under fracturing fluid,inducing more pronounced plugging near curved fracture intersections;the variation in fracture intersection angles primarily impacted the wall shear stress within the flow field,indicating smaller angles led to higher shear energy at the intersection.Compared with the intersection angle of 30°,the height and area deposited in the 90 branch fracture increased by 52.25%and 65.33%,respectively:notably,injecting proppant from smaller to larger particles(S:M:L)and a low velocity effectively ensured fracture conductivity near the wellbore at joint roughness coefficient(JRC)≥46 while achieving satis-factory placement in the branch fracture,making it a recommended approach. 展开更多
关键词 Hydraulic fracturing Intersecting fracture proppant Turbulent kinetic energy CFD-DEM SPHERICITY Joint roughness coefficient
原文传递
Numerical Simulation of Gas-Water Two-Phase Flow in a Proppant-Filled Layer
4
作者 Jian Yang Xinghao Gou +4 位作者 Jiayi Sun Fei Liu Xiaojin Zhou Xu Liu Tao Zhang 《Fluid Dynamics & Materials Processing》 2025年第8期1935-1954,共20页
Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me... Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels. 展开更多
关键词 proppant fractures gas-water two-phase flow numerical simulation lattice Boltzmann method flow behavior
在线阅读 下载PDF
Migration and Distribution Laws of Proppants in Complex Lithology Reservoirs in Offshore Areas
5
作者 Mao Jiang Jianshu Wu +4 位作者 Chengyong Peng Xuesong Xing Yishan Lou Yi Liu Shanyong Liu 《Energy Engineering》 2025年第10期4019-4034,共16页
Fracture conductivity is a key factor to determine the fracturing effect.Optimizing proppant particle size distribution is critical for ensuring efficient proppant placement within fractures.To address challenges asso... Fracture conductivity is a key factor to determine the fracturing effect.Optimizing proppant particle size distribution is critical for ensuring efficient proppant placement within fractures.To address challenges associated with the low-permeability reservoirs in the Lufeng Oilfield of the South China Sea—including high heterogeneity,complex lithology,and suboptimal fracturing outcomes—JRC(Joint Roughness Coefficient)was employed to quantitatively characterize the lithological properties of the target formation.A CFD-DEM(Computational Fluid Dynamics-Discrete Element Method)two-way coupling approach was then utilized to construct a fracture channel model that simulates proppant transport dynamics.Theproppant particle size under different lithology was optimized.Theresults show that:(1)In rough fractures,proppant particles exhibit more chaotic migration behavior compared to their movement on smooth surfaces,thereby increasing the risk of fracture plugging;(2)Within the same particle size range,for proppants with mesh sizes of 40/70 or 20/40,fracture conductivity decreases as roughness increases.In contrast,for 30/50 mesh proppants,conductivity initially increases and then decreases with rising roughness;(3)Under identical roughness conditions,the following recommendations apply based on fracture conductivity behavior relative to proppant particle size:When JRC<46,conductivity increases with larger particle sizes,with 20/40 mesh proppant recommended;When JRC>46,conductivity decreases as particle size increases;40/70 mesh proppant is thus recommended to maintain effective conductivity;At JRC=46,conductivity first increases then decreases with increasing particle size,making 30/50mesh the optimal choice.Theresearch findings provide a theoretical foundation for optimizing fracturing designs and enhancing fracturing performance in the field. 展开更多
关键词 Offshore low permeability reservoir proppant migration particle size optimization fracture conductivity joint roughness coefficient
在线阅读 下载PDF
Revealling pore microstructure impacts on the compressive strength of porous proppant based on finite and discrete element method
6
作者 Zijia Liao Hesamoddin Rabiee +5 位作者 Lei Ge Xiaogang Li Zhaozhong Yang Qi Xue Chao Shen Hao Wang 《Journal of Materials Science & Technology》 2025年第8期72-81,共10页
Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres wi... Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres with artificial inherent pores are an important type of lightweight proppant,enabling their transport to distant fracture extremities and enhancing fracture conductivity.However,the focus frequently gravitates towards the low-density advantage,often overlooking the pore geometry impacts on compressive strength by traditional strength evaluation.This paper numerically bypasses such limitations by using a combined finite and discrete element method(FDEM)considering experimental results.The mesh size of the model undergoes validation,followed by the calibration of cohesive element parameters via the single particle compression test.The stimulation elucidates that proppants with a smaller pore size(40μm)manifest crack propagation evolution at a more rapid pace in comparison to their larger-pore counterparts,though the influence of pore diameter on overall strength is subtle.The inception of pores not only alters the trajectory of crack progression but also,with an increase in porosity,leads to a discernible decline in proppant compressive strength.Intriguingly,upon crossing a porosity threshold of 10%,the decrement in strength becomes more gradual.A denser congregation of pores accelerates crack propagation,undermining proppant robustness,suggesting that under analogous conditions,hollow proppants might not match the strength of their porous counterparts.This exploration elucidates the underlying mechanisms of proppant failure from a microstructural perspective,furnishing pivotal insights that may guide future refinements in the architectural design of porous proppant. 展开更多
关键词 Porous proppant Finite and discrete element method(FDEM) CRACK Compressive strength
原文传递
Micromechanical damage and proppant embedment patterns of fracture surfaces in lacustrine shale CO_(2)pre-pad energized fracturing
7
作者 SUN Lianhe WANG Haizhu +7 位作者 LI Gensheng WANG Bin STANCHITS Sergey MAO Zelong ZHANG Yaochen CHEREMISIN Alexey ZHENG Yong JIN Jiacheng 《Petroleum Exploration and Development》 2025年第4期1041-1052,共12页
To elucidate the mechanism by which supercritical CO_(2)(SCCO_(2))-water-shale interactions during CO_(2)energized fracturing influence proppant embedment in lacustrine shale,shale samples from the Bohai Bay Basin wer... To elucidate the mechanism by which supercritical CO_(2)(SCCO_(2))-water-shale interactions during CO_(2)energized fracturing influence proppant embedment in lacustrine shale,shale samples from the Bohai Bay Basin were selected for SCCO_(2)-water-shale interaction experiments.X-ray diffraction(XRD),SEM large-area high-resolution imaging,automated mineral identification and characterization system(AMICS),and nanoindentation tests were employed to examine the micro-mechanical damage mechanisms of fracture surfaces and the evolving patterns of proppant embedment characteristics.The results reveal that:Prolonged interaction time reduces the contents of dolomite,feldspar,and clay minerals,while quartz content increases,with dolomite showing the most pronounced dissolution effect.As interaction time increases,the hardness and elasticity modulus of shale follow a power-law decay pattern,with the peak degradation rate occurring at 1 d,followed by a gradual decline of degradation velocity.Increasing interaction time results in growth in both the number and depth of embedment pits on the sample surface.After more than 3 d of interaction,clustered proppant embedment is observed,accompanied by the formation of deep embedment pits on the surface. 展开更多
关键词 CO_(2)energized fracturing lacustrine shale SCCO_(2)-water-shale interaction micro-mechanical properties proppant embedment
在线阅读 下载PDF
Numerical simulation of proppant transport from a horizontal well into a perforation using computational fluid dynamics
8
作者 Tiankui Guo Xing Yang +4 位作者 Hai Liu Ming Chen Zunpeng Hu Jilei Niu Yiman Shi 《Natural Gas Industry B》 2023年第4期341-351,共11页
With the increasing global demand for oil and gas,the development of unconventional resources such as shale gas is becoming ever more important.The key to developing unconventional oil and gas resources lies in horizo... With the increasing global demand for oil and gas,the development of unconventional resources such as shale gas is becoming ever more important.The key to developing unconventional oil and gas resources lies in horizontal wells with multistage fracturing technology.In the process of horizontal well segmentation fracturing,the distribution of the proppant among multiple clusters has a significant influence on the fracturing effect.However,the influence of various factors on the entry of proppant into the perforation and then into the fracture along the wellbore is unclear.In this paper,based on the flow characteristics of proppants in fracturing fluids,we investigate the wellboreeperforation proppant transport using a Eulerian multiphase flow model.The effect of different factors on proppant entry into the perforation in horizontal wells is studied.We first verify that the computational fluid dynamics model satisfies the accuracy requirements for studying the sandcarrying efficiency of proppants in a perforation cluster.Second,the effects of the proppant size,proppant density,fracturing fluid viscosity,perforation diameter,and fracturing fluid flow rate on the proppant transport efficiency are investigated.Finally,a mathematical model of the sand-carrying efficiency is established by multivariate nonlinear fitting.The results show that the proppant size has a more significant effect on proppant settling at low wellbore flow rates.Increasing the diameter of the proppant particles can accelerate proppant settling.Higher wellbore flow rates tend to reduce the sand-carrying efficiency,although using a low-density proppant can mitigate the effect of the wellbore flow rate.At low wellbore flow rates,increasing the perforation size makes it easier for the proppant to enter bottom perforations.Increasing the fluid viscosity helps to distribute the proppant evenly between perforations in different directions,but this effect diminishes as the flow rate increases.Finally,a formula for the wellbore sand-carrying efficiency is obtained and validated,providing a basis for optimizing the distribution of the proppant in the perforation.The results from this paper enhance our understanding of the sand and fluid feeding patterns of each perforation cluster and provide direction for improving the construction process and enhancing the fracture inflow capacity. 展开更多
关键词 proppant proppant transport Flow rate proppant intake proppant size
在线阅读 下载PDF
Crushing and embedment of proppant packs under cyclic loading: An insight to enhanced unconventional oil/gas recovery 被引量:3
9
作者 K.M.A.S.Bandara P.G.Ranjith +2 位作者 T.D.Rathnaweera W.A.M.Wanniarachchi S.Q.Yang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期376-393,共18页
Crushing and embedment are two critical downhole proppant degradation mechanisms that lead to a significant drop in production outputs in unconventional oil/gas stimulation projects. These persistent production drops ... Crushing and embedment are two critical downhole proppant degradation mechanisms that lead to a significant drop in production outputs in unconventional oil/gas stimulation projects. These persistent production drops due to the non-linear responses of proppants under reservoir conditions put the future utilization of such advanced stimulation techniques in unconventional energy extraction in doubt. The aim of this study is to address these issues by conducting a comprehensive experimental approach. According to the results, whatever the type of proppant, all proppant packs tend to undergo significant plastic deformation under the first loading cycle.Moreover, the utilization of ceramic proppants(which retain proppant pack porosity up to 75%), larger proppant sizes(which retain proppant pack porosity up to 15.2%) and higher proppant concentrations(which retain proppant pack porosity up to 29.5%) in the fracturing stimulations with higher in-situ stresses are recommended to de-escalate the critical consequences of crushing associated issues. Similarly, the selection of resin-coated proppants over ceramic and sand proppants may benefit in terms of obtaining reduced proppant embedment.In addition, selection of smaller proppant sizes and higher proppant concentrations are suggested for stimulation projects at depth with sedimentary formations and lower in-situ stresses where proppant embedment predominates. Furthermore, correlation between proppant embedment with repetitive loading cycles was studied.Importantly, microstructural analysis of the proppant-embedded siltstone rock samples revealed that the initiation of secondary induced fractures. Finally, the findings of this study can greatly contribute to accurately select optimum proppant properties(proppant type, size and concentration) depending on the oil/gas reservoir characteristics to minimize proppant crushing and embedment effects. 展开更多
关键词 proppant Micro-CT analysis proppant crushing proppant embedment Secondary induced fractures Cyclic loading
在线阅读 下载PDF
Efficient placement technology of proppants based on structural stabilizers
10
作者 GUO Jianchun REN Shan +3 位作者 ZHANG Shaobin DIAO Su LU Yang ZHANG Tao 《Petroleum Exploration and Development》 SCIE 2024年第3期706-714,共9页
Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is de... Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells. 展开更多
关键词 hydraulic fracturing proppant structure stabilizer placement mechanism CONDUCTIVITY proppant backflow rate
在线阅读 下载PDF
Factors Influencing Proppant Transportation and Hydraulic Fracture Conductivity in Deep Coal Methane Reservoirs
11
作者 Fan Yang Honggang Mi 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2637-2656,共20页
The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mec... The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mechanism of proppant in deep coal reservoir is not clear at present.To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs,an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted.The study systematically analyzed the impact of various fracture geometries,proppant types and fracturingfluid viscosities on proppant distribution.Furthermore,the study compared the outcomes of dynamic proppant transport experiments with simulation results.The results show that the numerical simulation is consistent with the results of the proppant dynamic sand-carrying experiment.Under the conditions of low viscosity and large pumping-rate,a high ratio of 40/70 mesh proppant can facilitate the movement of the proppant to the depths of fractures at all levels.The technical goal is to create comprehensive fracture support within intricate trapezoidal fractures in deep coal and rock reservoirs without inducing sand plugging.The sand ratio is controlled at 15%–20%,with a proppant combination ratio of 40/70:30/50:20/40=6:3:1.Proppant pumping operations can effectively address the issue of poor support in complex fractures in deep coal formations.The research results have been successfully applied to the development of deep coalbed methane in the Linxing-Shenfu block,Ordos Basin. 展开更多
关键词 Deep coal fracture reticular fracture proppant density fracture conductivity proppant transportation
在线阅读 下载PDF
Occupational Health Surveillance: Pulmonary Function Test in Proppant Exposures
12
作者 Humairat H. Rahman Giffe T. Johnson Raymond D. Harbison 《Occupational Diseases and Environmental Medicine》 2016年第2期37-45,共9页
Workers involved in hydraulic fracking processes are exposed to various types of chemicals and dusts in their workplaces, such as proppants, which hold open the fissures created in the fracking process. Recently, cera... Workers involved in hydraulic fracking processes are exposed to various types of chemicals and dusts in their workplaces, such as proppants, which hold open the fissures created in the fracking process. Recently, ceramic proppants have been developed that may be less hazardous to workers than traditional proppants. Pulmonary function testing of workers producing ceramic proppant was used to assess the potential inhalation hazards of ceramic proppant. 100 male workers from a producer of ceramic proppant were evaluated with pulmonary function test data collected and evaluated using The American Thoracic Society (ATS) acceptability criteria. A comparison group was selected from the Third National Health and Nutrition Examination Survey (NHANES III) spirometry laboratory subset. No pulmonary function deficits were found in the worker group in comparison to the NHANES III population. Mean FEV1 and FVC values in workers were 3.8 and 4.8 liters respectively, and were greater as compared to the NHANES III population of similar demographics. An FEV1/FVC ratio of less than 0.8, when compared to the NHANES III group, produced an odds ratio of 0.44 in worker group, indicating less risk of preclinical pulmonary dysfunction. Overall, exposure to ceramic proppant was not found to produce an adverse impact on pulmonary function in workers engaged in the manufacture of ceramic proppant. 展开更多
关键词 proppant Hydraulic Fracking Pulmonary Function Test proppant Workers
在线阅读 下载PDF
A comprehensive review of ultralow‑weight proppant technology 被引量:10
13
作者 Yong-Cun Feng Cheng-Yun Ma +4 位作者 Jin-Gen Deng Xiao-Rong Li Ming-Ming Chu Cheng Hui Yu-Yang Luo 《Petroleum Science》 SCIE CAS CSCD 2021年第3期807-826,共20页
Proppant plays a critical role in the exploitation of oil and gas,especially in the development of nonconventional oil and gas resources.Proppants are small spheres that have adequate strength to withstand high closur... Proppant plays a critical role in the exploitation of oil and gas,especially in the development of nonconventional oil and gas resources.Proppants are small spheres that have adequate strength to withstand high closure stresses to keep cracks open;therefore,hydrocarbon fows smoothly into the wellbore.However,traditional proppants are prone to settling in hydraulic fracturing operations,which seriously afects the operation efect.To this end,ultralow-weight proppants have been extensively employed in the petroleum industry.One of the widespread forms of ultralow-weight proppant application in the oil and gas industry is related to light density.Ultralow-weight proppants will provide substantial fow paths with a considerably high propped surface area and remarkably reduce fne generation and scaling.This paper presents a comprehensive review of over 50 papers published in the past several decades on ultralow-weight proppants.The purpose of this study is to provide an overview of the current ultralow-weight proppant development status in raw materials,manufacturing process,performance characteristics,hydrophobic and lipophilic capabilities,and feld application to promote the research of new ultralow-weight proppants.Lastly,this study analyzes the current challenges and emphasizes the development direction of fractured proppants. 展开更多
关键词 proppant Hydraulic fracturing Gravel packing Ultralow density Hydrophobic modifcation
原文传递
Numerical simulation on proppant migration and placement within the rough and complex fractures 被引量:6
14
作者 Tian-Kui Guo Zhi-Lin Luo +7 位作者 Jin Zhou Yuan-Zhi Gong Cai-Li Dai Jin Tang Yang Yu Bing Xiao Bao-Lun Niu Ji-Jiang Ge 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2268-2283,共16页
Hydraulic fracturing is a key technology for the development of unconventional hydrocarbon resources.The proppant placement morphology determines the fracture conductivity,thus affecting the reservoir stimulation effe... Hydraulic fracturing is a key technology for the development of unconventional hydrocarbon resources.The proppant placement morphology determines the fracture conductivity,thus affecting the reservoir stimulation effect.In this paper,the proppant migration and placement within complex fractures was studied by considering the fracture wall roughness through computational fluid mechanics-discrete element method(CFD-DEM)in numerical simulation,which is a key approach to study the proppant migration and placement.The results show that the proppant placement non-uniformity,proppant migration capacity,and proppant volume filled in the far-end and the secondary branched fracture are enhanced within the rough fracture compared with those within smooth fractures.The proppant migration capacity is increased within the fracture at low inclination angles(<60°)and low approach angles(<90°),and the proppant placement area is larger in the inclined fracture than that in the vertical fracture.The rise of injection rate and fracturing fluid viscosity causes more proppants migrate to far-end or secondary fractures,resulting in a non-proppant area within the near-wellbore fracture.An increase by 1.3 times in the injection rate and 3 times in the fracturing fluid viscosity leads to a decrease by 26.6%and 27%,respectively,in the proppant placement area within the near-wellbore fracture.The staged injection with small size proppants followed by large size proppants increases the proppant placement area in the primary fracture by 13%-26%,and that with large size proppants followed by small size proppants increases the proppant placement area by 19%-25%,which is due to that the latter method facilitates filling of the secondary branched fracture.The injection location mainly affects the proppant filling degree within the near-wellbore fractures.Compared with the upper injection,the middle and lower injection is not beneficial to filling of proppants within the near-wellbore fracture. 展开更多
关键词 Hydraulic fracturing proppant migration and placement Rough fracture wall Complex fracture CFD-DEM coupling
原文传递
Experimental investigation and correlations for proppant distribution in narrow fractures of deep shale gas reservoirs 被引量:5
15
作者 Hao Zeng Yan Jin +1 位作者 Hai Qu Yun-Hu Lu 《Petroleum Science》 SCIE CAS CSCD 2022年第2期619-628,共10页
Hydraulic fracturing is a crucial stimulation for the development of deep shale gas reservoirs.A key challenge to the effectiveness of hydraulic fracturing is to place small proppants in complex narrow fractures reaso... Hydraulic fracturing is a crucial stimulation for the development of deep shale gas reservoirs.A key challenge to the effectiveness of hydraulic fracturing is to place small proppants in complex narrow fractures reasonably.The experiments with varied particle and fluid parameters are carried out in a narrow planar channel to understand particle transport and distribution.The four dimensionless parameters,including the Reynold number,Shields number,density ratio,and particle volume fraction,are introduced to describe the particle transport in narrow fractures.The results indicate that the narrow channel probably induces fluid fingers and small particle aggregation in a highly viscous fluid,leading to particle settlement near the entrance.The low viscous fluid is beneficial to disperse particles further into the fracture,especially in the high-speed fluid velocity.The linear and natural logarithmic laws have relationships with dimensionless parameters accurately.The multiple linear regression method developed two correlation models with four dimensionless parameters to predict the bed equilibrium height and covered area of small particles in narrow fractures.The study provides fundamental insight into understanding small size proppant distribution in deep reservoirs. 展开更多
关键词 proppant transport Multiphase flow Hydraulic fracturing Deep reservoir Narrow fractures
原文传递
Numerical Modelling of Proppant Transport in Hydraulic Fractures 被引量:5
16
作者 Yatin Suri Sheikh Zahidul Islam Mamdud Hossain 《Fluid Dynamics & Materials Processing》 EI 2020年第2期297-337,共41页
The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance.The proppant transport in thin fracturing fluid used during hydraulic fracturing in the... The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance.The proppant transport in thin fracturing fluid used during hydraulic fracturing in the unconventional reservoirs is considerably different from fracturing fluids in the conventional reservoir due to the very low viscosity and quick deposition of the proppants.This paper presents the development of a three-dimensional Computational Fluid Dynamics(CFD)modelling technique for the prediction of proppant-fluid multiphase flow in hydraulic fractures.The proposed model also simulates the fluid leak-off behaviour from the fracture wall.The Euler-Granular and CFD-Discrete Element Method(CFD-DEM)multiphase modelling approach has been applied,and the equations defining the fluid-proppant and inter-proppant interaction have been solved using the finite volume technique.The proppant transport in hydraulic fractures has been studied comprehensively,and the computational modelling results of proppant distribution and other flow properties are in good agreement with the published experimental study.The parametric study is performed to investigate the effect of variation in proppant size,fluid viscosity and fracture width on the proppant transport.Smaller proppants can be injected early,followed by larger proppants to maintain high propping efficiency.This study has enhanced the understanding of the complex flow phenomenon between proppant and fracturing fluid and can play a vital role in hydraulic fracturing design. 展开更多
关键词 proppant transport hydraulic fracturing eulerian-granular model computational fluid dynamics discrete element method fluid leak-off
在线阅读 下载PDF
Reversible adhesion surface coating proppant 被引量:3
17
作者 Quan Xu Fan Fan +5 位作者 Zhaohui Lu Mao Sheng Shouceng Tian Ye Zhang Linhua Pan Yang Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期553-556,共4页
Proppant is a key material in the hydraulic fracturing process,which has been widely used in unconventional oil exploitation.Normal proppants are easy to sedimentate and accumulate at the entrance of shale fracture,wh... Proppant is a key material in the hydraulic fracturing process,which has been widely used in unconventional oil exploitation.Normal proppants are easy to sedimentate and accumulate at the entrance of shale fracture,which will block the diversion of water,oil and gas.Coated proppants(CPs) are fabricated by coating resin on normal ceramic proppants through a simple method,which is dramatically enhanced the supporting properties in shale fracture and easy to scale up.Compared with uncoated ceramic proppants,the self-suspension ability of CPs is ~11 times higher,which are able to migrate and distribute farther and deeper inside the fracture.At the same time,Coating enhanced the 23.7% of adhesive force in maximum,which makes the CPs easier to adhere on the fracture surface to supportthe shale fracture.Besides,the liquid conductivity of CPs is 60% higher than uncoated ceramic proppants at13.6 MPa pressure.This method is expected to fabricated varieties of proppantsfor shale fracture supporting to improve the exploration of unconventional oil and gas resources. 展开更多
关键词 Self-suspension COATING proppants Hydraulic fracturing process Liquid conductivity
原文传递
Hydrophobic epoxy resin coated proppants with ultra-high self-suspension ability and enhanced liquid conductivity 被引量:3
18
作者 Fan Fan Feng-Xia Li +5 位作者 Shou-Ceng Tian Mao Sheng Waleed Khan Ai-Ping Shi Yang Zhou Quan Xu 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1753-1759,共7页
Proppant is a key material for enhancing unconventional oil and gas production which requires a long distance of migration and efficient liquid conductivity paths within the hydraulic fracture.However,it is difficult ... Proppant is a key material for enhancing unconventional oil and gas production which requires a long distance of migration and efficient liquid conductivity paths within the hydraulic fracture.However,it is difficult to find a proppant with both high self-suspension ability and liquid conductivity.Here,a simple method is developed to coat epoxy resin onto the ceramic proppant and fabricate a novel coated proppant with high hydrophobicity,self-suspension,and liquid conductivity performance.Compared with uncoated ceramic proppants,the epoxy resin coated(ERC) proppant has a high self-suspension ability nearly 16 times that of the uncoated proppants.Besides,the hydrophobic property and the liquid conductivity of the ERC proppant increased by 83.8% and 16.71%,respectively,compared with the uncoated proppants.In summary,this novel ERC proppant provides new insights into the design of functional proppants,which are expected to be applied to oil and gas production. 展开更多
关键词 Coated proppant Hydrophobic property Self-suspension CONDUCTIVITY
原文传递
Solidification and utilization of water-based drill cuttings to prepare ceramsite proppant with low-density and high performance 被引量:3
19
作者 Hang Yang Yun-Li Liu +3 位作者 Guo-Liang Bai Zhen Feng Yi Zhang Shi-Bin Xia 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2314-2325,共12页
Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping... Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping with iron oxide,and acid modification of WBDC on the properties of proppants are discussed.The proppant performance is evaluated according to the national standard SY/T5108-2014.The morphology of the proppant is analyzed using scanning electron microscopy(SEM).The crystal phase structure of the proppant is studied using X-ray diffraction(XRD).Thermal analysis of the proppant sintering process is performed using thermogravimetry(TG).Proppant Z-23 completely satisfied the SY/T5108-2014 standard.This study provides a new perspective for the resource utilization of water-based drill cuttings and preparation of low-density proppants. 展开更多
关键词 Water-based drill cuttings proppant Thermal analysis Solid waste
原文传递
Development of self-generated proppant based on modified low-density and low-viscosity epoxy resin and its evaluation 被引量:3
20
作者 Jia-Cheng Fan Zhan-Qing Qu +6 位作者 Tian-Kui Guo Ning Qi Ming Chen Jian Hou Ji-Jiang Ge Xiao-Qiang Liu Ji-Wei Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2240-2252,共13页
Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performanc... Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performance.The increasing depth of fractured oil and gas reservoirs is causing growing difficulty in hydraulic fracturing.Moreover,the migration of conventional proppants within the fracture is always limited due to small fracture width and rigid proppant structure.Thus,proppants with good transportation capacity and fracture propping effects are needed.First,a novel self-generated proppant based on toughened low-viscosity and low-density epoxy resin was developed to satisfy this demand.Then,proppant performances were evaluated.Low-viscosity and low-density epoxy resin was generated when the thiol-ene click chemical reaction product of eugenol and 1-thioglycerol reacts with the epichlorohydrin.Then,the resin was toughened with graphite particles to increase its compressive strength from50.8 to 72.1 MPa based on micro-cracking mechanism and crazing-nail anchor mechanism.The adduct of diethylene triamine and butyl glycidyl ether and the Si O2 nanoparticles were treated as the curing agent and emulsifier respectively to form the emulsion.The emulsion is transformed into solid particles of various sizes within a reservoir to prop the fracture.Evaluation shows good migration capacity of this self-generated proppant due to the low density of epoxy resin. 展开更多
关键词 Low-viscosity and low-density epoxy resin Resin toughening Self-generated proppant Performance evaluation
原文传递
上一页 1 2 52 下一页 到第
使用帮助 返回顶部