期刊文献+
共找到117篇文章
< 1 2 6 >
每页显示 20 50 100
Hyperspectral imagery quality assessment and band reconstruction using the prophet model
1
作者 Ping Ma Jinchang Ren +2 位作者 Zhi Gao Yinhe Li Rongjun Chen 《CAAI Transactions on Intelligence Technology》 2025年第1期47-61,共15页
In Hyperspectral Imaging(HSI),the detrimental influence of noise and distortions on data quality is profound,which has severely affected the following-on analytics and decisionmaking such as land mapping.This study pr... In Hyperspectral Imaging(HSI),the detrimental influence of noise and distortions on data quality is profound,which has severely affected the following-on analytics and decisionmaking such as land mapping.This study presents an innovative framework for assessing HSI band quality and reconstructing the low-quality bands,based on the Prophet model.By introducing a comprehensive quality metric to start,the authors approach factors in both spatial and spectral characteristics across local and global scales.This metric effectively captures the intricate noise and distortions inherent in the HSI data.Subsequently,the authors employ the Prophet model to forecast information within the low-quality bands,leveraging insights from neighbouring high-quality bands.To validate the effectiveness of the authors’proposed model,extensive experiments on three publicly available uncorrected datasets are conducted.In a head-to-head comparison,the framework against six state-ofthe-art band reconstruction algorithms including three spectral methods,two spatialspectral methods and one deep learning method is benchmarked.The authors’experiments also delve into strategies for band selection based on quality metrics and the quality evaluation of the reconstructed bands.In addition,the authors assess the classification accuracy utilising these reconstructed bands.In various experiments,the results consistently affirm the efficacy of the authors’method in HSI quality assessment and band reconstruction.Notably,the authors’approach obviates the need for manually prefiltering of noisy bands.This comprehensive framework holds promise in addressing HSI data quality concerns whilst enhancing the overall utility of HSI. 展开更多
关键词 band reconstruction band quality hyperspectral image(HSI) prophet model
在线阅读 下载PDF
Time Series Facebook Prophet Model and Python for COVID-19 Outbreak Prediction 被引量:1
2
作者 Mashael Khayyat Kaouther Laabidi +1 位作者 Nada Almalki Maysoon Al-zahrani 《Computers, Materials & Continua》 SCIE EI 2021年第6期3781-3793,共13页
COVID-19 comes from a large family of viruses identied in 1965;to date,seven groups have been recorded which have been found to affect humans.In the healthcare industry,there is much evidence that Al or machine learni... COVID-19 comes from a large family of viruses identied in 1965;to date,seven groups have been recorded which have been found to affect humans.In the healthcare industry,there is much evidence that Al or machine learning algorithms can provide effective models that solve problems in order to predict conrmed cases,recovered cases,and deaths.Many researchers and scientists in the eld of machine learning are also involved in solving this dilemma,seeking to understand the patterns and characteristics of virus attacks,so scientists may make the right decisions and take specic actions.Furthermore,many models have been considered to predict the Coronavirus outbreak,such as the retro prediction model,pandemic Kaplan’s model,and the neural forecasting model.Other research has used the time series-dependent face book prophet model for COVID-19 prediction in India’s various countries.Thus,we proposed a prediction and analysis model to predict COVID-19 in Saudi Arabia.The time series dependent face book prophet model is used to t the data and provide future predictions.This study aimed to determine the pandemic prediction of COVID-19 in Saudi Arabia,using the Time Series Analysis to observe and predict the coronavirus pandemic’s spread daily or weekly.We found that the proposed model has a low ability to forecast the recovered cases of the COVID-19 dataset.In contrast,the proposed model of death cases has a high ability to forecast the COVID-19 dataset.Finally,obtaining more data could empower the model for further validation. 展开更多
关键词 COVID-19 time series analysis PREDICTION face book prophet model PYTHON
在线阅读 下载PDF
ARIMA and Facebook Prophet Model in Google Stock Price Prediction 被引量:2
3
作者 Beijia Jin Shuning Gao Zheng Tao 《Proceedings of Business and Economic Studies》 2022年第5期60-66,共7页
We use the Autoregressive Integrated Moving Average(ARIMA)model and Facebook Prophet model to predict the closing stock price of Google during the COVID-19 pandemic as well as compare the accuracy of these two models... We use the Autoregressive Integrated Moving Average(ARIMA)model and Facebook Prophet model to predict the closing stock price of Google during the COVID-19 pandemic as well as compare the accuracy of these two models’predictions.We first examine the stationary of the dataset and use ARIMA(0,1,1)to make predictions about the stock price during the pandemic,then we train the Prophet model using the stock price before January 1,2021,and predict the stock price after January 1,2021,to present.We also make a comparison of the prediction graphs of the two models.The empirical results show that the ARIMA model has a better performance in predicting Google’s stock price during the pandemic. 展开更多
关键词 ARIMA model Facebook prophet model Stock price prediction Financial market Time series
在线阅读 下载PDF
基于Prophet和NeuralProphet模型对北京市海淀区水痘发病趋势的预测
4
作者 韦懿芸 孙亚敏 +1 位作者 刘轩卓 杜婧 《传染病信息》 2025年第3期268-272,共5页
目的运用Prophet模型与NeuralProphet模型(NP模型)探索北京市海淀区水痘发病趋势和特征,为水痘疫情防控工作提供科学参考。方法数据来源于北京市海淀区2009年第1周至2024年第26周水痘报告发病数。采用2009—2023年的数据作为训练集,构建... 目的运用Prophet模型与NeuralProphet模型(NP模型)探索北京市海淀区水痘发病趋势和特征,为水痘疫情防控工作提供科学参考。方法数据来源于北京市海淀区2009年第1周至2024年第26周水痘报告发病数。采用2009—2023年的数据作为训练集,构建Prophet模型和NP模型,并运用Optuna算法对模型参数进行优化。以2024年的26周发病数据作为测试集,采用均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)对各模型拟合效果进行评估。同时,对模型中的各成分进行分析。结果北京市海淀区水痘疫情每年有2个发病高峰。水痘发病数呈现逐年下降趋势,且模型中的自回归成分自2012年起波动逐渐减小。Prophet模型的RMSE、MAE和MAPE分别为9.489、7.936和27.408%;NP模型的对应指标分别为6.102、4.848和18.190%。结论Prophet模型在水痘流行趋势的预测中具有一定的适用性,而NP模型具有更高的预测性能。模型成分分析的结果,可以为评估措施效果、合理分配资源以及制定有效的防控策略提供科学依据和数据支撑。 展开更多
关键词 prophet模型 Neuralprophet模型 水痘 预测
暂未订购
基于GA-Prophet模型的变电站基坑变形安全预测研究与应用
5
作者 王文强 燕波 +5 位作者 齐壮 王飞 田庆 王永维 何文敏 杨超 《水利水电技术(中英文)》 北大核心 2025年第4期107-117,共11页
【目的】基坑变形的监测是保证基坑施工安全的重要保障,为提高监测数据的应用价值及确保基坑的施工安全,以陕西省西安市某330 kV变电站基坑工程为项目依托,基于实际变形监测结果【方法】以均方误差MSE作为遗传算法(GA)的适应度函数,对Pr... 【目的】基坑变形的监测是保证基坑施工安全的重要保障,为提高监测数据的应用价值及确保基坑的施工安全,以陕西省西安市某330 kV变电站基坑工程为项目依托,基于实际变形监测结果【方法】以均方误差MSE作为遗传算法(GA)的适应度函数,对Prophet模型中的趋势项、周期项和节假日项(偶发事件项)参数进行优化,并重点考虑与基坑变形规律相一致的趋势项参数,构建GA-Prophet基坑变形预测模型,并以MAE、RSS、RMSE和Theil不等系数值为评价指标,验证本模型的可行性及有效性,同时使用该模型对基坑水平及竖向变形进行超前预测,以评价基坑结构的安全状态。【结果】结果表明:GA-Prophet模型预测结果曲线与实测数据曲线较为接近,归功于预测模型中选用了符合实际工程位移变化规律的饱和模型,以JC8测点水平位移预测结果为例,该模型预测结果的MAE、RSS、RMSE、Theil不等系数值分别为0.480、1.310、0.512和0.052,均优于Prophet、LSTM、ARIMA和BP模型的预测结果;并且该模型对基坑变形的超前预测结果显示,各测点水平及竖向变形预测最大值均未超过规范要求的变形报警值,基坑结构处于安全状态。【结论】该模型对于基坑变形预测具有较好的适用性,提高了预测结果的准确性,可用于基坑变形安全预测。 展开更多
关键词 变电站基坑 变形监测 遗传算法 GA-prophet模型 超前预测 影响因素
在线阅读 下载PDF
利用Prophet模型进行地下水位异常识别初探 被引量:2
6
作者 李永生 周晨 +2 位作者 张思萌 石伟 年华 《大地测量与地球动力学》 北大核心 2025年第3期313-318,共6页
针对地下水位数据的复杂特性(包括非线性趋势、季节性波动和随机扰动),引入Facebook开发的Prophet时间序列预测模型,旨在利用其非线性趋势捕捉、季节性波动解析及对异常值和数据缺失的灵活应对能力,显著提升地下水位异常识别的准确性。... 针对地下水位数据的复杂特性(包括非线性趋势、季节性波动和随机扰动),引入Facebook开发的Prophet时间序列预测模型,旨在利用其非线性趋势捕捉、季节性波动解析及对异常值和数据缺失的灵活应对能力,显著提升地下水位异常识别的准确性。黑龙江省绥化市北林区地震台观测数据表明,Prophet模型在捕捉时间序列动态特征上表现优越,能有效识别异常。模型调整后具有高拟合精度和高预测能力,预测误差低,决定系数高。此外,模型在地震预测中能识别出与地震相关的水位异常,可为地震前兆研究提供新视角。本文结果表明Prophet模型在处理复杂时间序列数据时具有可行性,可为地震预测提供新工具。 展开更多
关键词 地下水位异常识别 时间序列预测 prophet模型 地震预测
在线阅读 下载PDF
基于SARIMA和Prophet模型的流行性感冒流行趋势预测与分析
7
作者 董贝贝 孙亚敏 +3 位作者 华伟玉 李梦瑶 何斌 刘锋 《首都公共卫生》 2025年第2期80-84,共5页
目的分析中国全国流感样病例(ILI)流感阳性率的变化趋势,比较季节性差分自回归移动平均模型(SARIMA)和Prophet模型的预测效果,为流感的防控提供科学依据。方法由于流感在中国南北方的流行特征具有差异,利用中国全国(以下简称全国)、南... 目的分析中国全国流感样病例(ILI)流感阳性率的变化趋势,比较季节性差分自回归移动平均模型(SARIMA)和Prophet模型的预测效果,为流感的防控提供科学依据。方法由于流感在中国南北方的流行特征具有差异,利用中国全国(以下简称全国)、南方地区和北方地区2015—2024年每周ILI的流感阳性率,构建SARIMA和Prophet模型进行预测,训练集为2015—2023年第1—52周数据,测试集为2024年第1—52周数据。使用平均绝对百分比误差(MAPE)评价预测效果。SARIMA模型采用AIC值确定参数,Prophet模型采用MAPE值确定最优参数。结果SARIMA模型对2025年全国ILI流感阳性率年度长期预测最好,MAPE为2.640%(南方:6.983%,北方:12.676%)。Prophet模型对全国ILI流感阳性率预测最好,MAPE为4.534%(南方:9.250%,北方:42.643%)。Prophet模型对2025年第1—10周全国流感阳性率预测MAPE为0.317%(SARIMA:0.483%)。结论SARIMA模型和Prophet模型预测各有优势,SARIMA在年度长期预测能力优于Prophet模型;在多周中长期预测能力劣于Prophet模型;在短期单点预测能力优于Prophet模型。 展开更多
关键词 流感样病例 流行性感冒 SARIMA模型 prophet模型 预测
暂未订购
SARIMA与Prophet的混合算法在时间序列预测中的应用研究 被引量:1
8
作者 李长生 《软件》 2025年第1期7-9,共3页
本研究提出了一种基于SARIMA与Prophet模型的混合算法,以提升时间序列预测的精度。SARIMA模型擅长处理线性趋势和季节性变化,Prophet模型则适用于捕捉非线性趋势和异常波动。将两者结合后的混合算法能够更全面地对复杂数据进行预测。在... 本研究提出了一种基于SARIMA与Prophet模型的混合算法,以提升时间序列预测的精度。SARIMA模型擅长处理线性趋势和季节性变化,Prophet模型则适用于捕捉非线性趋势和异常波动。将两者结合后的混合算法能够更全面地对复杂数据进行预测。在零售、气象和金融市场等行业中的实验结果表明,混合算法在预测准确性上优于单一模型,误差率降低了15%以上。本文进一步探讨了混合算法的设计、优化和实际应用,为未来时间序列预测提供了新的思路和方法。 展开更多
关键词 时间序列预测 SARIMA模型 prophet模型 混合算法 预测准确性
在线阅读 下载PDF
Prophet模型在用气量预测中的应用研究——以北方某煤改气村庄为例
9
作者 李大鹏 贾翔宇 翟勇龙 《唐山学院学报》 2025年第3期31-34,108,共5页
利用Prophet模型对北方某煤改气村庄2019年1月至2020年10月的日用气量数据进行分析,结果表明,相较于传统的时间序列模型如移动平均模型和ARIMA模型,Prophet模型在处理复杂的季节性波动和趋势变化方面具有显著优势,能够提供更高精度的预... 利用Prophet模型对北方某煤改气村庄2019年1月至2020年10月的日用气量数据进行分析,结果表明,相较于传统的时间序列模型如移动平均模型和ARIMA模型,Prophet模型在处理复杂的季节性波动和趋势变化方面具有显著优势,能够提供更高精度的预测结果。 展开更多
关键词 prophet模型 煤改气 用气量
在线阅读 下载PDF
基于改进Prophet模型的股票市场非周期波动预测——以小米集团股票为例
10
作者 代雨 吴福生 +1 位作者 李佳芳 蒋光艳 《计算机时代》 2025年第6期16-20,27,共6页
传统时间序列模型在股票非周期性预测中存在忽视外部信息、对非平稳性数据的处理能力不足,以及缺乏对市场突变的适应能力等诸多局限性。为了克服这些缺陷,本文引入国内外重大事件、节假日等外部事件影响因子,并将贝叶斯推理与随机森林... 传统时间序列模型在股票非周期性预测中存在忽视外部信息、对非平稳性数据的处理能力不足,以及缺乏对市场突变的适应能力等诸多局限性。为了克服这些缺陷,本文引入国内外重大事件、节假日等外部事件影响因子,并将贝叶斯推理与随机森林回归算法相结合,对Prophet模型进行改进。以小米集团股票数据为例进行实证分析,实证结果表明:改进Prophet模型在非周期性股票预测中的均方误差(MSE)、均方根误差(RMSE)等多个评估指标表现更优,具有更好的预测效果。 展开更多
关键词 改进prophet模型 贝叶斯推理 随机森林 股票预测
在线阅读 下载PDF
气候物理风险对商业银行信贷风险质量的影响研究——基于Prophet与SVR的压力测试方法
11
作者 张子晴 段庆松 《当代金融研究》 2025年第5期105-119,共15页
采用Prophet模型与支持向量回归(SVR)模型,并结合气候物理风险情景进行深入分析。通过设定基准、轻度、中度和重度四种压力情景,评估未来四个季度内气候变化引发的物理风险,以及对商业银行对公业务信贷资产质量的潜在影响。研究结果表明... 采用Prophet模型与支持向量回归(SVR)模型,并结合气候物理风险情景进行深入分析。通过设定基准、轻度、中度和重度四种压力情景,评估未来四个季度内气候变化引发的物理风险,以及对商业银行对公业务信贷资产质量的潜在影响。研究结果表明,随着气候物理风险的加剧,对公客户违约概率显著上升,导致银行信用风险成本和资本要求显著提升,特别是在重度情景下,银行的资本充足率已低于监管要求。基于此,提出商业银行需强化气候风险管理措施,优化调整信贷结构,并制定重度压力情景的资本缓冲方案,应对气候风险带来的潜在挑战。为商业银行提供科学的气候风险管理策略,并为后续的气候风险研究开辟新的视角和方法论。 展开更多
关键词 prophet模型 支持向量机回归模型 压力测试 气候物理风险
在线阅读 下载PDF
基于ARIMA和Prophet的水质预测集成学习模型 被引量:20
12
作者 嵇晓燕 杨凯 +3 位作者 陈亚男 姚志鹏 王正 安新国 《水资源保护》 EI CAS CSCD 北大核心 2022年第6期111-115,共5页
将时间序列模型ARIMA和Prophet作为基学习器,结合BP神经网络模型构建了水质预测集成学习模型。选取长江流域某断面2019—2020年的DO、COD_(Mn)、NH_(3)-N、TP和TN等5个水质指标的监测数据对该模型的有效性进行了检验,结果表明:5个水质... 将时间序列模型ARIMA和Prophet作为基学习器,结合BP神经网络模型构建了水质预测集成学习模型。选取长江流域某断面2019—2020年的DO、COD_(Mn)、NH_(3)-N、TP和TN等5个水质指标的监测数据对该模型的有效性进行了检验,结果表明:5个水质指标集成学习模型预测结果的平均绝对百分比误差比时间序列模型的预测误差分别低35.0%、29.9%、4.1%、40.6%和17.1%,模型预测值和监测值的皮尔逊相关系数大于0.8。集成学习模型预测精度高于单一模型,可以更精确地进行水质预测。 展开更多
关键词 水质预测 ARIMA模型 prophet模型 集成学习
在线阅读 下载PDF
基于Prophet-XGBoost模型的GNSS高程时间序列预测 被引量:8
13
作者 鲁铁定 李祯 《大地测量与地球动力学》 CSCD 北大核心 2022年第9期898-903,共6页
针对GNSS时间序列非平稳性和非线性等特点,通过分析XGBoost模型与Prophet模型的适用性与特点,构建Prophet-XGBoost预测模型。该模型先通过Prophet模型对GNSS原始时间序列进行分解,然后通过XGBoost模型进行分部预测,等权相加得到预测结... 针对GNSS时间序列非平稳性和非线性等特点,通过分析XGBoost模型与Prophet模型的适用性与特点,构建Prophet-XGBoost预测模型。该模型先通过Prophet模型对GNSS原始时间序列进行分解,然后通过XGBoost模型进行分部预测,等权相加得到预测结果。实验选用ALGO、ALRT、BRST三个IGS站U分量日坐标时间序列数据,采用MAE和RMSE作为评价指标。结果表明,与单一的XGBoost模型和Prophet模型相比,Prophet-XGBoost模型的MAE和RMSE值均得到一定程度优化,说明该模型具备有效性,可用于GNSS时间序列预测。 展开更多
关键词 XGBoost模型 prophet模型 时间序列 预测
在线阅读 下载PDF
Prophet-X-12-ARIMA组合模型及交通运输量预测 被引量:5
14
作者 杨贵军 李晓霞 孙玲莉 《统计与决策》 CSSCI 北大核心 2023年第4期29-34,共6页
由于受到经济社会因素的影响,交通运输量数据具有趋势多变及季节性明显的复杂特征。现有的预测模型,如X-12-ARIMA模型、ARIMA模型和Prophet模型等的预测准确性有待改进。文章构建Prophet-X-12-ARIMA组合模型,综合了Prophet模型灵活拟合... 由于受到经济社会因素的影响,交通运输量数据具有趋势多变及季节性明显的复杂特征。现有的预测模型,如X-12-ARIMA模型、ARIMA模型和Prophet模型等的预测准确性有待改进。文章构建Prophet-X-12-ARIMA组合模型,综合了Prophet模型灵活拟合趋势成分的优势以及X-12-ARIMA模型能准确分解出季节成分的优点。采用该模型预测某城市的七种交通运输量序列,结果显示Prophet-X-12-ARIMA组合模型的半年度和年度预测效果明显优于Prophet模型、X-12-ARIMA模型及ARIMA模型。进一步研究发现,当原始序列趋势变化剧烈时,Prophet-X-12-ARIMA组合模型的预测效果更优。 展开更多
关键词 prophet模型 X-12-ARIMA模型 prophet-X-12-ARIMA组合模型 交通运输量
在线阅读 下载PDF
LSTM和Prophet模型在肺结核发病数预测中的应用 被引量:13
15
作者 李顺勇 张钰嘉 《河南科学》 2020年第2期173-178,共6页
为预测肺结核发病数,建立了两种能够较为精确描述以及预测肺结核发病数的模型.根据中国疾控中心提供的2007年7月至2019年6月肺结核发病数的数据,运用LSTM模型和Prophet模型对中国肺结核发病数进行预测,并将该两种模型的预测性能与ARIMA... 为预测肺结核发病数,建立了两种能够较为精确描述以及预测肺结核发病数的模型.根据中国疾控中心提供的2007年7月至2019年6月肺结核发病数的数据,运用LSTM模型和Prophet模型对中国肺结核发病数进行预测,并将该两种模型的预测性能与ARIMA、GM(1,1)模型进行对比.结果表明,Prophet模型预测性能最佳,其MAE值与RMSE值分别为5 124.33、5 905.32,LSTM模型预测性能次之,ARIMA模型预测性能最差. 展开更多
关键词 肺结核 发病数 LSTM模型 prophet模型 预测性能
在线阅读 下载PDF
ARIMA和Prophet模型在艾滋病发病预测中的应用 被引量:10
16
作者 李顺勇 李可心 《河南科学》 2020年第9期1387-1393,共7页
根据国家疾病预防控制局提供的2013年1月至2019年10月艾滋病发病数的相关数据,分别建立ARIMA(0,1,1)×(0,1,1)12乘积季节模型和Prophet模型,并对两种模型的预测效果进行对比.结果表明,两种模型均能很好地预测我国艾滋病的发病人数... 根据国家疾病预防控制局提供的2013年1月至2019年10月艾滋病发病数的相关数据,分别建立ARIMA(0,1,1)×(0,1,1)12乘积季节模型和Prophet模型,并对两种模型的预测效果进行对比.结果表明,两种模型均能很好地预测我国艾滋病的发病人数以及变化趋势,其RMSE分别为345.46、328.88,且Prophet模型的预测效果更优. 展开更多
关键词 艾滋病 ARIMA模型 prophet模型 发病人数 预测性能
在线阅读 下载PDF
基于LSTM-Prophet非线性组合的时间序列预测模型 被引量:12
17
作者 赵英 翟源伟 +1 位作者 陈骏君 滕建 《计算机与现代化》 2020年第9期6-11,18,共7页
目前采用单一预测模型对于复杂的非线性时间序列具有预测精度较低,且不能很好地捕捉时间序列的复合特征的问题,因此本文提出一种基于BP神经网络组合的长短期记忆网络-Prophet(LSTM-Prophet)时间序列预测模型。模型将长短期记忆网络及Pro... 目前采用单一预测模型对于复杂的非线性时间序列具有预测精度较低,且不能很好地捕捉时间序列的复合特征的问题,因此本文提出一种基于BP神经网络组合的长短期记忆网络-Prophet(LSTM-Prophet)时间序列预测模型。模型将长短期记忆网络及Prophet这2种预测模型得到的预测值通过BP神经网络进行非线性组合,得出最终的预测值。随后设计实现本文模型与3个单项模型的对比实验,使用3个不同领域的数据集验证本文模型的准确性和有效性。实验结果表明提出的预测模型具有较高的预测精度、较好的通用性和应用前景。 展开更多
关键词 长短期记忆网络 prophet模型 时序预测 组合预测
在线阅读 下载PDF
Prophet-LSTM组合模型在运输航空征候预测中的应用 被引量:3
18
作者 杜红兵 邢梦柯 赵德超 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1878-1885,共8页
为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分... 为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分;其次,利用长短期记忆网络(Long Short-Term Memory,LSTM)建模,获取运输航空征候万时率的非线性部分;最后,利用方差倒数法建立Prophet-LSTM组合模型,使用建立的组合模型对2021年1—12月运输航空征候万时率进行预测,将预测结果与实际值进行对比验证。结果表明,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别为0.0973、16.1285%、0.1287。相较于已有的自回归移动平均(Auto Regression Integrated Moving Average,ARIMA)+反向传播神经网络(Back Propagation Neural Network,BPNN)组合模型和GM(1,1)+ARIMA+LSTM组合模型,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别减小了0.0259、10.4874百分点、0.0143和0.0128、2.0599百分点、0.0086,验证了Prophet-LSTM组合模型的预测精度更高,性能更优良。 展开更多
关键词 安全社会工程 运输航空征候 prophet模型 长短期记忆网络(LSTM)模型 组合预测模型
原文传递
基于Prophet-BP模型的猪肉价格预测研究 被引量:3
19
作者 叶勇 许潘 +1 位作者 辜丽川 王超 《黄山学院学报》 2021年第5期75-80,共6页
利用科学的技术对猪肉价格的变化趋势做出推断,对相关企业经营者、养殖户而言有助于从宏观的角度看待猪肉价格的未来走势,及时发现不足调整策略,对未来的发展具有一定的参考意义。以猪肉价格数据作为研究对象,针对实际时间序列的应用问... 利用科学的技术对猪肉价格的变化趋势做出推断,对相关企业经营者、养殖户而言有助于从宏观的角度看待猪肉价格的未来走势,及时发现不足调整策略,对未来的发展具有一定的参考意义。以猪肉价格数据作为研究对象,针对实际时间序列的应用问题,提出了一种Prophet-BP组合预测方法,利用Prophet模型将猪肉价格时间序列的确定性波动进行预测,同时结合新闻情感序列等相关指标,使用BP神经网络对猪肉价格时间序列中的随机非线性部分进行预测,把Prophet和BP模型预测值叠加所得为最终预测值。实验结果表明,结合舆情的Prophet-BP组合模型实验效果最优。 展开更多
关键词 猪肉价格 prophet模型 神经网络
在线阅读 下载PDF
基于融合影响因素PSO-Prophet模型的农产品价格预测
20
作者 刘合兵 王一飞 +2 位作者 王垒 席磊 尚俊平 《湖北农业科学》 2024年第1期185-189,共5页
为了提高价格预测的准确度,在Prophet模型中融入了消费者物价指数(CPI)和经济政策不确定性指数(EPU)等影响因素,并使用粒子群算法优化参数。利用国际大蒜贸易网中的日价格数据,将该方法应用于山东省大蒜的价格预测。结果表明,融合影响... 为了提高价格预测的准确度,在Prophet模型中融入了消费者物价指数(CPI)和经济政策不确定性指数(EPU)等影响因素,并使用粒子群算法优化参数。利用国际大蒜贸易网中的日价格数据,将该方法应用于山东省大蒜的价格预测。结果表明,融合影响因素的PSO-Prophet模型大蒜价格预测结果的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)比Prophet模型分别降低了82.88%、82.86%和77.49%。融合影响因素的PSO-Prophet模型可以有效提高预测精度。 展开更多
关键词 价格预测 融合影响因素 prophet模型 PSO-prophet模型 农产品
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部