期刊文献+
共找到301,805篇文章
< 1 2 250 >
每页显示 20 50 100
Syntheses,crystal structures,catalytic and anti-wear properties of zinc(Ⅱ),nickel(Ⅱ)and cadmium(Ⅱ)complexes constructed from a terphenyl-tricarboxylate ligand
1
作者 ZHAO Zhenghua LIU Yufeng +2 位作者 ZHANG Qing SHI Zifa GU Jinzhong 《无机化学学报》 北大核心 2026年第1期170-180,共11页
Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been construc... Three zinc(Ⅱ),nickel(Ⅱ),and cadmium(Ⅱ)complexes,namely[Zn(μ-Htpta)(py)_(2)]n(1),[Ni(H_(2)biim)2(H_(2)O)2][Ni(tpta)(H_(2)biim)2(H_(2)O)]2·3H_(2)O(2),and[Cd_(3)(μ4-tpta)2(μ-dpe)_(3)]_(n)(3),have been constructed hydrothermally at 160℃ using H_(3)tpta([1,1':3',1″-terphenyl]-4,4',5'-tricarboxylic acid),py(pyridine),H_(2)biim(2,2'-biimidazole),dpe(1,2-di(4-pyridyl)ethylene),and zinc,nickel and cadmium chlorides,resulting in the formation of stable crystalline solids which were subsequently analyzed using infrared spectroscopy,element analysis,thermogravimetric analysis,as well as structural analyses conducted via single-crystal X-ray diffraction.The findings from these single-crystal Xray diffraction studies indicate that complexes 1-3 form crystals within the monoclinic system P2_(1)/c space group(1)or triclinic system P1 space group(2 and 3),and possess 1D,0D,and 3D structures,respectively.Complex 1 demonstrated substantial catalytic efficiency and excellent reusability as a heterogeneous catalyst in the reaction of Knoevenagel condensation under ambient temperature conditions.In addition,complex 1 also showcased notable anti-wear performance when used in polyalphaolefin synthetic lubricants.CCDC:2449810,1;2449811,2;2449812,3. 展开更多
关键词 COMPLEXES tricarboxylic acid catalytic properties Knoevenagel condensation reaction anti-wear performance
在线阅读 下载PDF
Microstructure and Properties of Mg/Fe Dissimilar Metal Joints Fabricated by Magnetic Pulse Welding
2
作者 Xie Jilin Li Shimeng +3 位作者 Wang Yaping Liu Dongya Liu Xiaofang Chen Yuhua 《稀有金属材料与工程》 北大核心 2026年第1期67-77,共11页
Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively invest... Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively investigated.Macroscopic morphology,microstructure,and interfacial structure of the joints were analyzed using scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer(XRD).The results show that magnetic pulse welding of dissimilar Mg/Fe metals is achieved using an Al interlayer,which acts as a bridge for deformation and diffusion.Specifically,the AZ31B/AA1060 interface exhibits a typical wavy morphology,and a transition zone exists at the joint interface,which may result in an extremely complex microstructure.The microstructure of this transition zone differs from that of AZ31B magnesium and 1060 Al alloys,and it is identified as brittle intermetallic compounds(IMCs)Al_(3)Mg_(2) and Al_(12)Mg_(17).The transition zone is mainly distributed on the Al side,with the maximum thickness of Al-side transition layer reaching approximately 13.53μm.Incomplete melting layers with varying thicknesses are observed at the primary weld interface,while micron-sized hole defects appear in the transition zone of the secondary weld interface.The AA1060/DC56D interface is mainly straight,with only a small number of discontinuous transition zones distributed intermittently along the interface.These transition zones are characterized by the presence of the brittle IMC FeAl_(3),with a maximum thickness of about 4μm. 展开更多
关键词 magnetic pulse welding mechanical properties MICROSTRUCTURE fracture morphology primary and secondary welding
原文传递
Effects of applying manure on soil physical properties and crop yield under long-term saline water irrigation
3
作者 Khadija SHAHID LIU Zimeng +3 位作者 SHAO Liwei NIU Junfang CHEN Suying ZHANG Xiying 《中国生态农业学报(中英文)》 北大核心 2026年第1期103-117,共15页
To maintain soil quality under long-term saline water irrigation,the influence of manure on soil physical properties was examined.Long-term saline irrigation has been conducted from 2015 to 2024 at the Nanpi Eco-Agric... To maintain soil quality under long-term saline water irrigation,the influence of manure on soil physical properties was examined.Long-term saline irrigation has been conducted from 2015 to 2024 at the Nanpi Eco-Agricultural Experimental Station of Chinese Academy Sciences in the Low Plain of the North China Plain,comprising four irrigation treatments:irrigation once at the jointing stage for winter wheat with irrigation water containing salt at fresh water,3,4 and 5 g·L^(–1),and maize irrigation at sowing using fresh water.Manure application was conducted under all irrigation treatments,with treatments without manure application used as controls.The results showed that under long-term irrigation with saline water,the application of manure increased the soil organic matter content,exchangeable potassium,available phosphorus,and total nitrogen content in the 0–20 cm soil layer by 46.8%,117.0%,75.7%,and 45.5%,respectively,compared to treatments without manure application.The application of manure reduced soil bulk density.It also increased the proportion of water-stable aggregates and the abundance of bacteria,fungi,and actinomycetes in the tillage soil layer compared to the controls.Because of the salt contained in the manure,the application of manure had dual effects on soil salt content.During the winter wheat season,manure application increased soil salt content.The salt content was significantly reduced during the summer maize season,owing to the strong salt-leaching effects under manure application,resulting in a smaller difference in salt content between the manure and non-manure treatments.During the summer rainfall season,improvements in soil structure under manure application increased the soil desalination rate for the 1 m top soil layer.The desalination rate for 0–40 cm and 40–100 cm was averagely by 39.1%and 18.9%higher,respectively,under manure application as compared with that under the nomanure treatments.The yield of winter wheat under manure application was 0.12%lower than that of the control,owing to the higher salt content during the winter wheat season.In contrast,the yield of summer maize improved by 3.9%under manure application,owing to the increased soil nutrient content and effective salt leaching.The results of this study indicated that manure application helped maintain the soil physical structure,which is important for the long-term use of saline water.In practice,using manure with a low salt content is suggested to reduce the adverse effects of saline water irrigation on soil properties and achieve sustainable saline water use. 展开更多
关键词 saline water irrigation soil physical properties winter wheat-summer maize double-cropping system soil salinity MANURE
在线阅读 下载PDF
Crystal structure,thermal analysis,and luminescence properties of six heterocyclic lanthanide complexes
4
作者 SONG Zihe ZHAO Jinjin +1 位作者 REN Ning ZHANG Jianjun 《无机化学学报》 北大核心 2026年第1期181-192,共12页
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'... Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6. 展开更多
关键词 lanthanide complexes fluorescence property crystal structure thermal analysis
在线阅读 下载PDF
Effect of Nb Addition on Tensile and Wear Properties of 18Ni300 Mold Steel Fabricated by LPBF
5
作者 Jian Changhuang Yang Yang +5 位作者 Wang Chengyong Yu Bowen Niu Liuhui Hu Gaofeng Liu Jianye Huang Zhenghua 《稀有金属材料与工程》 北大核心 2026年第1期18-26,共9页
Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely us... Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m). 展开更多
关键词 laser powder bed fusion 18Ni300 mold steel Nb addition microstructure mechanical property
原文传递
Effects of CNTs Addition on Microstructure and Properties of Pure Copper Prepared by LPBF
6
作者 Yang Laixia Zhang Longbo +4 位作者 Xie Qidong Zhang Yanze Yang Mengjia Mao Feng Chen Zhen 《稀有金属材料与工程》 北大核心 2026年第1期27-34,共8页
Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the eff... Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the effects of strengthening phases on Cu,Cu-carbon nanotubes(CNTs)composites were prepared using LPBF technique with Cu-CNTs mixed powder as the matrix.The formability,microstructure,mechanical properties,electrical conductivity,and thermal properties were studied.The result shows that the prepared composites have high relative density.The addition of CNTs results in inhomogeneous equiaxed grains at the edges of the molten pool and columnar grains at the center.Compared with pure copper,the overall mechanical properties of the composite are improved:tensile strength increases by 52.8%and elongation increases by 146.4%;the electrical and thermal properties are also enhanced:thermal conductivity increases by 10.8%and electrical conductivity increases by 12.7%. 展开更多
关键词 laser powder bed fusion(LPBF) Cu-CNTs composites mechanical property thermal conductivity
原文传递
First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics
7
作者 Yonggang Tong Kai Yang +5 位作者 Pengfei Li Yongle Hu Xiubing Liang Jian Liu Yejun Li Jingzhong Fang 《Computers, Materials & Continua》 2026年第1期353-367,共15页
(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperatu... (NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials. 展开更多
关键词 High entropy ceramics mechanical properties electronic properties thermodynamic properties
在线阅读 下载PDF
Magnetic Properties and Kondo Effect in Ce_(3)TiBi_(5) under High Pressure
8
作者 L.C.Fu W.J.Cheng +11 位作者 L.C.Shi B.S.Min Y.Peng J.Zhang J.Song Z.Deng J.F.Zhao Y.Liu J.L.Zhu J.F.Zhang X.C.Wang C.Q.Jin 《Chinese Physics Letters》 2026年第1期184-197,共14页
The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) underg... The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure. 展开更多
关键词 magnetic properties resistivity measurements high pressure kondo effect kondo effectthe kondo scattering Ce TbI
原文传递
Effect of Ta addition on microstructure and mechanical properties of Ti46Al1.5Cr8Nb alloy
9
作者 Jiang-shan Liang Liao Mi +4 位作者 Hong-ze Fang Xin Ding Xian-fei Ding Bao-hui Zhu Rui-run Chen 《China Foundry》 2026年第1期37-44,共8页
The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepar... The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepared by vacuum arc melting.The microstructure,mechanical properties,and related influencing mechanisms were systematically investigated.The results indicate that the solidification microstructure of the Ti46Al1.5Cr8Nb-xTa alloys comprises theγ-TiAl phase,α_(2)-Ti_(3)Al phase,and B2 phase.As the Ta content increases from 0.2 at.%to 1.0 at.%,the content ofα_(2)phase and B2 phase increases,while theγphase content decreases.Among them,the B2 phase shows the most pronounced change,being significantly refined,with its content increasing from 12.49%to 21.91%.In addition,the average size of the lamellar colony decreases from 160.65 to 94.44μm.The addition of the Ta element shifts the solidification path toward lower aluminum concentrations,leading to changes in phase content.The tantalum-induced increase in the B2 phase and enhanced supercooling at the solidification front provide the basis for lamellar colony refinement.Compressive testing at room temperature reveals that the Ti46 Al1.5 Cr8 Nb0.4 Ta alloy exhibits optimal compressive properties,achieving a compressive strength of 2,434 MPa and a compressive strain of 33.1%.The improvement of its properties is attributed to a combination of lamellar colony refinement,solid solution strengthening resulting from the incorporation of Ta element,and a reduction in the c/a of theγphase. 展开更多
关键词 TiAl alloy Ta element microstructure mechanical properties lamellar colony
在线阅读 下载PDF
Evolution of microstructure and properties of Cu-12Fe alloys prepared by twin-roll strip casting
10
作者 Tian-mo Wu Yuan-xiang Zhang +3 位作者 Shuai-jie Guo Nuo-jin Wang Jian Kang Guo Yuan 《China Foundry》 2026年第1期73-82,共10页
The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu... The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe. 展开更多
关键词 Cu-Fe alloy twin-roll strip casting MICROSTRUCTURE mechanical properties thermal aging electrical conductivity
在线阅读 下载PDF
Composite descriptor for screening mechanical properties in high-entropy diborides
11
作者 Yong FAN Jin-feng NIE +3 位作者 Jin WANG Zhi-gang DING Wei LIU Yong-hao ZHAO 《Transactions of Nonferrous Metals Society of China》 2026年第1期218-230,共13页
The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron co... The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron concentration−relative electronegativity(VEC−REN)composite descriptor was developed to effectively predict the mechanical properties of HEBs.The results demonstrate that with a fixed VEC,the rise of the REN makes HEBs harder but more brittle when the electronegativity of doped TM atoms is lower than that of boron atoms.However,HEBs become softer and more ductile as REN increases if the doped TM atoms have higher electronegativity than boron atoms.The VEC−REN composite descriptor can accurately classify and predict the mechanical properties of HEBs with different components,which provides important theoretical guidance for the rapid design and development of novel high-entropy ceramic materials. 展开更多
关键词 first-principles high-entropy diborides valence electron concentration relative electronegativity mechanical properties
在线阅读 下载PDF
Electron-Deficient Type Electride Li_(4)Al under High Pressure:Bonding Properties and Superconductivity
12
作者 Daoyuan Zhang Yanliang Wei +3 位作者 Chenlong Xie Yilong Pan Zhao Liu Tian Cui 《Chinese Physics Letters》 2026年第1期142-155,共14页
High-pressure electrides,characterized by the presence of interstitial quasi-atoms(ISQs),possess unique electronic structures and physical properties,such as diverse dimensions of electride states exhibiting different... High-pressure electrides,characterized by the presence of interstitial quasi-atoms(ISQs),possess unique electronic structures and physical properties,such as diverse dimensions of electride states exhibiting different superconductivity,which has attracted significant attention.Here,we report a new electron-deficient type of electride Li_(4)Al and identify its phase transition progress with pressurization,where the internal driving force behind phase transitions,bonding characteristics,and superconducting behaviors have been revealed based on first-principles density functional theory.Through analysis of the bonding properties of electride Li_(4)Al,we demonstrate that the ISQs exhibiting increasingly covalent characteristics between Al ions play a critical role in driving the phase transition.Our electron–phonon coupling calculations indicate that all phases exhibit superconducting behaviors.Importantly,we prove that the ISQs behave as free electrons and demonstrate that the factor governing T_(c) is primarily derived from Li-p-hybridized electronic states with ISQ compositions.These electronic states are scattered by low-frequency phonons arising from mixed vibrations of Li and Al affected by ISQs to enhance electron–phonon coupling.Our study largely expands the research scope of electrides,provides new insight for understanding phase transitions,and elucidates the effects of ISQs on superconducting behavior. 展开更多
关键词 low frequency phonons bonding properties Li Al phase transition electride interstitial quasi atoms SUPERCONDUCTIVITY electron phonon coupling
原文传递
Basic Mechanical Properties and Microstructure of Sustainable Recycled Coral Aggregate Concrete
13
作者 WANG Lei LU Jiahui +5 位作者 ZHANG Jiwang YI Jin ZHU Dexiang HUANG Dongming QIN Yan LI Yajie 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期217-226,共10页
Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of re... Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands. 展开更多
关键词 recycled coral aggregate sustainable concrete mechanical properties MICROSTRUCTURE interfacial transition zone
原文传递
Influence of interface shape on microstructure and mechanical properties of Mg/Al composite plates fabricated by hot-pressing
14
作者 Shi-jun TAN Bo SONG +6 位作者 Hao-hua XU Ting-ting LIU Jia SHE Sheng-feng GUO Xian-hua CHEN Kai-hong ZHENG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 2026年第1期124-143,共20页
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu... A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction. 展开更多
关键词 Mg/Al composite plate interface shape MICROSTRUCTURE mechanical properties TEXTURE
在线阅读 下载PDF
Random State Approach to Quantum Computation of Electronic-Structure Properties
15
作者 Yiran Bai Feng Xiong Xueheng Kuang 《Chinese Physics Letters》 2026年第1期89-104,共16页
Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and v... Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials. 展开更多
关键词 periodic materials random state circuit random state quantum algorithms electronic structure properties density states aperiodic materials quantum algorithms quantum computation
原文传递
Investigation of natural and anthropogenic effects on aerosols optical properties over the Western Pacific ocean by the research vessel KEXUE
16
作者 Jinyuan Xin Yining Ma +6 位作者 Xiangguang Zhang Yongjing Ma Xiaoyan Wu Fangkun Wu Quan Liu Yilong Lyu Jiawei Jiang 《Journal of Environmental Sciences》 2026年第1期596-605,共10页
In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural a... In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences. 展开更多
关键词 Aerosol optical properties Natural and anthropogenic effects Improve algorithm Ship-borne experiment Western Pacific Ocean
原文传递
Morphological characteristics and corresponding functional properties of homeostatic human microglia
17
作者 Pariya Khodabakhsh Olga Garaschuk 《Neural Regeneration Research》 2026年第3期1112-1113,共2页
Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s... Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states. 展开更多
关键词 functional properties multi omics techniques protein expressionposttranslational modificationsmrna profilingand homeostatic human microglia morphological characteristics resident immune cells homeostatic microgliaare protein expression
暂未订购
Influence of minor Sc on microstructure and properties of AA7085 alloy
18
作者 Ting-bin LIANG Hong WANG +8 位作者 Jia-hai LI Zhi-chao YANG Bin WANG De-yu ZHANG Xiang-yi ZHANG Asad ALI Xi-zhou KAI Yu-tao ZHAO Shuang-bao WANG 《Transactions of Nonferrous Metals Society of China》 2026年第1期43-67,共25页
The age-hardening response,mechanical,and corrosion-resistant properties of AA7085 alloys with and without the addition of 0.3 wt.%scandium(Sc)were compared.Using advanced techniques such as aberration-corrected trans... The age-hardening response,mechanical,and corrosion-resistant properties of AA7085 alloys with and without the addition of 0.3 wt.%scandium(Sc)were compared.Using advanced techniques such as aberration-corrected transmission electron microscopy and first-principles calculations,the underlying micromechanisms of Sc microalloying were revealed.Results show that the increase in strength of the AA7085-Sc alloy is mainly attributed to the decreased Al grain size and increased number density of both Al_(3)Sc@Al_(3)(Sc,Zr)core−shell nanoparticles and Sc-containingη_(p) and GP−η_(p) nanoprecipitates.Strong strain fields and evident electron transfer from Zr to the neighboring matrix Al atoms exist at the Al_(3)Sc@Al_(3)(Sc,Zr)/Al interface.The Sc doping in GP−η_(p) andη_(p) suppresses the GP−η_(p)→η_(p) transformation.Modified corrosion resistance of the AA7085-Sc alloy compared with AA7085 alloy is associated with the fine grain boundary precipitates ofη_(p)hases and narrow precipitation free zone.The reasons of property changes of AA7085 alloy after Sc microalloying are explored based on the multiscale microstructural characterization. 展开更多
关键词 7085 aluminum alloy Sc microalloying microstructure PROPERTY transmission electron microscopy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部