Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl...Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks be...Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
The crack initiation and early propagation are of great significance to the overall fatigue life of material.In order to investigate the anisotropic fracture behavior of laser metal deposited Ti-6Al-4V alloy(LMD Ti64)...The crack initiation and early propagation are of great significance to the overall fatigue life of material.In order to investigate the anisotropic fracture behavior of laser metal deposited Ti-6Al-4V alloy(LMD Ti64)during the early stage,the fourpoint bending fatigue test was carried out on specimens of three different directions,as well as the forged specimens.The results indicate the anisotropic crack initiation and early propagation of LMD Ti64.The direction perpendicular to the deposition direction exhibits a better fatigue resistance than the other two.The crack initiation position and propagation path are dominated by the microstructure in the vicinity of U-notch.LMD Ti64 has a typical small crack effect,and the early crack propagation velocities in three directions are similar.Affected by the slip system of LMD Ti64,secondary cracks frequently occur,which are often found to have an angle of 60°to the main crack.The electron backscatter diffraction analysis indicates that LMD Ti64 has preferred orientations,i.e.,strong 0001//Z texture and 001//Z texture.Their crystallographic orientation will change as the direction of columnarβgrains turns over,resulting in the fatigue anisotropy of LMD Ti64 in crack initiation and early crack propagation process.展开更多
Multi-stage and multi-cluster fracturing(MMF)is a crucial technology in unconventional oil and gas development,aiming to enhance production by creating extensive fracture networks.However,achieving uniform expansion o...Multi-stage and multi-cluster fracturing(MMF)is a crucial technology in unconventional oil and gas development,aiming to enhance production by creating extensive fracture networks.However,achieving uniform expansion of multi-cluster hydraulic fractures(HFs)in MMF remains a significant challenge.Field practice has shown that the use of temporary plugging and diversion fracturing(TPDF)can promote the balanced expansion of multi-cluster HFs.This study conducted TPDF experiments using a true triaxial fracturing simulation system setting a horizontal well completion with multi-cluster jetting perforations to investigate the equilibrium initiation and extension of multi-cluster fractures.The influence of key parameters,including cluster spacing,fracturing fluid viscosity,differential stress,and fracturing fluid injection rate,on fracture initiation and propagation was systematically examined.The results indicate that while close-spaced multi-cluster fracturing significantly increases the number of HFs,it also leads to uneven extension of HFs in their propagation.In contrast,TPDF demonstrates effectiveness in mitigating uneven HF extension,increasing the number of HFs,and creating a larger stimulated reservoir volume,ultimately leading to improved oil and gas well productivity.Moreover,under conditions of high differential stress,the differential stress within the formation exerts a stronger guiding effect in HFs,which are more closely aligned with the minimum principal stress.Low-viscosity fluids facilitate rapid and extensive fracture propagation within the rock formation.High-volume fluid injection,on the other hand,more comprehensively fills the formation.Therefore,employing lowviscosity and high-volume fracturing is advantageous for the initiation and extension of multi-cluster HFs.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
The acoustic wave propagation in gas-saturated double-porosity materials composed of a microporous matrix and mesopores with arrays of plate-type resonators is investigated.A macroscopic description,established with t...The acoustic wave propagation in gas-saturated double-porosity materials composed of a microporous matrix and mesopores with arrays of plate-type resonators is investigated.A macroscopic description,established with the two-scale asymptotic homogenization method,evidences the combined effect of inner resonances on the acoustic properties of the respective effective visco-thermal fluid.One type of resonance originates from strong pore-scale fluid-structure interaction,while the other one arises from pressure diffusion.These phenomena respectively cause weakly and highly damped resonances,which are activated by internal momentum or mass sources,and can largely influence,depending on the material's morphology,either the effective fluid's dynamic density,compressibility,or both.We introduce semi-analytical models to illustrate the key effective properties of the studied multiscale metamaterials.The results provide insights for the bottom-up design of multiscale acoustic metamaterials with exotic behaviors,such as the negative,very slow,or supersonic phase velocity,as well as sub-wavelength bandgaps.展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t...Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.展开更多
The approximately 3000 km long Tan-Lu fault zone(TLFZ)in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale.Struc...The approximately 3000 km long Tan-Lu fault zone(TLFZ)in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale.Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block.The Triassic fault zone,with a total length of about 720 km between the Dabie and Sulu orogens,exhibited an apparent sinistral offset of approximately 300 km along the TLFZ.The second stage of sinistral movement occurred in the earliest Late Jurassic,reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay,as well as forming a significant portion of the Dunhua-Mishan fault zone.The third stage of sinistral movement,in the earliest Early Cretaceous,was the most intense strike-slip movement of the Mesozoic,leading to the complete linkage of the TLFZ.This stage included further northward propagation of the southern-middle segment,both southward and northward propagation of the Dunhua-Mishan fault zone,as well as the formation of the entire Yilan-Yitong fault zone.The fourth stage,in the earliest Late Cretaceous,involved the reactivation of the entire TLFZ.Following its Triassic origin due to the indentation collision,the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol-Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous.The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone(>1000 km long)forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagatio...The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagation patterns for two periods:1982-98 and 1999-2019.Our analysis revealed distinct wave train configurations and geopotential anomalies preceding EPEs,with an increase in wave activity flux across the Northern Hemisphere,followed by a subsequent decrease during EPEs.Consequently,Eastern Siberia has experienced a significant rise in wave activity.Based on geopotential anomalies over Central Siberia accompanying EPEs,we identified two main types.The first,the ridge type,is predominant during the first period and features a meridional contrast with a positive geopotential(and temperature)anomaly over Central Siberia and a negative anomaly over the subtropical regions along the same longitude.The second type,termed the trough type,is more typical for the second period.It involves either a negative geopotential anomaly or the zonal proximity of positive and negative geopotential anomalies over Central Siberia.The trough type,marked by zonally oriented anomalies in geopotential and temperature,results in a more pronounced temperature decrease before EPEs and significant zonal temperature contrasts.Further,it is related to more stationary waves over Northern Eurasia,with persistent positive geopotential anomalies over Europe linked to quasi-stationary troughs over Central Siberia and positive anomalies east of Lake Baikal.Our findings align with shifts in boreal summer teleconnection patterns,reflecting significant changes in wave propagation patterns that have occurred since the late 1990s.展开更多
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne...BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.展开更多
Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical model...Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical modeling experiments due to difficulties in reproducing them.This study uses centrifugal hypergravity to simulate both gradients and investigate their effects on fracture propagation.Artificial mortar specimens(ϕ200 mm×400 mm)are fractured under 1g(normal gravity),50g,and 100g.Results show that compared to 1g,fractures under 50g and 100g exhibit increasingly uneven propagation,with higher g-values leading to greater asymmetry.To interpret this,a theoretical analysis based on fracture mechanics is conducted.When the fluid pressure gradient exceeds the stress gradient,a positive net gradient is generated,increasing net pressure at the lower fracture tip.This raises the stress intensity factor at the lower tip,promoting downward growth.As g increases,the disparity becomes more significant,resulting in greater fracture deviation.In conclusion,this study,for the first time,has verified and explained that the net gradient can change the propagation of hydraulic fractures,providing important guidance for wellbore placement under stress gradients.展开更多
Many existing immune detection algorithms rely on a large volume of labeled self-training samples,which are often difficult to obtain in practical scenarios,thus limiting the training of detection models.Furthermore,n...Many existing immune detection algorithms rely on a large volume of labeled self-training samples,which are often difficult to obtain in practical scenarios,thus limiting the training of detection models.Furthermore,noise inherent in the samples can substantially degrade the detection accuracy of these algorithms.To overcome these challenges,we propose an immune generation algorithm that leverages clustering and a rebound mechanism for label propagation(LP-CRI).The dataset is randomly partitioned into multiple subsets,each of which undergoes clustering followed by label propagation and evaluation.The rebound mechanism assesses the model’s performance after propagation and determines whether to revert to its previous state,initiating a subsequent round of propagation to ensure stable and effective training.Experimental results demonstrate that the proposed method is both computationally efficient and easy to train,significantly enhancing detector performance and outperforming traditional immune detection algorithms.展开更多
基金funded by the National Key Research and Development Program of China(No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars(No.51925404)+2 种基金the National Natural Science Foundation of China(No.12372373)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2909)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ134)。
文摘Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金financially supported by,the Fundamental Research Funds for the Central Universities(Grant No.2023QN1064)the China Postdoctoral Science Foundation(Grant No.2023M733772)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB847)。
文摘Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金National Natural Science Foundation of China(12172292,12072287)。
文摘The crack initiation and early propagation are of great significance to the overall fatigue life of material.In order to investigate the anisotropic fracture behavior of laser metal deposited Ti-6Al-4V alloy(LMD Ti64)during the early stage,the fourpoint bending fatigue test was carried out on specimens of three different directions,as well as the forged specimens.The results indicate the anisotropic crack initiation and early propagation of LMD Ti64.The direction perpendicular to the deposition direction exhibits a better fatigue resistance than the other two.The crack initiation position and propagation path are dominated by the microstructure in the vicinity of U-notch.LMD Ti64 has a typical small crack effect,and the early crack propagation velocities in three directions are similar.Affected by the slip system of LMD Ti64,secondary cracks frequently occur,which are often found to have an angle of 60°to the main crack.The electron backscatter diffraction analysis indicates that LMD Ti64 has preferred orientations,i.e.,strong 0001//Z texture and 001//Z texture.Their crystallographic orientation will change as the direction of columnarβgrains turns over,resulting in the fatigue anisotropy of LMD Ti64 in crack initiation and early crack propagation process.
基金funded by the National Natural Science Foundation of China(52104046).
文摘Multi-stage and multi-cluster fracturing(MMF)is a crucial technology in unconventional oil and gas development,aiming to enhance production by creating extensive fracture networks.However,achieving uniform expansion of multi-cluster hydraulic fractures(HFs)in MMF remains a significant challenge.Field practice has shown that the use of temporary plugging and diversion fracturing(TPDF)can promote the balanced expansion of multi-cluster HFs.This study conducted TPDF experiments using a true triaxial fracturing simulation system setting a horizontal well completion with multi-cluster jetting perforations to investigate the equilibrium initiation and extension of multi-cluster fractures.The influence of key parameters,including cluster spacing,fracturing fluid viscosity,differential stress,and fracturing fluid injection rate,on fracture initiation and propagation was systematically examined.The results indicate that while close-spaced multi-cluster fracturing significantly increases the number of HFs,it also leads to uneven extension of HFs in their propagation.In contrast,TPDF demonstrates effectiveness in mitigating uneven HF extension,increasing the number of HFs,and creating a larger stimulated reservoir volume,ultimately leading to improved oil and gas well productivity.Moreover,under conditions of high differential stress,the differential stress within the formation exerts a stronger guiding effect in HFs,which are more closely aligned with the minimum principal stress.Low-viscosity fluids facilitate rapid and extensive fracture propagation within the rock formation.High-volume fluid injection,on the other hand,more comprehensively fills the formation.Therefore,employing lowviscosity and high-volume fracturing is advantageous for the initiation and extension of multi-cluster HFs.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
基金Project supported by the Chilean National Agency for Research and Development(ANID)through Grants ANID FONDECYT Regular(Nos.1211310 and 1250496)ANID Anillo de Tecnologia(No.ACT240015)the Polish National Science Centre(NCN)through Grant Agreement(No.2021/41/B/ST8/04492)。
文摘The acoustic wave propagation in gas-saturated double-porosity materials composed of a microporous matrix and mesopores with arrays of plate-type resonators is investigated.A macroscopic description,established with the two-scale asymptotic homogenization method,evidences the combined effect of inner resonances on the acoustic properties of the respective effective visco-thermal fluid.One type of resonance originates from strong pore-scale fluid-structure interaction,while the other one arises from pressure diffusion.These phenomena respectively cause weakly and highly damped resonances,which are activated by internal momentum or mass sources,and can largely influence,depending on the material's morphology,either the effective fluid's dynamic density,compressibility,or both.We introduce semi-analytical models to illustrate the key effective properties of the studied multiscale metamaterials.The results provide insights for the bottom-up design of multiscale acoustic metamaterials with exotic behaviors,such as the negative,very slow,or supersonic phase velocity,as well as sub-wavelength bandgaps.
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the National Natural Science Foundation of China to Jiping Huang(12035004 and 12320101004)the Innovation Program of the Shanghai Municipal Education Commission to Jiping Huang(2023ZKZD06)+2 种基金the National Natural Science Foundation of China to Ying Li(92163123 and 52250191)the Zhejiang Provincial Natural Science Foundation of China to Ying Li(LZ24A050002)the National Natural Science Foundation of China to Liujun Xu(12375040,12088101,and U2330401).
文摘Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.
基金funded by the Ministry of Science and Technology of the People's Republic of China(Grant 2024ZD1001301)the National Natural Science Foundation of China(Grants 42272241,42102254 and 41830213)the Fundamental Research Funds for the Central Universities(Grant JZ2023HGTB0238).
文摘The approximately 3000 km long Tan-Lu fault zone(TLFZ)in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale.Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block.The Triassic fault zone,with a total length of about 720 km between the Dabie and Sulu orogens,exhibited an apparent sinistral offset of approximately 300 km along the TLFZ.The second stage of sinistral movement occurred in the earliest Late Jurassic,reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay,as well as forming a significant portion of the Dunhua-Mishan fault zone.The third stage of sinistral movement,in the earliest Early Cretaceous,was the most intense strike-slip movement of the Mesozoic,leading to the complete linkage of the TLFZ.This stage included further northward propagation of the southern-middle segment,both southward and northward propagation of the Dunhua-Mishan fault zone,as well as the formation of the entire Yilan-Yitong fault zone.The fourth stage,in the earliest Late Cretaceous,involved the reactivation of the entire TLFZ.Following its Triassic origin due to the indentation collision,the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol-Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous.The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone(>1000 km long)forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.
文摘The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagation patterns for two periods:1982-98 and 1999-2019.Our analysis revealed distinct wave train configurations and geopotential anomalies preceding EPEs,with an increase in wave activity flux across the Northern Hemisphere,followed by a subsequent decrease during EPEs.Consequently,Eastern Siberia has experienced a significant rise in wave activity.Based on geopotential anomalies over Central Siberia accompanying EPEs,we identified two main types.The first,the ridge type,is predominant during the first period and features a meridional contrast with a positive geopotential(and temperature)anomaly over Central Siberia and a negative anomaly over the subtropical regions along the same longitude.The second type,termed the trough type,is more typical for the second period.It involves either a negative geopotential anomaly or the zonal proximity of positive and negative geopotential anomalies over Central Siberia.The trough type,marked by zonally oriented anomalies in geopotential and temperature,results in a more pronounced temperature decrease before EPEs and significant zonal temperature contrasts.Further,it is related to more stationary waves over Northern Eurasia,with persistent positive geopotential anomalies over Europe linked to quasi-stationary troughs over Central Siberia and positive anomalies east of Lake Baikal.Our findings align with shifts in boreal summer teleconnection patterns,reflecting significant changes in wave propagation patterns that have occurred since the late 1990s.
基金Supported by the 2022 Provincial Quality Engineering Project for Higher Education Institutions,No.2022sx031the 2023 Provincial Quality Engineering Project for Higher Education Institutions,No.2023jyxm1071.
文摘BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.
基金supports of Basic Science Center Program for Multiphase Evolution in Hyper-gravity of the National Natural Science Foundation of China(No.51988101)National Natural Science Foundation of China(Nos.52109138 and 52122403)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical modeling experiments due to difficulties in reproducing them.This study uses centrifugal hypergravity to simulate both gradients and investigate their effects on fracture propagation.Artificial mortar specimens(ϕ200 mm×400 mm)are fractured under 1g(normal gravity),50g,and 100g.Results show that compared to 1g,fractures under 50g and 100g exhibit increasingly uneven propagation,with higher g-values leading to greater asymmetry.To interpret this,a theoretical analysis based on fracture mechanics is conducted.When the fluid pressure gradient exceeds the stress gradient,a positive net gradient is generated,increasing net pressure at the lower fracture tip.This raises the stress intensity factor at the lower tip,promoting downward growth.As g increases,the disparity becomes more significant,resulting in greater fracture deviation.In conclusion,this study,for the first time,has verified and explained that the net gradient can change the propagation of hydraulic fractures,providing important guidance for wellbore placement under stress gradients.
基金granted by Key Project of Beijing Municipal Social Science Foundation(No.15ZHA004)Key Project of Beijing Municipal Social Science Foundation and Beijing Municipal Education Commission Social Science Program(No.SZ20231123202).
文摘Many existing immune detection algorithms rely on a large volume of labeled self-training samples,which are often difficult to obtain in practical scenarios,thus limiting the training of detection models.Furthermore,noise inherent in the samples can substantially degrade the detection accuracy of these algorithms.To overcome these challenges,we propose an immune generation algorithm that leverages clustering and a rebound mechanism for label propagation(LP-CRI).The dataset is randomly partitioned into multiple subsets,each of which undergoes clustering followed by label propagation and evaluation.The rebound mechanism assesses the model’s performance after propagation and determines whether to revert to its previous state,initiating a subsequent round of propagation to ensure stable and effective training.Experimental results demonstrate that the proposed method is both computationally efficient and easy to train,significantly enhancing detector performance and outperforming traditional immune detection algorithms.