期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
Select-and-Answer Prompting:Facilitating LLMs for Improving Zero-Shot Reasoning
1
作者 WANG Yufang TANG Xuesong HAO Kuangrong 《Journal of Donghua University(English Edition)》 2025年第5期513-522,共10页
Large language models(LLMs)have demonstrated remarkable generalization abilities across multiple tasks in natural language processing(NLP).For multi-step reasoning tasks,chain-of-thought(CoT)prompting facilitates step... Large language models(LLMs)have demonstrated remarkable generalization abilities across multiple tasks in natural language processing(NLP).For multi-step reasoning tasks,chain-of-thought(CoT)prompting facilitates step-by-step thinking,leading to improved performance.However,despite significant advancements in LLMs,current CoT prompting performs suboptimally on smaller-scale models that have fewer parameters.Additionally,the common paradigm of few-shot CoT prompting relies on a set of manual demonstrations,with performance contingent on the quality of these annotations and varying with task-specific requirements.To address these limitations,we propose a select-and-answer prompting method(SAP)to enhance language model performance on reasoning tasks without the need for manual demonstrations.This method comprises two primary steps:guiding the model to conduct preliminary analysis and generate several candidate answers based on the prompting;allowing the model to provide final answers derived from these candidate answers.The proposed prompting strategy is evaluated across two language models of varying sizes and six datasets.On ChatGLM-6B,SAP consistently outperforms few-shot CoT across all datasets.For GPT-3.5,SAP achieves comparable performance to few-shot CoT and outperforms zero-shot CoT in most cases.These experimental results indicate that SAP can significantly improve the accuracy of language models in reasoning tasks. 展开更多
关键词 zero-shot learning large language model(LLM) reasoning problem chain-of-thought(CoT)prompting
在线阅读 下载PDF
Prompting High-tech Industrialization through Mechanism Innovation
2
《Bulletin of the Chinese Academy of Sciences》 2002年第2期72-72,共1页
With the further implementation of the knowledge innovation program (KIP), piloted by the Chinese Academy of Sciences (CAS), encouraging progress has been made in contributing to the development of the country's h... With the further implementation of the knowledge innovation program (KIP), piloted by the Chinese Academy of Sciences (CAS), encouraging progress has been made in contributing to the development of the country's high-tech industry, and forging S&T cooperation with local governments and industrial sectors. This was revealed at the Second CAS Conference on High-tech Industrialization April 25 - 29 in Shenzhen, Guangdong Province. 展开更多
关键词 prompting High-tech Industrialization through Mechanism Innovation CAS
在线阅读 下载PDF
Dynamic prompting class distribution optimization for semi-supervised sound event detection
3
作者 Lijian GAO Qing ZHU +2 位作者 Yaxin SHEN Qirong MAO Yongzhao ZHAN 《Frontiers of Information Technology & Electronic Engineering》 2025年第4期556-567,共12页
Semi-supervised sound event detection(SSED)tasks typically leverage a large amount of unlabeled and synthetic data to facilitate model generalization during training,reducing overfitting on a limited set of labeled da... Semi-supervised sound event detection(SSED)tasks typically leverage a large amount of unlabeled and synthetic data to facilitate model generalization during training,reducing overfitting on a limited set of labeled data.However,the generalization training process often encounters challenges from noisy interference introduced by pseudo-labels or domain knowledge gaps.To alleviate noisy interference in class distribution learning,we propose an efficient semi-supervised class distribution learning method through dynamic prompt tuning,named prompting class distribution optimization(PADO).Specifically,when modeling real labeled data,PADO dynamically incorporates independent learnable prompt tokens to explore prior knowledge about the true distribution.Then,the prior knowledge serves as prompt information,dynamically interacting with the posterior noisy-class distribution information.In this case,PADO achieves class distribution optimization while maintaining model generalization,leading to a significant improvement in the efficiency of class distribution learning.Compared with state-of-the-art methods on the SSED datasets from DCASE 2019,2020,and 2021 challenges,PADO achieves significant performance improvements.Furthermore,it is readily extendable to other benchmark models. 展开更多
关键词 Prompt tuning Class distribution learning Semi-supervised learning Sound event detection
原文传递
Prompting Large Language Models for Automatic Question Tagging
4
作者 Nuojia Xu Dizhan Xue +2 位作者 Shengsheng Qian Quan Fang Jun Hu 《Machine Intelligence Research》 2025年第5期917-928,共12页
Automatic question tagging(AQT)represents a crucial task in community question answering(CQA)websites.Its pivotal role lies in substantially augmenting user experience through the optimization of question-answering ef... Automatic question tagging(AQT)represents a crucial task in community question answering(CQA)websites.Its pivotal role lies in substantially augmenting user experience through the optimization of question-answering efficiency.Existing question tagging models focus on the features of questions and tags,ignoring the external knowledge of the real world.Large language models can work as knowledge engines for incorporating real-world facts for different tasks.However,it is difficult for large language models to output tags in the database of CQA websites.To address this challenge,we propose a large language model enhanced question tagging method called LLMEQT to perform the question tagging task.In LLMEQT,a traditional question tagging method is first applied to pre-retrieve tags for questions.Then prompts are formulated for LLMs to comprehend the task and select more suitable tags from the candidate tags for questions.Results of our experiments on two real-world datasets demonstrate that LLMEQT significantly enhances the automatic question tagging performance for CQA,surpassing the performance of state-of-the-art methods. 展开更多
关键词 Community question answering machine learning large language model prompt learning question tagging
原文传递
A Communication Theory Perspective on Prompting Engineering Methods for Large Language Models 被引量:1
5
作者 Yuan-Feng Song Yuan-Qin He +4 位作者 Xue-Fang Zhao Han-Lin Gu Di Jiang Hai-Jun Yang Li-Xin Fan 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第4期984-1004,共21页
The springing up of large language models(LLMs)has shifted the community from single-task-orientated natural language processing(NLP)research to a holistic end-to-end multi-task learning paradigm.Along this line of re... The springing up of large language models(LLMs)has shifted the community from single-task-orientated natural language processing(NLP)research to a holistic end-to-end multi-task learning paradigm.Along this line of research endeavors in the area,LLM-based prompting methods have attracted much attention,partially due to the technological advantages brought by prompt engineering(PE)as well as the underlying NLP principles disclosed by various prompting methods.Traditional supervised learning usually requires training a model based on labeled data and then making predictions.In contrast,PE methods directly use the powerful capabilities of existing LLMs(e.g.,GPT-3 and GPT-4)via composing appropriate prompts,especially under few-shot or zero-shot scenarios.Facing the abundance of studies related to the prompting and the ever-evolving nature of this field,this article aims to 1)illustrate a novel perspective to review existing PE methods within the well-established communication theory framework,2)facilitate a better/deeper understanding of developing trends of existing PE methods used in three typical tasks,and 3)shed light on promising research directions for future PE methods. 展开更多
关键词 prompting method large language model communication theory
原文传递
VAGen:waterbody segmentation with prompting for visual in‑context learning
6
作者 Jiapei Zhao Nobuyoshi Yabuki Tomohiro Fukuda 《AI in Civil Engineering》 2024年第1期1-20,共20页
Effective water management and flood prevention are critical challenges encountered by both urban and rural areas,necessitating precise and prompt monitoring of waterbodies.As a fundamental step in the monitoring proc... Effective water management and flood prevention are critical challenges encountered by both urban and rural areas,necessitating precise and prompt monitoring of waterbodies.As a fundamental step in the monitoring process,waterbody segmentation involves precisely delineating waterbody boundaries from imagery.Previous research using satellite images often lacks the resolution and contextual detail needed for local-scale analysis.In response to these challenges,this study seeks to address them by leveraging common natural images that are more easily accessible and provide higher resolution and more contextual information compared to satellite images.However,the segmentation of waterbodies from ordinary images faces several obstacles,including variations in lighting,occlusions from objects like trees and buildings,and reflections on the water surface,all of which can mislead algorithms.Additionally,the diverse shapes and textures of waterbodies,alongside complex backgrounds,further complicate this task.While large-scale vision models have typically been leveraged for their generalizability across various downstream tasks that are pre-trained on large datasets,their application to waterbody segmentation from ground-level images remains underexplored.Hence,this research proposed the Visual Aquatic Generalist(VAGen)as a countermeasure.Being a lightweight model for waterbody segmentation inspired by visual In-Context Learning(ICL)and Visual Prompting(VP),VAGen refines large visual models by innovatively adding learnable perturbations to enhance the quality of prompts in ICL.As demonstrated by the experimental results,VAGen demonstrated a significant increase in the mean Intersection over Union(mIoU)metric,showing a 22.38%enhancement when compared to the baseline model that lacked the integration of learnable prompts.Moreover,VAGen surpassed the current stateof-the-art(SOTA)task-specific models designed for waterbody segmentation by 6.20%.The performance evaluation and analysis of VAGen indicated its capacity to substantially reduce the number of trainable parameters and computational overhead,and proved its feasibility to be deployed on cost-limited devices including unmanned aerial vehicles(UAVs)and mobile computing platforms.This study thereby makes a valuable contribution to the field of computer vision,offering practical solutions for engineering applications related to urban flood monitoring,agricultural water resource management,and environmental conservation efforts. 展开更多
关键词 Visual in-context learning Visual prompting Vision foundation model Parameter-efficient fine-tuning Waterbody segmentation Deep learning
原文传递
CLIP-SP:Vision-language model with adaptive prompting for scene parsing
7
作者 Jiaao Li Yixiang Huang +3 位作者 Ming Wu Bin Zhang Xu Ji Chuang Zhang 《Computational Visual Media》 SCIE EI CSCD 2024年第4期741-752,共12页
We present a novel framework,CLIPSP,and a novel adaptive prompt method to leverage pre-trained knowledge from CLIP for scene parsing.Our approach addresses the limitations of DenseCLIP,which demonstrates the superior ... We present a novel framework,CLIPSP,and a novel adaptive prompt method to leverage pre-trained knowledge from CLIP for scene parsing.Our approach addresses the limitations of DenseCLIP,which demonstrates the superior image segmentation provided by CLIP pre-trained models over ImageNet pre-trained models,but struggles with rough pixel-text score maps for complex scene parsing.We argue that,as they contain all textual information in a dataset,the pixel-text score maps,i.e.,dense prompts,are inevitably mixed with noise.To overcome this challenge,we propose a two-step method.Firstly,we extract visual and language features and perform multi-label classification to identify the most likely categories in the input images.Secondly,based on the top-k categories and confidence scores,our method generates scene tokens which can be treated as adaptive prompts for implicit modeling of scenes,and incorporates them into the visual features fed into the decoder for segmentation.Our method imposes a constraint on prompts and suppresses the probability of irrelevant categories appearing in the scene parsing results.Our method achieves competitive performance,limited by the available visual-language pre-trained models.Our CLIP-SP performs 1.14%better(in terms of mIoU)than DenseCLIP on ADE20K,using a ResNet-50 backbone. 展开更多
关键词 visual-language pre-trained model scene parsing adaptive prompt
原文传递
Masked Generative Light Field Prompting for Pixel-Level Structure Segmentations
8
作者 Mianzhao Wang Fan Shi +1 位作者 Xu Cheng Shengyong Chen 《Research》 CSCD 2024年第4期533-544,共12页
Pixel-level structure segmentations have attracted considerable attention,playing a crucial role in autonomous driving within the metaverse and enhancing comprehension in light field-based machine vision.However,curre... Pixel-level structure segmentations have attracted considerable attention,playing a crucial role in autonomous driving within the metaverse and enhancing comprehension in light field-based machine vision.However,current light field modeling methods fail to integrate appearance and geometric structural information into a coherent semantic space,thereby limiting the capability of light field transmission for visual knowledge.In this paper,we propose a general light field modeling method for pixel-level structure segmentation,comprising a generative light field prompting encoder(LF-GPE)and a prompt-based masked light field pretraining(LF-PMP)network.Our LF-GPE,serving as a light field backbone,can extract both appearance and geometric structural cues simultaneously.It aligns these features into a unified visual space,facilitating semantic interaction.Meanwhile,our LF-PMP,during the pretraining phase,integrates a mixed light field and a multi-view light field reconstruction.It prioritizes considering the geometric structural properties of the light field,enabling the light field backbone to accumulate a wealth of prior knowledge.We evaluate our pretrained LF-GPE on two downstream tasks:light field salient object detection and semantic segmentation.Experimental results demonstrate that LF-GPE can effectively learn high-quality light field features and achieve highly competitive performance in pixel-level segmentation tasks. 展开更多
关键词 PROMPT BACKBONE INTEGRATE
原文传递
AIGC动画创作中结构化Prompt工程与人工创意主导的协同机制研究
9
作者 林惠清 欧振武 《产业创新研究》 2025年第22期52-54,共3页
本文重在探索动画创作中人工创意与人工智能生成(AI-Generated Content,AIGC)技术的协同机制。实践表明,AIGC在文本创意阶段发挥着参照系与迭代加速器的功能,即通过Prompt生成剧本初稿并提供多维度评估,辅助创作者识别角色塑造薄弱、文... 本文重在探索动画创作中人工创意与人工智能生成(AI-Generated Content,AIGC)技术的协同机制。实践表明,AIGC在文本创意阶段发挥着参照系与迭代加速器的功能,即通过Prompt生成剧本初稿并提供多维度评估,辅助创作者识别角色塑造薄弱、文化表达浅层化等关键问题;而人工创意则主导文化内涵深度挖掘、情感共鸣构建与独特风格重塑,通过实地研学体验注入AI不可替代的人文视角。在动画生成层面,提出结构化Prompt工程框架:人工通过模块化设计,构建初始指令,以细节融合Prompt技术,突破风格同质化;同时运用“关键帧人工精控+AI插帧补间”策略,使初级创作者聚焦核心创意。最终确立“人类构想驱动技术实现”原则,即AIGC作为创意增强体,其价值实现依赖于人工构建的审美判断体系、原创保障机制及动态调试能力,二者形成深度耦合的创作共同体。 展开更多
关键词 人工创意主导 AIGC协同 Prompt工程
在线阅读 下载PDF
基于大语言模型的矿山事故知识图谱构建 被引量:3
10
作者 张朋杨 生龙 +2 位作者 王巍 魏忠诚 赵继军 《工矿自动化》 北大核心 2025年第2期76-83,105,共9页
现有矿山领域知识图谱构建方法在预训练阶段需要大量人工标注的高质量监督数据,人力成本高且效率低。大语言模型(LLM)可在少量人工标注的高质量数据下显著提高信息抽取的质量且效率较高,然而LLM结合Prompt的方法会产生灾难性遗忘问题。... 现有矿山领域知识图谱构建方法在预训练阶段需要大量人工标注的高质量监督数据,人力成本高且效率低。大语言模型(LLM)可在少量人工标注的高质量数据下显著提高信息抽取的质量且效率较高,然而LLM结合Prompt的方法会产生灾难性遗忘问题。针对上述问题,将图结构信息嵌入到Prompt模板中,提出了图结构Prompt,通过在LLM上嵌入图结构Prompt,实现基于LLM的矿山事故知识图谱高质量构建。首先,收集煤矿安全生产网公开的矿山事故报告并进行格式修正、冗余信息剔除等预处理。其次,利用LLM挖掘矿山事故报告文本中蕴含的知识,对矿山事故报告文本中的实体及实体间关系进行K−means聚类,完成矿山事故本体构建。然后,依据构建的本体进行少量数据标注,标注数据用于LLM的学习与微调。最后,采用嵌入图结构Prompt的LLM进行信息抽取,实例化实体关系三元组,从而构建矿山事故知识图谱。实验结果表明:在实体抽取和关系抽取任务中,LLM的表现优于通用信息抽取(UIE)模型,且嵌入图结构Prompt的LLM在精确率、召回率、F1值方面均高于未嵌入图结构Prompt的LLM。 展开更多
关键词 矿山事故 知识图谱 大语言模型 图结构Prompt 本体构建 信息抽取
在线阅读 下载PDF
从指令到结果:与DeepSeek高效互动
11
作者 付跃安 《师道(人文)》 2025年第9期6-7,共2页
作为国内大模型的典型代表,Deep Seek的有效应用离不开使用者对AI互动技巧的掌握,本文以Deep Seek(R1)为例,总结作者在使用Deep Seek中积累的经验,供广大读者参考。一、高效提问技巧1.构造高质量提示语对大模型的提问只有具体、清晰,大... 作为国内大模型的典型代表,Deep Seek的有效应用离不开使用者对AI互动技巧的掌握,本文以Deep Seek(R1)为例,总结作者在使用Deep Seek中积累的经验,供广大读者参考。一、高效提问技巧1.构造高质量提示语对大模型的提问只有具体、清晰,大模型才能给出满意的答复。提示语构造已经形成专门的领域——提示工程,并发展出多种提示构造方式,如COSTAR框架(情境、输出格式、要求和约束、任务示例、补充信息、限制条件)、PROMPT框架(角色、切中要点、输出目标、使命、具体要求、语气/目标对象)、CLEAR模型(简洁、逻辑、明确、适应、反思)等。 展开更多
关键词 DeepSeek 结果 指令 COSTAR框架 PROMPT框架 高效互动 提示工程
在线阅读 下载PDF
融合BERTopic和Prompt的学者研究兴趣生成模型——以计算机科学领域为例 被引量:1
12
作者 李豪 张柏苑 +3 位作者 邵蝶语 杨婧 杨波 石燕青 《情报科学》 北大核心 2025年第1期127-136,160,共11页
【目的/意义】学者研究兴趣是学者画像的关键特征,本研究通过识别学者研究兴趣的变化过程,能够帮助补齐学术履历,对构建完整的学者画像以及面向前沿需求的精准人才发现具有重要意义。【方法/过程】构建计算机科学领域论文文本语料库,训... 【目的/意义】学者研究兴趣是学者画像的关键特征,本研究通过识别学者研究兴趣的变化过程,能够帮助补齐学术履历,对构建完整的学者画像以及面向前沿需求的精准人才发现具有重要意义。【方法/过程】构建计算机科学领域论文文本语料库,训练BERTopic主题模型,进行领域研究主题挖掘和学者研究兴趣特征识别。创建Prompt,利用LLM进行主题词提取,结合主题模型分析结果,进行学者研究兴趣描述。【结果/结论】对于学者研究兴趣描述任务,相较基准模型,融合模型的ROUGE得分平均相对提升8.2%,BERTScore得分相对提升4.5%。通过层次分析法发现,BERTopic与LLM融合模型的学者研究兴趣识别效果优于其他评测模型,模型人工评测满意度达到81.4%。【创新/局限】所构建模型能够更好地识别学者研究主题,生成的学者研究兴趣描述文本质量较高。使用的语料库内中文语料占比较大,模型对外文成果的识别能力欠佳。 展开更多
关键词 研究主题挖掘 研究兴趣描述 BERTopic PROMPT LLM
原文传递
基于中国生肖文化基因的IP形象智能生成设计方法研究 被引量:5
13
作者 林茂丛 米高峰 《包装工程》 北大核心 2025年第2期238-250,共13页
目的 为实现中国生肖文化遗产的数字化保护与可持续设计创新,提出基于文化基因分析,以Prompt权重计算调控IP形象呈现的智能生成设计方法。方法 结合深度学习技术与文化基因理论,以层次分析法计算生肖IP形象智能生成设计的Prompt权重,并... 目的 为实现中国生肖文化遗产的数字化保护与可持续设计创新,提出基于文化基因分析,以Prompt权重计算调控IP形象呈现的智能生成设计方法。方法 结合深度学习技术与文化基因理论,以层次分析法计算生肖IP形象智能生成设计的Prompt权重,并根据优先级融入Midjourney图像生成过程,通过分组实验进行模糊综合评价检验效果。结果 该方法在智能生成设计中高效、有导向性地调节了生肖IP形象的视觉表征,使其符合文化内涵并具备系列感。结论 在使用智能生成设计工具时,应强调人机协同与专业把控。基于对生肖文化中“主体性”“间体性”与“时代性”基因的分析,创作者能够更精准地对Prompt排序及表述进行优化,以调控生肖IP形象智能生成设计结果,在新时代助力珍贵民俗文化的活态传承、永续发展。 展开更多
关键词 生肖文化基因 IP形象 智能生成设计 Prompt权重计算 层次分析法(AHP)
在线阅读 下载PDF
基于多提示学习的方面类别情感分析方法
14
作者 刘锦行 李琳 +1 位作者 吴任伟 刘佳 《计算机科学与探索》 北大核心 2025年第5期1334-1341,共8页
基于方面类别的情感分析(ACSA)旨在辨别评论文本中的方面类别,并同时预测它们的情感极性,是情感分析领域重要的细粒度子任务。近年来,基于预训练语言模型的微调(Fine-tuning)方法已经为方面类别情感分析提供了有效的解决思路。然而,由... 基于方面类别的情感分析(ACSA)旨在辨别评论文本中的方面类别,并同时预测它们的情感极性,是情感分析领域重要的细粒度子任务。近年来,基于预训练语言模型的微调(Fine-tuning)方法已经为方面类别情感分析提供了有效的解决思路。然而,由于预训练任务和下游情感分类任务目标不一致,影响了情感分析质量提升的空间。目前基于提示模板的提示学习(Prompt learning)能够对其进行相应缓解,但人工设计单一的Prompt文本为ACSA任务提供的上下文有限,缺少丰富性。针对此问题,提出了一种基于提示学习的方面类别情感分析方法(MultiPrompt_ACSA)。在提示学习的基础上进行了提示模板工程和答案工程的多样化设计,结合ACSA的研究特点,提出了适配方面类别情感分析的提示学习方法。引入自回归预训练语言模型进行训练。基于Prompt的多样化设计集成多个不同提示模板下的情感分类结果。与其他模型(非预训练、预训练和提示学习三个类别)在SemEval 2015和SemEval 2016数据集上的结果相比,提出的方法在F1指标上有良好的效果提升。 展开更多
关键词 方面类别情感分析 提示学习 Prompt多样化设计
在线阅读 下载PDF
基于Prompt打分的实体链接方法
15
作者 郭俊辰 马御棠 +2 位作者 相艳 赵学东 郭军军 《计算机工程》 北大核心 2025年第3期334-341,共8页
实体链接旨在将自然语言文本中的提及链接到知识库中相应的目标实体,主要面临提及和候选实体的表征能力有限,导致候选实体精确排序困难的问题,而现有的知识库扩展和图嵌入等提高表征能力的方法依赖外部数据或知识,限制了其应用。提出一... 实体链接旨在将自然语言文本中的提及链接到知识库中相应的目标实体,主要面临提及和候选实体的表征能力有限,导致候选实体精确排序困难的问题,而现有的知识库扩展和图嵌入等提高表征能力的方法依赖外部数据或知识,限制了其应用。提出一种实体链接中提及和候选实体精确排序的方法,通过结合提及上下文构建prompt问句,将提及和候选实体相似度计算转化为基于prompt问句的打分模式。通过预训练模型微调打分器,得到提及和候选实体相似度的打分,并综合候选实体发现阶段的得分,以筛选出更准确的目标实体。这一过程无需额外的知识,能够融合上下文信息,从而更准确地衡量提及和实体之间的相似度。在两个公共数据集上将该模型与基线模型进行实验比较,结果表明,相比次优模型,该模型Acc@1值分别提升了0.88和0.41百分点。 展开更多
关键词 实体链接 prompt问句 预训练模型 实体消歧 精确排序
在线阅读 下载PDF
融合大模型与图嵌入模型的领域知识图谱补全研究——以生物医学为例
16
作者 张君冬 严颖 +3 位作者 王震宇 刘江峰 刘艳华 黄奇 《现代情报》 北大核心 2025年第10期39-50,共12页
[目的/意义]为提高领域知识图谱补全性能,解决现有图嵌入模型“语义理解不足”和大模型“生成偏差及计算资源浪费”并存的挑战,本文提出了一种融合大模型与图嵌入模型的领域知识图谱补全框架。[方法/过程]首先,对开源大模型进行领域语... [目的/意义]为提高领域知识图谱补全性能,解决现有图嵌入模型“语义理解不足”和大模型“生成偏差及计算资源浪费”并存的挑战,本文提出了一种融合大模型与图嵌入模型的领域知识图谱补全框架。[方法/过程]首先,对开源大模型进行领域语料的深度预训练,增强大模型在知识图谱补全时对领域术语的理解力;其次,通过传统图嵌入模型在知识图谱已有结构的基础上生成候选关系或实体,为后续利用大模型进行知识图谱补全提供高质量候选集;第三,基于不同Prompt提示词策略引导前期训练完成的领域大模型完成候选项的排序,实现知识图谱的高效补全;最后,以生物医学领域现有数据集开展实证研究,验证其可行性。[结果/结论]实验结果表明,本研究提出的方法在多个评价指标上效果显著,可为后续领域知识图谱补全提供新的思路与技术手段。 展开更多
关键词 知识图谱 大语言模型 知识图谱补全 图嵌入模型 Prompt提示词
在线阅读 下载PDF
基于Chinese-CLIP模型和Prompt提示机制的图文检索方法 被引量:1
17
作者 陈道彬 张子诺 +2 位作者 付裕彬 黎晋铭 林彬 《现代信息科技》 2025年第6期130-134,共5页
为提升图像文本匹配任务的准确率,提出了一种基于Chinese-CLIP模型和Prompt提示机制的图文检索方法。一方面,对文本数据进行预处理,去除停用词和标点符号后,利用BERT模型提取文本特征;另一方面,使用卷积神经网络提取图像特征,并将得到... 为提升图像文本匹配任务的准确率,提出了一种基于Chinese-CLIP模型和Prompt提示机制的图文检索方法。一方面,对文本数据进行预处理,去除停用词和标点符号后,利用BERT模型提取文本特征;另一方面,使用卷积神经网络提取图像特征,并将得到的文本与图像特征进行序列化,以实现多模态特征融合。模型训练时,先使用Chinese-CLIP大模型进行初步训练,再引入Prompt提示机制对模型进行微调。实验结果表明,所提方法在文搜图和图搜文两个任务上均有效地提升了准确率与召回率。 展开更多
关键词 图文检索 多模态特征融合 Chinese-CLIP模型 Prompt提示机制
在线阅读 下载PDF
Adversarial Prompt Detection in Large Language Models:A Classification-Driven Approach
18
作者 Ahmet Emre Ergün Aytug Onan 《Computers, Materials & Continua》 2025年第6期4855-4877,共23页
Large Language Models(LLMs)have significantly advanced human-computer interaction by improving natural language understanding and generation.However,their vulnerability to adversarial prompts–carefully designed input... Large Language Models(LLMs)have significantly advanced human-computer interaction by improving natural language understanding and generation.However,their vulnerability to adversarial prompts–carefully designed inputs that manipulate model outputs–presents substantial challenges.This paper introduces a classification-based approach to detect adversarial prompts by utilizing both prompt features and prompt response features.Elevenmachine learning models were evaluated based on key metrics such as accuracy,precision,recall,and F1-score.The results show that the Convolutional Neural Network–Long Short-Term Memory(CNN-LSTM)cascade model delivers the best performance,especially when using prompt features,achieving an accuracy of over 97%in all adversarial scenarios.Furthermore,the Support Vector Machine(SVM)model performed best with prompt response features,particularly excelling in prompt type classification tasks.Classification results revealed that certain types of adversarial attacks,such as“Word Level”and“Adversarial Prefix”,were particularly difficult to detect,as indicated by their low recall and F1-scores.These findings suggest that more subtle manipulations can evade detection mechanisms.In contrast,attacks like“Sentence Level”and“Adversarial Insertion”were easier to identify,due to the model’s effectiveness in recognizing inserted content.Natural Language Processing(NLP)techniques played a critical role by enabling the extraction of semantic and syntactic features from both prompts and their corresponding responses.These insights highlight the importance of combining traditional and deep learning approaches,along with advanced NLP techniques,to build more reliable adversarial prompt detection systems for LLMs. 展开更多
关键词 LLM CLASSIFICATION NLP adversarial PROMPT machine learning deep learning
在线阅读 下载PDF
Integrating Speech-to-Text for Image Generation Using Generative Adversarial Networks
19
作者 Smita Mahajan Shilpa Gite +5 位作者 Biswajeet Pradhan Abdullah Alamri Shaunak Inamdar Deva Shriyansh Akshat Ashish Shah Shruti Agarwal 《Computer Modeling in Engineering & Sciences》 2025年第5期2001-2026,共26页
The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper... The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper proposes an architecture that integrates speech prompts as input to image-generation Generative Adversarial Networks(GANs)model,leveraging Speech-to-Text translation along with the CLIP+VQGAN model.The proposed method involves translating speech prompts into text,which is then used by the Contrastive Language-Image Pretraining(CLIP)+Vector Quantized Generative Adversarial Network(VQGAN)model to generate images.This paper outlines the steps required to implement such a model and describes in detail the methods used for evaluating the model.The GAN model successfully generates artwork from descriptions using speech and text prompts.Experimental outcomes of synthesized images demonstrate that the proposed methodology can produce beautiful abstract visuals containing elements from the input prompts.The model achieved a Frechet Inception Distance(FID)score of 28.75,showcasing its capability to produce high-quality and diverse images.The proposed model can find numerous applications in educational,artistic,and design spaces due to its ability to generate images using speech and the distinct abstract artistry of the output images.This capability is demonstrated by giving the model out-of-the-box prompts to generate never-before-seen images with plausible realistic qualities. 展开更多
关键词 Generative adversarial networks speech-to-image translation visualization transformers prompt engineering
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部