Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass n...Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass network to form QD glass can significantly improve their stability.However,the dense glass network degrades their luminescent performance.In this work,the crystallization behavior of PQDs in glass and better luminescence properties are prompted by introducing titanium dioxide into borosilicate glass.The luminescence intensity of TiO_(2)-doped CsPbBr_(3)QD glass is increased by 1.6 times and the PLQY is increased from 49.8%to 79%compared to the undoped glass.Evidence proves that the improved prop-erties are attributed to the enhanced nucleation effect of titanium dioxide during the annealing process.Benefiting from the densification of the glass network caused by titanium dioxide doping,the stability of the PQD glass is further improved.LED devices with an ultra-wide color gamut that fully covers the NTSC1953 standard and achieves 128.6%of the NTSC1953 standard as well as 91.1%of the Rec.2020 stan-dard were fabricated by coupling PQD glass powder,demonstrating promising commercial applications of PQD glass in optoelectronic displays.展开更多
BrCF2CF2CH=CHCH2X(x=Cl, OAc, OH) reacted smoothly with alkynes in the presence of BrCo(dmgh)2Py/Zn, giving 4,4,5,5-tetrafluorocyclopentene derivatives in moderate yields.
Carbon dioxide(CO_(2) ) capture and conversion is the key route for the mitigation of the greenhouse effect and utilization of carbon sources to obtain value-added products or fuels.Much attention is paid to the devel...Carbon dioxide(CO_(2) ) capture and conversion is the key route for the mitigation of the greenhouse effect and utilization of carbon sources to obtain value-added products or fuels.Much attention is paid to the development of novel materials with high CO_(2) adsorption capacity and conversion rate.MXene is the graphene-like two-dimensional metal carbide/nitride/carbonitride owning favorable structure,morphology,high surface-bulk ratio,and physicochemical properties.Here,we review the CO_(2) capture,sensing,and conversion by MXene and MXene-based materials.Furthermore,the underlying mechanism involved the capture,sensing,and conversion of CO_(2) is summarized.This review would open a new horizon for CO_(2) valorization with high efficiency and promising widespread applications.展开更多
At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modi...At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modified Zn/HZSM-5 zeolite catalysts without undesirable carbon oxides formation. Methane can get 37.3% conversion over the above catalysts under low temperature, and the catalysts show a longer lifetime than usual metal supported HZSM-5 zeolite catalysts without adding any rare earth metals. The effects of methane activation over various rare earth metal promoted Zn/HZSM-5 catalysts on the products and influences of several reaction conditions such as temperature, catalyst lifetime and molar ratio of CH4/C2H4 have been discussed.展开更多
The visible light promoted C-H sulfonylmethylation of imidazopyridines with easily accessible bromomethyl sulfones under mild reaction conditions was described.This protocol provides an effective and practical access ...The visible light promoted C-H sulfonylmethylation of imidazopyridines with easily accessible bromomethyl sulfones under mild reaction conditions was described.This protocol provides an effective and practical access to sulfonylmethylated imidazopyridines with good functional group tolerance.The desired products were provided in moderate to excellent yields for 50 examples at room temperature.The method could also be an attractive strategy to install a methyl group on imidazopyridines.展开更多
In the present investigation, we fabricated strontium (Sr2+) incorporated CsPbI2Br-based inorganic perovskite solar cells in ambient conditions. The morphology, crystallinity, absorption, elemental composition and pho...In the present investigation, we fabricated strontium (Sr2+) incorporated CsPbI2Br-based inorganic perovskite solar cells in ambient conditions. The morphology, crystallinity, absorption, elemental composition and photoluminescence analysis of the bare CsPbI2Br and CsPb1-xSrxI2Br perovskite thin films were studied systematically to investigate the role of Sr2+ incorporation. It is observed that the surface morphology of the CsPbI2Br perovskite thin film has been improved by partial substitution of Pb2+ by Sr2+ which facilitates photoactive black phase-stabilization and defect passivation. The champion device having CsPb0.98Sr0.02I2Br composition exhibited a power conversion efficiency (PCE) of 16.61% which is much higher than the bare device (13.65%). Furthermore, our CsPb0.98Sr0.02I2Br-based devices maintain > 85% of its initial efficiency over 100 h in ambient conditions.展开更多
This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using ...This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using H2O2 and formic acid as oxidants. The influence of operating parameters i.e. reaction time, catalyst dose, reaction temperature and oxidant amount on oxidation process was investigated. Results revealed that 99% DBT conversion was achieved at 60℃ and 150 min reaction time over Fe-Ni-Mo/Al2O3. Fe tremendously enhanced the ODS activity of Co or Ni based Mo/Al2O3 catalysts following the activity order:Fe-Ni-Mo/Al2O3 〉 Fe-Co-Mo/Al2O3 〉 Ni-Mo/Al2O3 〉 Co-Mo/Al2O3, while H2O2 exhibited higher oxidation activity than formic acid over all catalyst systems. Insight about the surface morphology and textural properties of fresh and spent catalysts were achieved using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Atomic Absorption Spectroscopy (AAS) and BET surface area analysis, which helped in the interpretation of experimental data. The present study can be deemed as an effective approach on industrial level for ODS of fuel oils crediting to its high efficiency, low process/catalyst cost, safety and mild operating condition.展开更多
The alkali-metal Na adsorption on Si(100)2×1 surface and its promoted oxidation and Si oxide growth have been investigated by means of thermal desorption,work function,Auger electron spectroscopy and photoemissio...The alkali-metal Na adsorption on Si(100)2×1 surface and its promoted oxidation and Si oxide growth have been investigated by means of thermal desorption,work function,Auger electron spectroscopy and photoemission electron spectroscopy.The experimental data showed that there was a new state,interface electron state,near the Fermi level after the deposition of Na atoms.It was found that the presence of Na always caused an increase of the oxygen initial uptake whereas the promotion of Si oxide growth was observed only at the coverage of Na greater than 0.5 ML.A new mechanism of Na-promoted Si oxide growth is suggested in this paper.展开更多
The effect of molecular nitrogen exposure on the surfaces of InP(100)modified by potassium overlayers is investigated by core-level and valence-band photoemission spectroscopy using Synchrotron radiation.In comparison...The effect of molecular nitrogen exposure on the surfaces of InP(100)modified by potassium overlayers is investigated by core-level and valence-band photoemission spectroscopy using Synchrotron radiation.In comparison with InP(110)surface,we found the promotion is much stronger for InP(100)surface due to the central role of surface defects in the promotion;furthermore,in contrast with K-promoted oxidation of InP(100)where the bonding is observed between indium and oxygen,indium atoms did not react directly with nitrogen atoms during the K-promoted nitridation of InP(100).展开更多
A vacuum heating operation at 623 K on the surfaces of SiO_2-supported promoted ca- talysts makes it possible to reveal the electron transfer from Co and Fe additives to Rh atoms: a Rh catalyst containing 1 % Eh under...A vacuum heating operation at 623 K on the surfaces of SiO_2-supported promoted ca- talysts makes it possible to reveal the electron transfer from Co and Fe additives to Rh atoms: a Rh catalyst containing 1 % Eh under CO exhibits geminal CO IR bands only, while the presence of Co and Fe in promoted Rh catalysts results in linear and bridged CO chemisorp- tions on Rh in connection with their promotion in the selective hydroformylation of propy- lene.展开更多
The anhydrous NdCl_a-LiNp (LiNp=Lithium uaphthalide) system has been fouud to cause a novel cyclodimerization of α, β-unsaturated ketoues to give cycio- -pentauol derivatives (1 and 2). A possible reaction mechanism...The anhydrous NdCl_a-LiNp (LiNp=Lithium uaphthalide) system has been fouud to cause a novel cyclodimerization of α, β-unsaturated ketoues to give cycio- -pentauol derivatives (1 and 2). A possible reaction mechanism was proposed.展开更多
Sm2O3-LaF3 and BaF2 promoted Sm2O3W3 catalysts shown good catalytic performance for the Oxidative Dehydrogenation of Ethane(ODE). XRD and XPS characterizations of the catalysts show the structure defects, which may be...Sm2O3-LaF3 and BaF2 promoted Sm2O3W3 catalysts shown good catalytic performance for the Oxidative Dehydrogenation of Ethane(ODE). XRD and XPS characterizations of the catalysts show the structure defects, which may be produced by the partial exchange of anions and cations,enhance the electron donating ability and increase the surface absorbed oxygen concentration thus should be favorable to improve the catalytic activity. However, the higher concentration of surface adsorbed oxygen is unfavorable for the ethene selectivity.展开更多
In our study on the chemistry of ZrCl_4-NaBH_4,we have found that aldehydes and ketones can be regenerated from acetals and ketals at 30℃ in Et_2O in high yield The reaction mechanism was discussed.
The electronic modification effect of various metal oxides over Pt-Al;O;catalyst andthe relationships between the polarizing force of cations(PFC)and the electrophiliccharacter(EC)and catalytic performances(CP)o...The electronic modification effect of various metal oxides over Pt-Al;O;catalyst andthe relationships between the polarizing force of cations(PFC)and the electrophiliccharacter(EC)and catalytic performances(CP)of promoted Pt catalyst have been studiecby competitive hydrogenation reaction method(CHRM)and test reaction,i.e.hydrogena-tion of benzene and hydrogenolysis of cyclopentane.展开更多
Sensory inputs,including visual,auditory,and somatosensory inputs from the environment,play a crucial role in infant brain development.Vision(light),the most important perception of mammals,has been identified for pro...Sensory inputs,including visual,auditory,and somatosensory inputs from the environment,play a crucial role in infant brain development.Vision(light),the most important perception of mammals,has been identified for promoting synaptogenesis,one of the hallmarks of brain development,in multiple brain areas.However,the neural mechanism regulating this phenomenon and the lifelong effects on cognition and learning ability remains unknown.展开更多
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co...A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.展开更多
A series of novel carbon nanofibers(CNFs)based Cu-ZrO2 catalysts were synthesized by deposition precipitation method.To investigate the influence of promoter,catalysts were loaded with 1,2,3 and 4 wt%ZnO and character...A series of novel carbon nanofibers(CNFs)based Cu-ZrO2 catalysts were synthesized by deposition precipitation method.To investigate the influence of promoter,catalysts were loaded with 1,2,3 and 4 wt%ZnO and characterized by ICP-OES,HRTEM,BET,N2O chemisorption,TPR,XPS and CO2-TPD techniques.The results revealed that physicochemical properties of the catalysts were strongly influenced by incorporation of ZnO to the parent catalyst.Copper surface area(SCu)and dispersion(DCu)were slightly decreased by incorporation of ZnO promoter.Nevertheless,SCuand DCuwere remarkably decreased when ZnO content was exceeded beyond 3 wt%.The catalytic performance was evaluated by using autoclave slurry reactor at a pressure and temperature of 30 bar and 180℃,respectively.The promotion of CuZrO2/CNFs catalyst with 3 wt%of ZnO enhanced methanol synthesis rate from 32 to 45 g kg^-1 h^-1.Notably,with the ZnO promotion the selectivity to methanol was enhanced to 92%compared to 78%of the un-promoted Cu-ZrO2/CNFs catalyst at the expense of a lowered CO2 conversion.In addition,the catalytic activity of this novel catalyst system for CO2 hydrogenation to methanol was compared with the recent literature data.展开更多
基金sponsored by the Hengdian Group Holding Co.LTDsupported by the joint fund from Hengdian Group and Shanghai Institute of Ceram-ics,Chinese Academy of Sciences
文摘Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass network to form QD glass can significantly improve their stability.However,the dense glass network degrades their luminescent performance.In this work,the crystallization behavior of PQDs in glass and better luminescence properties are prompted by introducing titanium dioxide into borosilicate glass.The luminescence intensity of TiO_(2)-doped CsPbBr_(3)QD glass is increased by 1.6 times and the PLQY is increased from 49.8%to 79%compared to the undoped glass.Evidence proves that the improved prop-erties are attributed to the enhanced nucleation effect of titanium dioxide during the annealing process.Benefiting from the densification of the glass network caused by titanium dioxide doping,the stability of the PQD glass is further improved.LED devices with an ultra-wide color gamut that fully covers the NTSC1953 standard and achieves 128.6%of the NTSC1953 standard as well as 91.1%of the Rec.2020 stan-dard were fabricated by coupling PQD glass powder,demonstrating promising commercial applications of PQD glass in optoelectronic displays.
文摘BrCF2CF2CH=CHCH2X(x=Cl, OAc, OH) reacted smoothly with alkynes in the presence of BrCo(dmgh)2Py/Zn, giving 4,4,5,5-tetrafluorocyclopentene derivatives in moderate yields.
基金Natural Science Foundation of Hebei Province (B2019408018, E2020048004)the Fundamental Research Funds for the Universities in Hebei Province (JYQ201902, JYT201901)+4 种基金Program for the Top Young Talents of Higher Learning Institutions of Hebei Province (BJ2020047)College Students’ Innovation and Entrepreneurship Training Program Project Fund of Langfang Normal University (202010100001, S202010100011)National Natural Science Foundation of China (21773307)Hebei Higher Education Teaching Reform Research and Practice Project (2019GJJG357)Research Project of Langfang Teachers University (LSLB201701) for financial support。
文摘Carbon dioxide(CO_(2) ) capture and conversion is the key route for the mitigation of the greenhouse effect and utilization of carbon sources to obtain value-added products or fuels.Much attention is paid to the development of novel materials with high CO_(2) adsorption capacity and conversion rate.MXene is the graphene-like two-dimensional metal carbide/nitride/carbonitride owning favorable structure,morphology,high surface-bulk ratio,and physicochemical properties.Here,we review the CO_(2) capture,sensing,and conversion by MXene and MXene-based materials.Furthermore,the underlying mechanism involved the capture,sensing,and conversion of CO_(2) is summarized.This review would open a new horizon for CO_(2) valorization with high efficiency and promising widespread applications.
基金supported by the National Natural Science Foundation of China (Grants No. 20273021)the Key Project of Shanghai Science and Technology Committee (No. 05JC14070, 06DZ05025, 0552nm042, 08JC1408600)Scientific Research Foundation of the Education Department of Heilongjiang Province (No.11544005)
文摘At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modified Zn/HZSM-5 zeolite catalysts without undesirable carbon oxides formation. Methane can get 37.3% conversion over the above catalysts under low temperature, and the catalysts show a longer lifetime than usual metal supported HZSM-5 zeolite catalysts without adding any rare earth metals. The effects of methane activation over various rare earth metal promoted Zn/HZSM-5 catalysts on the products and influences of several reaction conditions such as temperature, catalyst lifetime and molar ratio of CH4/C2H4 have been discussed.
基金financially supported by the National Natural Science Foundation of China (No.21602046)the MOST of China (No.2016YFE0132600)the Doctor’s Scientific Research Foundation of Henan University of Chinese Medicine (No.BSJJ2016-12)
文摘The visible light promoted C-H sulfonylmethylation of imidazopyridines with easily accessible bromomethyl sulfones under mild reaction conditions was described.This protocol provides an effective and practical access to sulfonylmethylated imidazopyridines with good functional group tolerance.The desired products were provided in moderate to excellent yields for 50 examples at room temperature.The method could also be an attractive strategy to install a methyl group on imidazopyridines.
基金This work was supported by Priority Research Centre Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science,and Technology(NRF-2018R1A6A1A03024334)Also,this work was supported by Priority Research Centre Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science,and Technology(2020R1A2C2004880).
文摘In the present investigation, we fabricated strontium (Sr2+) incorporated CsPbI2Br-based inorganic perovskite solar cells in ambient conditions. The morphology, crystallinity, absorption, elemental composition and photoluminescence analysis of the bare CsPbI2Br and CsPb1-xSrxI2Br perovskite thin films were studied systematically to investigate the role of Sr2+ incorporation. It is observed that the surface morphology of the CsPbI2Br perovskite thin film has been improved by partial substitution of Pb2+ by Sr2+ which facilitates photoactive black phase-stabilization and defect passivation. The champion device having CsPb0.98Sr0.02I2Br composition exhibited a power conversion efficiency (PCE) of 16.61% which is much higher than the bare device (13.65%). Furthermore, our CsPb0.98Sr0.02I2Br-based devices maintain > 85% of its initial efficiency over 100 h in ambient conditions.
文摘This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using H2O2 and formic acid as oxidants. The influence of operating parameters i.e. reaction time, catalyst dose, reaction temperature and oxidant amount on oxidation process was investigated. Results revealed that 99% DBT conversion was achieved at 60℃ and 150 min reaction time over Fe-Ni-Mo/Al2O3. Fe tremendously enhanced the ODS activity of Co or Ni based Mo/Al2O3 catalysts following the activity order:Fe-Ni-Mo/Al2O3 〉 Fe-Co-Mo/Al2O3 〉 Ni-Mo/Al2O3 〉 Co-Mo/Al2O3, while H2O2 exhibited higher oxidation activity than formic acid over all catalyst systems. Insight about the surface morphology and textural properties of fresh and spent catalysts were achieved using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Atomic Absorption Spectroscopy (AAS) and BET surface area analysis, which helped in the interpretation of experimental data. The present study can be deemed as an effective approach on industrial level for ODS of fuel oils crediting to its high efficiency, low process/catalyst cost, safety and mild operating condition.
文摘The alkali-metal Na adsorption on Si(100)2×1 surface and its promoted oxidation and Si oxide growth have been investigated by means of thermal desorption,work function,Auger electron spectroscopy and photoemission electron spectroscopy.The experimental data showed that there was a new state,interface electron state,near the Fermi level after the deposition of Na atoms.It was found that the presence of Na always caused an increase of the oxygen initial uptake whereas the promotion of Si oxide growth was observed only at the coverage of Na greater than 0.5 ML.A new mechanism of Na-promoted Si oxide growth is suggested in this paper.
基金Supported by the National Natutal Science Foundation of Chinaby Hefei National Synchrotron Radiation Laboratory.
文摘The effect of molecular nitrogen exposure on the surfaces of InP(100)modified by potassium overlayers is investigated by core-level and valence-band photoemission spectroscopy using Synchrotron radiation.In comparison with InP(110)surface,we found the promotion is much stronger for InP(100)surface due to the central role of surface defects in the promotion;furthermore,in contrast with K-promoted oxidation of InP(100)where the bonding is observed between indium and oxygen,indium atoms did not react directly with nitrogen atoms during the K-promoted nitridation of InP(100).
文摘A vacuum heating operation at 623 K on the surfaces of SiO_2-supported promoted ca- talysts makes it possible to reveal the electron transfer from Co and Fe additives to Rh atoms: a Rh catalyst containing 1 % Eh under CO exhibits geminal CO IR bands only, while the presence of Co and Fe in promoted Rh catalysts results in linear and bridged CO chemisorp- tions on Rh in connection with their promotion in the selective hydroformylation of propy- lene.
基金Project supported by the National Science Foundation of China
文摘The anhydrous NdCl_a-LiNp (LiNp=Lithium uaphthalide) system has been fouud to cause a novel cyclodimerization of α, β-unsaturated ketoues to give cycio- -pentauol derivatives (1 and 2). A possible reaction mechanism was proposed.
文摘Sm2O3-LaF3 and BaF2 promoted Sm2O3W3 catalysts shown good catalytic performance for the Oxidative Dehydrogenation of Ethane(ODE). XRD and XPS characterizations of the catalysts show the structure defects, which may be produced by the partial exchange of anions and cations,enhance the electron donating ability and increase the surface absorbed oxygen concentration thus should be favorable to improve the catalytic activity. However, the higher concentration of surface adsorbed oxygen is unfavorable for the ethene selectivity.
文摘In our study on the chemistry of ZrCl_4-NaBH_4,we have found that aldehydes and ketones can be regenerated from acetals and ketals at 30℃ in Et_2O in high yield The reaction mechanism was discussed.
文摘The electronic modification effect of various metal oxides over Pt-Al;O;catalyst andthe relationships between the polarizing force of cations(PFC)and the electrophiliccharacter(EC)and catalytic performances(CP)of promoted Pt catalyst have been studiecby competitive hydrogenation reaction method(CHRM)and test reaction,i.e.hydrogena-tion of benzene and hydrogenolysis of cyclopentane.
文摘Sensory inputs,including visual,auditory,and somatosensory inputs from the environment,play a crucial role in infant brain development.Vision(light),the most important perception of mammals,has been identified for promoting synaptogenesis,one of the hallmarks of brain development,in multiple brain areas.However,the neural mechanism regulating this phenomenon and the lifelong effects on cognition and learning ability remains unknown.
基金financially supported by the National Natural Science Foundation of China(21173195)~~
文摘A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
基金the Ministry of Higher Education Malaysia for providing financial support to this work via FRGS No:FRGS/1/2011/SG/UTP/02/13Universiti Teknologi PETRONAS
文摘A series of novel carbon nanofibers(CNFs)based Cu-ZrO2 catalysts were synthesized by deposition precipitation method.To investigate the influence of promoter,catalysts were loaded with 1,2,3 and 4 wt%ZnO and characterized by ICP-OES,HRTEM,BET,N2O chemisorption,TPR,XPS and CO2-TPD techniques.The results revealed that physicochemical properties of the catalysts were strongly influenced by incorporation of ZnO to the parent catalyst.Copper surface area(SCu)and dispersion(DCu)were slightly decreased by incorporation of ZnO promoter.Nevertheless,SCuand DCuwere remarkably decreased when ZnO content was exceeded beyond 3 wt%.The catalytic performance was evaluated by using autoclave slurry reactor at a pressure and temperature of 30 bar and 180℃,respectively.The promotion of CuZrO2/CNFs catalyst with 3 wt%of ZnO enhanced methanol synthesis rate from 32 to 45 g kg^-1 h^-1.Notably,with the ZnO promotion the selectivity to methanol was enhanced to 92%compared to 78%of the un-promoted Cu-ZrO2/CNFs catalyst at the expense of a lowered CO2 conversion.In addition,the catalytic activity of this novel catalyst system for CO2 hydrogenation to methanol was compared with the recent literature data.