Peroxisome proliferators (POPs), such as hypolipidemic drugs or industrial phthalate ester plasticizers, are widely known as non-genotoxic hepatocarcinogens in rodents. As one of the possible mechanisms of POP-induced...Peroxisome proliferators (POPs), such as hypolipidemic drugs or industrial phthalate ester plasticizers, are widely known as non-genotoxic hepatocarcinogens in rodents. As one of the possible mechanisms of POP-induced carcinogenesis, the 'Oxidative Stress' theory has been postulated. In this review, in order to reconsider the significance of 'Oxidative Stress' to POP-induced carcinogenesis, we focus on in vivo studies examining formation of 8-hydroxydeoxyguanosine (8-OH -dG), a marker of oxidative DNA damage with mutagenic potential, after treatment of rodents with POPs. Some studies clearly demonstrated that 8-OH-dG levels in the liver DNA were increased by POP-treatments. These findings suggest that 'Oxidative Stress' could contribute as one factor to POP-induced carcinogenesis. Furthermore, we refer to other multiple biological changes caused by POP-treatment presumably contributing to the carcinogenic mechanisms, and consider possible roles of 'Oxidative Stress' in the carcinogenesis process展开更多
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postn...Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.展开更多
The visual system of teleost fish grows continuously,which is a useful model for studying regeneration of the central nervous system.Glial cells are key for this process,but their contribution is still not well define...The visual system of teleost fish grows continuously,which is a useful model for studying regeneration of the central nervous system.Glial cells are key for this process,but their contribution is still not well defined.We followed oligodendrocytes in the visual system of adult zebrafish during regeneration of the optic nerve at 6,24,and 72 hours post-lesion and at 7 and 14 days post-lesion via the sox10:tagRFP transgenic line and confocal microscopy.To understand the changes that these oligodendrocytes undergo during regeneration,we used Sox2 immunohistochemistry,a stem cell marker involved in oligodendrocyte differentiation.We also used the Click-iT™ Plus TUNEL assay to study cell death and a BrdU assay to determine cell proliferation.Before optic nerve crush,sox10:tagRFP oligodendrocytes are located in the retina,in the optic nerve head,and through all the entire optic nerve.Sox2-positive cells are present in the peripheral germinal zone,the mature retina,and the optic nerve.After optic nerve crush,sox10:tagRFP cells disappeared from the optic nerve crush zone,suggesting that they died,although they were not TUNEL positive.Concomitantly,the number of Sox2-positive cells increased around the crushed area,the optic nerve head,and the retina.Then,between 24 hours post-lesion and 14 days post-lesion,double sox10:tagRFP/Sox2-positive cells were detected in the retina,optic nerve head,and whole optic nerve,together with a proliferation response at 72 hours post-lesion.Our results confirm that a degenerating process may occur prior to regeneration.First,sox10:tagRFP oligodendrocytes that surround the degenerated axons stop wrapping them,change their“myelinating oligodendrocyte”morphology to a“nonmyelinating oligodendrocyte”morphology,and die.Then,residual oligodendrocyte progenitor cells in the optic nerve and retina proliferate and differentiate for the purpose of remyelination.As new axons arise from the surviving retinal ganglion cells,new sox10:tagRFP oligodendrocytes arise from residual oligodendrocyte progenitor cells to guide,nourish and myelinate them.Thus,oligodendrocytes play an active role in zebrafish axon regeneration and remyelination.展开更多
Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types ...Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies.展开更多
The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitte...The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.展开更多
Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration vi...Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration via paracrine signaling;however,their clinical applications are limited by potential risks such as tumorigenesis and xenogeneic immune rejection,which are similar to the risks associated with other stem cell transplantations.The present study therefore focuses on small extracellular vesicles derived from hair follicle neural crest stem cells,which preserve the bioactive properties of the parent cells while avoiding the transplantation-associated risks.In vitro,small extracellular vesicles derived from hair follicle neural crest stem cells significantly enhanced the proliferation,migration,tube formation,and barrier function of perineurial cells,and subsequently upregulated the expression of tight junction proteins.Furthermore,in a rat model of sciatic nerve defects bridged with silicon tubes,treatment with small extracellular vesicles derived from hair follicle neural crest stem cells resulted in higher tight junction protein expression in perineurial cells,thus facilitating neural tissue regeneration.At 10 weeks post-surgery,rats treated with small extracellular vesicles derived from hair follicle neural crest stem cells exhibited improved nerve function recovery and reduced muscle atrophy.Transcriptomic and micro RNA analyses revealed that small extracellular vesicles derived from hair follicle neural crest stem cells deliver mi R-21-5p,which inhibits mothers against decapentaplegic homolog 7 expression,thereby activating the transforming growth factor-β/mothers against decapentaplegic homolog signaling pathway and upregulating hyaluronan synthase 2 expression,and further enhancing tight junction protein expression.Together,our findings indicate that small extracellular vesicles derived from hair follicle neural crest stem cells promote the proliferation,migration,and tight junction protein formation of perineurial cells.These results provide new insights into peripheral nerve regeneration from the perspective of perineurial cells,and present a novel approach for the clinical treatment of peripheral nerve defects.展开更多
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li...Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.展开更多
The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often ...Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.展开更多
To explore the potential utilization of Elaeagnus mollis,we conducted a comprehensive assessment of its phytochemical composition,antioxidant properties,cholinesterase inhibition,and anti-HepG2 cell proliferation acti...To explore the potential utilization of Elaeagnus mollis,we conducted a comprehensive assessment of its phytochemical composition,antioxidant properties,cholinesterase inhibition,and anti-HepG2 cell proliferation activity across different plant parts(branch wood,branch bark,and pericarp)using various solvents(water,methanol,ethanol,and n-hexane).Our findings revealed that water extracts displayed superior antioxidant activities in ABTS and RP assays,while methanol extracts exhibited better performance in DPPH and FRAP assays.Moreover,methanol extracts demonstrated the highest effectiveness against anti-HepG2 cell proliferation,whereas n-hexane extracts showed greater efficiency in cholinesterase inhibition.Notably,branch bark extracts exhibited the highest levels of phytochemical compounds,with both branch bark and pericarp extracts demonstrating significant effects in cholinesterase inhibition and anti-HepG2 cell proliferation.Correlation analysis indicated that phytochemical compounds were primarily responsible for the observed biological activities.Overall,extracts from the branch bark and pericarp of E.mollis showed promising potential for antioxidant and anticancer activities,suggesting their suitability for applications in the pharmaceutical industry as health-promoting products.展开更多
In this editorial,we comment on the article by Qin et al,recently published in the World Journal of Gastrointestinal Oncology.Malignant tumors of the digestive tract represent a significant health threat.Kinesin famil...In this editorial,we comment on the article by Qin et al,recently published in the World Journal of Gastrointestinal Oncology.Malignant tumors of the digestive tract represent a significant health threat.Kinesin family member 14(KIF14),a critical kinesin,is pivotal in the proliferation,migration,and invasion of tumor cells.It has emerged as a focal point in recent studies of malignant tumors in the digestive tract.This article reviews the current research on KIF14 within these tumors and details its significant role in tumor cell behaviors,including proliferation,apo-ptosis,migration,invasion,and angiogenesis,alongside the regulatory mechanisms of the associated intracellular signaling pathways.Additionally,it explores the clinical value of KIF14 as a potential biomarker for early diagnosis,disease monitoring,and prognostic evaluation in malignant tumors of the digestive tract.The article concludes by introducing the potential regulatory role of traditional Chinese medicine,aiming to combine the strengths of both modern and traditional medical approaches to enhance treatment outcomes and prognosis for patients with these tumors.展开更多
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
Background:Transmembrane emp24 trafficking protein 3(TMED3)is associated with the development of several tumors;however,whether TMED3 regulates the progression of prostate cancer remains unclear.Materials and Methods:...Background:Transmembrane emp24 trafficking protein 3(TMED3)is associated with the development of several tumors;however,whether TMED3 regulates the progression of prostate cancer remains unclear.Materials and Methods:Short hairpin RNA was performed to repress TMED3 in prostate cancer cells(DU145 cells)and in a prostate cancer mice model to determine its function in prostate cancer in vitro and in vivo.Results:In the present study,we found that TMED3 was highly expressed in prostate cancer cells.In vitro,shTMED3 treatment suppressed the proliferation,invasion,and migration and promoted the apoptosis of DU145 cells.Additionally,the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed a strong correlation between TMED3 and forkhead box O transcription factor(FOXO)pathway.Furthermore,TMED3 inhibition efficiently decreased FOXO1a and FOXO3a phosphorylation.In vivo,TMED3 downregulation suppressed the apoptosis,growth,and metastasis of prostate cancer cells via FOXO1a and FOXO3a.Conclusion:The present findings show that TMED3 participates in the regulation of prostate cancer progression via FOXO1a and FOXO3a phosphorylation,thereby revealing a novel mechanism underlying prostate cancer development and suggesting that TMED3 inhibition may serve as a novel strategy for prostate cancer treatment.展开更多
Objective:Ovarian cancer(OC)ranks among the leading causes of mortality among the female cancers worldwide.Numerous studies have explored the development and progression of OC at multiple genetic regulatory levels.How...Objective:Ovarian cancer(OC)ranks among the leading causes of mortality among the female cancers worldwide.Numerous studies have explored the development and progression of OC at multiple genetic regulatory levels.However,relatively few studies have explored the impact of post-translational modifications(PTM)on OC progression,which is essential for uncovering new therapeutic targets.This study aimed to systematically identify the key PTM types involved in OCprogression,and to explore and evaluate their translational potential as therapeutic targets.Methods:First,we utilized multiple general PTM antibodies to compare gross PTM levels between normal ovarian and OC tissues from clinical females.After identifying lactylation as the PTM with the most significant differences,we selected representative samples for label-free mass spectrometry to identify specific lactylation sites.Next,we transfected A2780(OC)cells with either wild-type(WT)or mutant(K192A[Q])poly(ADP-ribose)polymerase 1(PARP1)conjugated to enhanced green fluorescent protein(EGFP)with a StrepⅡpeptide tag and assessed various cellular indexes related to cell proliferation(clonogenicity assay),migration(scratch wound healing assay),and reactive oxygen species levels.Results:Pan-lactylation was significantly upregulated in clinical OC samples,with PARP1 lactylation at K192 being one of the most common modifications.The growth and migration of A2780 cells were markedly suppressed by overexpressing PARP1-WT but not mutant PARP1.Overexpressing PARP1 significantly downregulated the phosphorylation of extracellular signal-regulated kinases 1/2(ERK1/2).Conclusion:This study uncovered a novel PTM of PARP1 in OC,lactylation,and demonstrated that lactylation at K192 is crucial in regulating OC cell growth and migration via the ERK1/2 pathway.Further investigations are required to elucidate the broader functional implications of PARP1 lactylation and its therapeutic potential.展开更多
Morusin is a flavonoid compound isolated and extracted from the root bark of Morus alba L.Studies have reported that morusin exerts anti-tumor effects by inhibiting cancer cell invasion and proliferation,as well as in...Morusin is a flavonoid compound isolated and extracted from the root bark of Morus alba L.Studies have reported that morusin exerts anti-tumor effects by inhibiting cancer cell invasion and proliferation,as well as inducing tumor cell apoptosis.This article comprehensively reviews recent research on the anti-tumor effects of morusin and its related molecular mechanisms,aiming to provide theoretical support for further studies and new drug development of morusin.展开更多
Objective:To construct a pH-responsive paclitaxel(PTX)-exosome composite nanocarrier and investigate its inhibitory effect on the proliferation of endometrial cancer cells(HEC-1A).Methods:PTX was loaded into exosomes ...Objective:To construct a pH-responsive paclitaxel(PTX)-exosome composite nanocarrier and investigate its inhibitory effect on the proliferation of endometrial cancer cells(HEC-1A).Methods:PTX was loaded into exosomes derived from adipose mesenchymal stem cells using the thin-film hydration method,and modified with polyethylene glycol-polylactic-co-glycolic acid(PEG-PLGA)to form nanocarriers(PTX-Exo-NPs).The particle size and morphology were detected by nanoparticle size and Zeta potential analyzer;drug encapsulation efficiency and drug loading capacity were determined by high-performance liquid chromatography;drug release behavior was evaluated in vitro under simulated acidic(pH 5.5)and physiological(pH 7.4)conditions;MTT assay and flow cytometry were used to detect the effects of the carrier on the proliferation,apoptosis,and cell cycle distribution of HEC-1A cells.Results:PTX-Exo-NPs exhibited a uniform spherical shape with a particle size of(128.5±5.2)nm,PTX encapsulation efficiency of 92.3%±2.1%,and drug loading capacity of 15.6%±0.8%.Drug release rate in the acidic environment(85.3%±2.1%within 72 h)was significantly higher than that in the physiological environment(48.0%±1.7%).In vitro experiments demonstrated that the proliferation inhibition rate of PTX-Exo-NPs on HEC-1A cells was higher than that of free PTX,with a lower IC50(0.64μM vs 4.70μM),and could induce cell apoptosis(apoptosis rate:28.7%±2.1%vs 14.2%±1.5%)and promote cell cycle arrest(G_2/M rate:45.3%±3.2%).Conclusion:PTX-Exo-NPs exhibit pH-responsive characteristics,which can target drug release through the acidic microenvironment,enhance the proliferation inhibition and pro-apoptotic effect on endometrial cancer cells,thus serving as a potential strategy for targeted therapy of endometrial tumors.展开更多
Esophageal cancer(EC)is one of the most common malignancies in the world,and there is no specific treatment drug for esophageal cancer yet.Doramectin(DRM)is a broad-spectrum anti-parasitic drug,and it plays an importa...Esophageal cancer(EC)is one of the most common malignancies in the world,and there is no specific treatment drug for esophageal cancer yet.Doramectin(DRM)is a broad-spectrum anti-parasitic drug,and it plays an important role in the treatment of animal diseases,while DRM has not been reported for the treatment of esophageal squamous cell carcinoma(ESCC).The purpose of this study was to investigate the anticancer effects and potential molecular mechanisms of DRM in ESCC.In the present study,the impact of DRM on the viability of ESCC was examined by methylthiazolyldiphenyl-tetrazolium bromide(MTT).Autophagy was measured by transmission electron microscopy(TEM),Western blot and immunohistochemistry.The apoptosis rate was measured by Western blot,flow cytometry and terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL).Meanwhile,autophagy inhibition was achieved by using chloroquine(CQ).After autophagy inhibition,cell proliferation and cloning ability were significantly inhibited,and the expression level of apoptotic protein was significantly changed compared with that of DRM alone.Additionally,Eca109-derived xenografts were established for testing the DRM-induced autophagy in vivo.It was found that DRM significantly inhibited the proliferation of Eca109 and EC9706 cells in vitro and in vivo in a dose-dependent manner by activating autophagy.DRM was able to significantly repress colony formation in Eca109 and EC9706 cells in vitro.At the same time,DRM could induce apoptosis of ESCC in vitro,it was also regulated through mitochondrial pathways.Meanwhile,DRM induced autophagy and inhibited the proliferation of ESCC,and exhibited little toxicity in organs in vivo.Moreover,DRM-induced autophagy could inhibit the apoptosis of EC in vitro and in vivo.Further experiment suggested that DRM might induce autophagy by the Akt/mTOR pathway.In conclusion,the present study was the first to clarify that DRM could inhibit Eca109 and EC9706 cells proliferation through activating autophagy by the Akt/mTOR pathway.DRM might be a potentially effective treatment for EC.展开更多
Previous studies have shown that VGLL2,a member of the mammalian Vestigial-like(VGLL)family,plays important roles in the growth and development of animal skeletal muscle,but its specific role in the development of chi...Previous studies have shown that VGLL2,a member of the mammalian Vestigial-like(VGLL)family,plays important roles in the growth and development of animal skeletal muscle,but its specific role in the development of chicken skeletal muscle is unclear.The main goal of this study was to explore the biological functions of VGLL2 in the development of chicken skeletal muscle and the proliferation and differentiation of skeletal muscle cells in vitro.In this study,we detected the effect of VGLL2 on the proliferation of myoblasts by CCK8,EdU and flow cytometry analyses after overexpressing and interfering with VGLL2.Indirect immunofluorescence was used to detect the effect of VGLL2 on the differentiation of myoblasts.qRT-PCR and hematoxylin and eosin(H&E)staining were used to evaluate the effects of VGLL2 overexpression on the growth rate and muscle fiber structure of chicken skeletal muscle.The results showed that VGLL2 inhibited the proliferation of primary cultured chicken myoblasts and promoted the differentiation of these cells.Interestingly,food intake and muscle fiber development were significantly enhanced by the overexpression of VGLL2 in chickens.Taken together,these data demonstrate that the VGLL2 gene may be a useful marker for improving muscle mass in poultry.展开更多
In this paper,we focus on compelling evidence showing that MEX3A is significantly overexpressed in hepatocellular carcinoma(HCC)and correlates with poor prognosis.A recent study by Ji et al highlights MEX3A’s role in...In this paper,we focus on compelling evidence showing that MEX3A is significantly overexpressed in hepatocellular carcinoma(HCC)and correlates with poor prognosis.A recent study by Ji et al highlights MEX3A’s role in driving proliferation and migration via the RORA/β-catenin axis and epithelial-mesenchymal transition,positioning it as a potential biomarker and therapeutic target.This study addresses a critical gap in understanding HCC pathogenesis and offers valuable mechanistic insights.展开更多
Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in man...Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
文摘Peroxisome proliferators (POPs), such as hypolipidemic drugs or industrial phthalate ester plasticizers, are widely known as non-genotoxic hepatocarcinogens in rodents. As one of the possible mechanisms of POP-induced carcinogenesis, the 'Oxidative Stress' theory has been postulated. In this review, in order to reconsider the significance of 'Oxidative Stress' to POP-induced carcinogenesis, we focus on in vivo studies examining formation of 8-hydroxydeoxyguanosine (8-OH -dG), a marker of oxidative DNA damage with mutagenic potential, after treatment of rodents with POPs. Some studies clearly demonstrated that 8-OH-dG levels in the liver DNA were increased by POP-treatments. These findings suggest that 'Oxidative Stress' could contribute as one factor to POP-induced carcinogenesis. Furthermore, we refer to other multiple biological changes caused by POP-treatment presumably contributing to the carcinogenic mechanisms, and consider possible roles of 'Oxidative Stress' in the carcinogenesis process
基金supported by NIH grants,Nos.R01NS125074,R01AG083164,R01NS107365,and R21NS127177(to YL),1F31NS129204-01A1(to KW)and Albert Ryan Fellowship(to KW).
文摘Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.
基金supported by the Lanzadera TCUE and C2 program(Universidad de Salamanca)(to ASL)the Spanish National Research Council(CSIC)funded by the Junta de Castilla y León and co-financed by the European Regional Development Fund(ERDF“Europe drives our growth”):Internationalization Project“CL-EI-2021-08-IBFG Unit of Excellence”,Grant(PID2022-138478OA-100)funded by MICIU/AEI/10.13039/501100011033 and,by FEDER,UE(to MGM)+3 种基金Junta de Castilla y León(SA225P23)Gerencia Regional de Salud(2701/A1/2023)(to AV)the Plan Especial Grado Medicina(USAL)(to CPM)a Ramón y Cajal researcher:Grant RYC2021-033684-I funded by MICIU/AEI/10.13039/501100011033 and,by European Union NextGenerationEU/PRTR.
文摘The visual system of teleost fish grows continuously,which is a useful model for studying regeneration of the central nervous system.Glial cells are key for this process,but their contribution is still not well defined.We followed oligodendrocytes in the visual system of adult zebrafish during regeneration of the optic nerve at 6,24,and 72 hours post-lesion and at 7 and 14 days post-lesion via the sox10:tagRFP transgenic line and confocal microscopy.To understand the changes that these oligodendrocytes undergo during regeneration,we used Sox2 immunohistochemistry,a stem cell marker involved in oligodendrocyte differentiation.We also used the Click-iT™ Plus TUNEL assay to study cell death and a BrdU assay to determine cell proliferation.Before optic nerve crush,sox10:tagRFP oligodendrocytes are located in the retina,in the optic nerve head,and through all the entire optic nerve.Sox2-positive cells are present in the peripheral germinal zone,the mature retina,and the optic nerve.After optic nerve crush,sox10:tagRFP cells disappeared from the optic nerve crush zone,suggesting that they died,although they were not TUNEL positive.Concomitantly,the number of Sox2-positive cells increased around the crushed area,the optic nerve head,and the retina.Then,between 24 hours post-lesion and 14 days post-lesion,double sox10:tagRFP/Sox2-positive cells were detected in the retina,optic nerve head,and whole optic nerve,together with a proliferation response at 72 hours post-lesion.Our results confirm that a degenerating process may occur prior to regeneration.First,sox10:tagRFP oligodendrocytes that surround the degenerated axons stop wrapping them,change their“myelinating oligodendrocyte”morphology to a“nonmyelinating oligodendrocyte”morphology,and die.Then,residual oligodendrocyte progenitor cells in the optic nerve and retina proliferate and differentiate for the purpose of remyelination.As new axons arise from the surviving retinal ganglion cells,new sox10:tagRFP oligodendrocytes arise from residual oligodendrocyte progenitor cells to guide,nourish and myelinate them.Thus,oligodendrocytes play an active role in zebrafish axon regeneration and remyelination.
基金supported by the Jiangsu Province Traditional Chinese Medicine Technology Development Plan Project,Nos.MS2023113(to JC),MS2022090Young and Middle-aged Academic Leaders of Jiangsu Qing-Lan Project(to GL).
文摘Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies.
基金supported by the Center for Cognition and Sociality,Institute for Basic Science(IBS)(IBS-R001-D2)(to WK).
文摘The early developmental period is a critical window during which brain cells mature and contribute to both brain development and later life functions.Gamma-aminobutyric acid(GABA),recognized as a major neurotransmitter,plays a crucial role in coordinating synapse formation,neuronal proliferation,and migration during this time.
基金supported by the National Natural Science Foundation of China,No.81571211(to FL)the Natural Science Foundation of Shanghai,No.22ZR1476800(to CH)。
文摘Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration via paracrine signaling;however,their clinical applications are limited by potential risks such as tumorigenesis and xenogeneic immune rejection,which are similar to the risks associated with other stem cell transplantations.The present study therefore focuses on small extracellular vesicles derived from hair follicle neural crest stem cells,which preserve the bioactive properties of the parent cells while avoiding the transplantation-associated risks.In vitro,small extracellular vesicles derived from hair follicle neural crest stem cells significantly enhanced the proliferation,migration,tube formation,and barrier function of perineurial cells,and subsequently upregulated the expression of tight junction proteins.Furthermore,in a rat model of sciatic nerve defects bridged with silicon tubes,treatment with small extracellular vesicles derived from hair follicle neural crest stem cells resulted in higher tight junction protein expression in perineurial cells,thus facilitating neural tissue regeneration.At 10 weeks post-surgery,rats treated with small extracellular vesicles derived from hair follicle neural crest stem cells exhibited improved nerve function recovery and reduced muscle atrophy.Transcriptomic and micro RNA analyses revealed that small extracellular vesicles derived from hair follicle neural crest stem cells deliver mi R-21-5p,which inhibits mothers against decapentaplegic homolog 7 expression,thereby activating the transforming growth factor-β/mothers against decapentaplegic homolog signaling pathway and upregulating hyaluronan synthase 2 expression,and further enhancing tight junction protein expression.Together,our findings indicate that small extracellular vesicles derived from hair follicle neural crest stem cells promote the proliferation,migration,and tight junction protein formation of perineurial cells.These results provide new insights into peripheral nerve regeneration from the perspective of perineurial cells,and present a novel approach for the clinical treatment of peripheral nerve defects.
基金supported by the National Key R&D Program of China,No.2019YFA0110300(to ZG)the National Natural Science Foundation of China,Nos.81773302(to YF),32070862(to ZG).
文摘Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.
基金supported by the Project of Health Committee of Hunan Province(D202304128868),China.
文摘Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.
基金National Natural Science Foundation of China(Grant No.31600549).
文摘To explore the potential utilization of Elaeagnus mollis,we conducted a comprehensive assessment of its phytochemical composition,antioxidant properties,cholinesterase inhibition,and anti-HepG2 cell proliferation activity across different plant parts(branch wood,branch bark,and pericarp)using various solvents(water,methanol,ethanol,and n-hexane).Our findings revealed that water extracts displayed superior antioxidant activities in ABTS and RP assays,while methanol extracts exhibited better performance in DPPH and FRAP assays.Moreover,methanol extracts demonstrated the highest effectiveness against anti-HepG2 cell proliferation,whereas n-hexane extracts showed greater efficiency in cholinesterase inhibition.Notably,branch bark extracts exhibited the highest levels of phytochemical compounds,with both branch bark and pericarp extracts demonstrating significant effects in cholinesterase inhibition and anti-HepG2 cell proliferation.Correlation analysis indicated that phytochemical compounds were primarily responsible for the observed biological activities.Overall,extracts from the branch bark and pericarp of E.mollis showed promising potential for antioxidant and anticancer activities,suggesting their suitability for applications in the pharmaceutical industry as health-promoting products.
基金Supported by the 2023 Government-funded Project of the Outstanding Talents Training Program in Clinical Medicine,No.ZF2023165Key Research and Development Projects of Hebei Province,No.18277731D+1 种基金Natural Science Foundation of Hebei Province,No.H202423105Hebei Provincial Administration of Traditional Chinese Medicine,Scientific Research Project,No.2020014.
文摘In this editorial,we comment on the article by Qin et al,recently published in the World Journal of Gastrointestinal Oncology.Malignant tumors of the digestive tract represent a significant health threat.Kinesin family member 14(KIF14),a critical kinesin,is pivotal in the proliferation,migration,and invasion of tumor cells.It has emerged as a focal point in recent studies of malignant tumors in the digestive tract.This article reviews the current research on KIF14 within these tumors and details its significant role in tumor cell behaviors,including proliferation,apo-ptosis,migration,invasion,and angiogenesis,alongside the regulatory mechanisms of the associated intracellular signaling pathways.Additionally,it explores the clinical value of KIF14 as a potential biomarker for early diagnosis,disease monitoring,and prognostic evaluation in malignant tumors of the digestive tract.The article concludes by introducing the potential regulatory role of traditional Chinese medicine,aiming to combine the strengths of both modern and traditional medical approaches to enhance treatment outcomes and prognosis for patients with these tumors.
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金supported by Guangxi Medical and Health Appropriate Technology Development and Promotion Application Project(S2022022).
文摘Background:Transmembrane emp24 trafficking protein 3(TMED3)is associated with the development of several tumors;however,whether TMED3 regulates the progression of prostate cancer remains unclear.Materials and Methods:Short hairpin RNA was performed to repress TMED3 in prostate cancer cells(DU145 cells)and in a prostate cancer mice model to determine its function in prostate cancer in vitro and in vivo.Results:In the present study,we found that TMED3 was highly expressed in prostate cancer cells.In vitro,shTMED3 treatment suppressed the proliferation,invasion,and migration and promoted the apoptosis of DU145 cells.Additionally,the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed a strong correlation between TMED3 and forkhead box O transcription factor(FOXO)pathway.Furthermore,TMED3 inhibition efficiently decreased FOXO1a and FOXO3a phosphorylation.In vivo,TMED3 downregulation suppressed the apoptosis,growth,and metastasis of prostate cancer cells via FOXO1a and FOXO3a.Conclusion:The present findings show that TMED3 participates in the regulation of prostate cancer progression via FOXO1a and FOXO3a phosphorylation,thereby revealing a novel mechanism underlying prostate cancer development and suggesting that TMED3 inhibition may serve as a novel strategy for prostate cancer treatment.
文摘Objective:Ovarian cancer(OC)ranks among the leading causes of mortality among the female cancers worldwide.Numerous studies have explored the development and progression of OC at multiple genetic regulatory levels.However,relatively few studies have explored the impact of post-translational modifications(PTM)on OC progression,which is essential for uncovering new therapeutic targets.This study aimed to systematically identify the key PTM types involved in OCprogression,and to explore and evaluate their translational potential as therapeutic targets.Methods:First,we utilized multiple general PTM antibodies to compare gross PTM levels between normal ovarian and OC tissues from clinical females.After identifying lactylation as the PTM with the most significant differences,we selected representative samples for label-free mass spectrometry to identify specific lactylation sites.Next,we transfected A2780(OC)cells with either wild-type(WT)or mutant(K192A[Q])poly(ADP-ribose)polymerase 1(PARP1)conjugated to enhanced green fluorescent protein(EGFP)with a StrepⅡpeptide tag and assessed various cellular indexes related to cell proliferation(clonogenicity assay),migration(scratch wound healing assay),and reactive oxygen species levels.Results:Pan-lactylation was significantly upregulated in clinical OC samples,with PARP1 lactylation at K192 being one of the most common modifications.The growth and migration of A2780 cells were markedly suppressed by overexpressing PARP1-WT but not mutant PARP1.Overexpressing PARP1 significantly downregulated the phosphorylation of extracellular signal-regulated kinases 1/2(ERK1/2).Conclusion:This study uncovered a novel PTM of PARP1 in OC,lactylation,and demonstrated that lactylation at K192 is crucial in regulating OC cell growth and migration via the ERK1/2 pathway.Further investigations are required to elucidate the broader functional implications of PARP1 lactylation and its therapeutic potential.
基金Supported by Heilongjiang Provincial Key Research and Development Program(Guided Category)(GZ20220039)Central Government Funds for Local University Reform and Development(Talent Cultivation Program)(2020GSP16).
文摘Morusin is a flavonoid compound isolated and extracted from the root bark of Morus alba L.Studies have reported that morusin exerts anti-tumor effects by inhibiting cancer cell invasion and proliferation,as well as inducing tumor cell apoptosis.This article comprehensively reviews recent research on the anti-tumor effects of morusin and its related molecular mechanisms,aiming to provide theoretical support for further studies and new drug development of morusin.
文摘Objective:To construct a pH-responsive paclitaxel(PTX)-exosome composite nanocarrier and investigate its inhibitory effect on the proliferation of endometrial cancer cells(HEC-1A).Methods:PTX was loaded into exosomes derived from adipose mesenchymal stem cells using the thin-film hydration method,and modified with polyethylene glycol-polylactic-co-glycolic acid(PEG-PLGA)to form nanocarriers(PTX-Exo-NPs).The particle size and morphology were detected by nanoparticle size and Zeta potential analyzer;drug encapsulation efficiency and drug loading capacity were determined by high-performance liquid chromatography;drug release behavior was evaluated in vitro under simulated acidic(pH 5.5)and physiological(pH 7.4)conditions;MTT assay and flow cytometry were used to detect the effects of the carrier on the proliferation,apoptosis,and cell cycle distribution of HEC-1A cells.Results:PTX-Exo-NPs exhibited a uniform spherical shape with a particle size of(128.5±5.2)nm,PTX encapsulation efficiency of 92.3%±2.1%,and drug loading capacity of 15.6%±0.8%.Drug release rate in the acidic environment(85.3%±2.1%within 72 h)was significantly higher than that in the physiological environment(48.0%±1.7%).In vitro experiments demonstrated that the proliferation inhibition rate of PTX-Exo-NPs on HEC-1A cells was higher than that of free PTX,with a lower IC50(0.64μM vs 4.70μM),and could induce cell apoptosis(apoptosis rate:28.7%±2.1%vs 14.2%±1.5%)and promote cell cycle arrest(G_2/M rate:45.3%±3.2%).Conclusion:PTX-Exo-NPs exhibit pH-responsive characteristics,which can target drug release through the acidic microenvironment,enhance the proliferation inhibition and pro-apoptotic effect on endometrial cancer cells,thus serving as a potential strategy for targeted therapy of endometrial tumors.
基金Supported by the Academic Backbone Fund of Northeast Agricultural University(19XG20)the Excellent Young Scholars Fund of Harbin Medical University(HYD2020JQ0016)。
文摘Esophageal cancer(EC)is one of the most common malignancies in the world,and there is no specific treatment drug for esophageal cancer yet.Doramectin(DRM)is a broad-spectrum anti-parasitic drug,and it plays an important role in the treatment of animal diseases,while DRM has not been reported for the treatment of esophageal squamous cell carcinoma(ESCC).The purpose of this study was to investigate the anticancer effects and potential molecular mechanisms of DRM in ESCC.In the present study,the impact of DRM on the viability of ESCC was examined by methylthiazolyldiphenyl-tetrazolium bromide(MTT).Autophagy was measured by transmission electron microscopy(TEM),Western blot and immunohistochemistry.The apoptosis rate was measured by Western blot,flow cytometry and terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL).Meanwhile,autophagy inhibition was achieved by using chloroquine(CQ).After autophagy inhibition,cell proliferation and cloning ability were significantly inhibited,and the expression level of apoptotic protein was significantly changed compared with that of DRM alone.Additionally,Eca109-derived xenografts were established for testing the DRM-induced autophagy in vivo.It was found that DRM significantly inhibited the proliferation of Eca109 and EC9706 cells in vitro and in vivo in a dose-dependent manner by activating autophagy.DRM was able to significantly repress colony formation in Eca109 and EC9706 cells in vitro.At the same time,DRM could induce apoptosis of ESCC in vitro,it was also regulated through mitochondrial pathways.Meanwhile,DRM induced autophagy and inhibited the proliferation of ESCC,and exhibited little toxicity in organs in vivo.Moreover,DRM-induced autophagy could inhibit the apoptosis of EC in vitro and in vivo.Further experiment suggested that DRM might induce autophagy by the Akt/mTOR pathway.In conclusion,the present study was the first to clarify that DRM could inhibit Eca109 and EC9706 cells proliferation through activating autophagy by the Akt/mTOR pathway.DRM might be a potentially effective treatment for EC.
基金supported by the National Natural Science Foundation of China-Henan Joint Grant(U1804107)the Zhongyuan Youth Talent Support Program,China(ZYYCYU202012156)the ProgramforScience&Technology Innovation Talents in Universities of Henan Province,China(22HASTIT038).
文摘Previous studies have shown that VGLL2,a member of the mammalian Vestigial-like(VGLL)family,plays important roles in the growth and development of animal skeletal muscle,but its specific role in the development of chicken skeletal muscle is unclear.The main goal of this study was to explore the biological functions of VGLL2 in the development of chicken skeletal muscle and the proliferation and differentiation of skeletal muscle cells in vitro.In this study,we detected the effect of VGLL2 on the proliferation of myoblasts by CCK8,EdU and flow cytometry analyses after overexpressing and interfering with VGLL2.Indirect immunofluorescence was used to detect the effect of VGLL2 on the differentiation of myoblasts.qRT-PCR and hematoxylin and eosin(H&E)staining were used to evaluate the effects of VGLL2 overexpression on the growth rate and muscle fiber structure of chicken skeletal muscle.The results showed that VGLL2 inhibited the proliferation of primary cultured chicken myoblasts and promoted the differentiation of these cells.Interestingly,food intake and muscle fiber development were significantly enhanced by the overexpression of VGLL2 in chickens.Taken together,these data demonstrate that the VGLL2 gene may be a useful marker for improving muscle mass in poultry.
基金Supported by Youth Foundation of Henan Scientific Committee,No.202300410416Henan Province Medical Science,Technology Breakthrough Plan Project,No.LHGJ20190033.
文摘In this paper,we focus on compelling evidence showing that MEX3A is significantly overexpressed in hepatocellular carcinoma(HCC)and correlates with poor prognosis.A recent study by Ji et al highlights MEX3A’s role in driving proliferation and migration via the RORA/β-catenin axis and epithelial-mesenchymal transition,positioning it as a potential biomarker and therapeutic target.This study addresses a critical gap in understanding HCC pathogenesis and offers valuable mechanistic insights.
文摘Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.