Addressing issues such as the disconnect between theory and practice and low student engagement in control system education,this paper uses the course“The Working Process of Open-Loop Control Systems”as a case study...Addressing issues such as the disconnect between theory and practice and low student engagement in control system education,this paper uses the course“The Working Process of Open-Loop Control Systems”as a case study to explore the integration of AI technology with the“project-guided and task-driven”teaching model.By constructing a four-dimensional teaching framework of“situation-task-activity-evaluation,”AI tools are embedded in project practices such as the construction of a mechanical timed flower watering device and the optimization of a digital timed flower watering device,achieving precision,interactivity,and personalization in the teaching process.Teaching practice demonstrates that this model significantly enhances students’technical awareness,materialization capabilities,and engineering thinking,providing a reference for the teaching reform of technical courses in high school education.展开更多
文摘Addressing issues such as the disconnect between theory and practice and low student engagement in control system education,this paper uses the course“The Working Process of Open-Loop Control Systems”as a case study to explore the integration of AI technology with the“project-guided and task-driven”teaching model.By constructing a four-dimensional teaching framework of“situation-task-activity-evaluation,”AI tools are embedded in project practices such as the construction of a mechanical timed flower watering device and the optimization of a digital timed flower watering device,achieving precision,interactivity,and personalization in the teaching process.Teaching practice demonstrates that this model significantly enhances students’technical awareness,materialization capabilities,and engineering thinking,providing a reference for the teaching reform of technical courses in high school education.