CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voir...CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.展开更多
Novel wet-phase modified expandable graphite(WMEG)particles were developed for in-depth profile control in carbonate reservoirs.The harsh environment of carbonate reservoirs(≥130℃,≥22×10^(4)mg/L)brings signifi...Novel wet-phase modified expandable graphite(WMEG)particles were developed for in-depth profile control in carbonate reservoirs.The harsh environment of carbonate reservoirs(≥130℃,≥22×10^(4)mg/L)brings significant challenges for existing profile control agents.WMEG particles were developed to address this problem.WMEG particles were synthesized via intercalation with ultrasound irradiation and chemical oxidation.The critical expansion temperature of WMEG particles is 130℃,and these particles can effectively expand 3-8 times under high temperature and high salinity water.The core flow experiments show that WMEG particles exhibit a good plugging capacity,profile control capacity,and a better-enhanced oil recovery(EOR)capacity in deep carbonate reservoirs.WMEG particles can be expanded in the formation and form larger particles that bridge the upper and lower end faces of the fracture.Then the high-permeability zones are effectively plugged,and the heterogeneity is improved,resulting in an obvious increase in oil recovery.This research provides a novel insight into future applications of profile control agents for in-depth profile control treatment in carbonate reservoirs.展开更多
A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional ...A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional polymers (such as polyacrylamide) used in profile control, profile performance improvement and EOR operations in the Zhongyuan Oilfield, Sinopec. This system has been developed on the basis of the specific molecular structure and the better properties of high temperature resistance, high salinity resistance and strong shearing resistance of the new type of AP-P4 association polymer. Acidity modifying agents and cross-linking agents (MZ-YL, MZ-BE, MZ-XS), compatible with the new polymer system, are selected. Results of performance tests have shown that the new polymer system has excellent thickening, high temperature, high salinity and shearing resistance and anti-dehydrating properties. In 2003, it underwent its first pilot test in 26 wells in China, with remarkable effects in increasing oil production and decreasing water production. The newly developed polymer system and its application technology described in this paper may play a guiding role in polymer profile control operations in the oil reservoirs of high temperature and high salinity.展开更多
Scaled physical model tests for steam breakthrough were conducted based on the analysis of mechanisms and influence factors of steam breakthrough. Physical simulation results showed that at the initial steam breakthro...Scaled physical model tests for steam breakthrough were conducted based on the analysis of mechanisms and influence factors of steam breakthrough. Physical simulation results showed that at the initial steam breakthrough, preferential flow channels were formed in narrow sand packs and most residual oil left in these channels was immobile. This shortened the steam breakthrough time of follow-up steam flooding and decreased the increment of oil recovery efficiency. Steam breakthrough occurred easily for a smaller producer-injector spacing, and a bigger difference in physical properties between fluids and rock. Steam breakthrough is more likely to occur at a larger formation permeability (k), greater steam displacement velocity (u) and smaller producer-injector spacing (L). Steam breakthrough time is a function of the parameter group (uk/L), i.e. tb=3.2151 (uk/L)^-0.5142. A non piston-like displacement model was built based on steam breakthrough observation for a steam stimulated well in the Jinglou Oilfield, Henan Oilfield Company. The steam volume swept in different directions could be obtained from inter-well permeability capacity and breakthrough angle, and the steam swept pore volume (SSPV) was also determined. Numerical simulation showed that steam sweep efficiency reached its peak value when a slug of profile control agent (slug size 10%-15% SSPV) was set at one half of the inter-well spacing. Field test with 12.5% SSPV of profile control agents in the Jinglou Oilfield achieved success in sealing breakthrough channels and good production performance of adjacent producers.展开更多
The profile control hard-gel is composed of polyarylamide (5-6g/L), whose molecular weight is 4,000,000 - 7,000,000 and hydrolysis degree is 17.6%, and cross-linking oxidation-reduction agent (Na2Cr2O7 + NH4Cl), with ...The profile control hard-gel is composed of polyarylamide (5-6g/L), whose molecular weight is 4,000,000 - 7,000,000 and hydrolysis degree is 17.6%, and cross-linking oxidation-reduction agent (Na2Cr2O7 + NH4Cl), with an delayed organic acid crosslinker which contains lactic acid/propionic acid/ethanoic acid and ethylene glycol. After research of the influence factors, such as pH, temperature, salinity and the dosage of delayed crosslinker, the optimum condition(pH 5.2, temperature 55℃, salinity < 7g/L) was found. Gelation time (12-144h) can be controlled by adjusting the dosage of the delayed crosslinker. Deep profile control experiments are carried out on heterogeneous models, which contains three serial high permeable and low permeable cores arranged in a parallel. After water flooding (total recovery, 24.3%), the first, second and third high-permeable cores each are sealed in turn by the profile control agent, and the total displacement recovery increases to 46.8%, 62.2% and 69.1% respectively. So, the greater the sealed depth, the larger the enhancing recovery will be. Finally, the oil displacement mechanisms of deep profile control are discussed.展开更多
Heavy oil will play an important role in future resources exploitation.Factors such as reservoir heterogeneity and adverse oil/steam mobility ratio have led to severe steam channeling and fingering,thereby reduced con...Heavy oil will play an important role in future resources exploitation.Factors such as reservoir heterogeneity and adverse oil/steam mobility ratio have led to severe steam channeling and fingering,thereby reduced conformance efficiency and affected de-velopment response.Therefore,the research on profile control and water shut-off agents becomes increasingly important for thermal recovery wells.The requirements on the performances of profile control and water shut-off agents are discussed in conjunction with the physical properties of heavy oil reservoirs and the technical conditions of steam injection in China.Based on the mechanism of action,research progress and application status,5 agents are summarized including polymer gel,solid particles plugging agent,foam,water-in-oil emulsion and salt precipitation.Problems in each agent are mentioned,and optimization solutions are put for-ward.At last,the development trend of future profile control and water shut-off agents is put forward,i.e.synthesizing agents of low cost and high-temperature resistance,intensifying mechanism research,developing composite system,and researching on new technologies that are less harmful and environmental friendly.展开更多
Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control...Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control and flooding measures).Therefore,in this study,a novel method based on“plugging,profile control,and flooding”being implemented at the same time is proposed.To assess the performances of this approach,physical simulations,computer tomography,and nuclear magnetic resonance are used.The results show that the combination of a gel plugging agent,a polymer microsphere flooding agent,and a high-efficiency oil displacement agent leads to better results in terms of oil recovery with respect to the situation in which these approaches are used separately(the oil recovery is increased by 15.37%).Computer tomography scan results show that with the combined approach,a larger sweep volume and higher oil washing efficiency are obtained.The remaining oil in the cluster form can be recovered in the middle and low permeability layer,increasing the proportion of the columnar and blind end states of the oil.The nuclear magnetic resonance test results show that the combined“plugging,profile control,and flooding”treatment can also be used to control more effectively the dominant channels of the high permeability layer and further expand the recovery degree of the remaining oil in the pores of different sizes in the middle and low permeability layers.However,for the low permeability layer(permeability difference of 20),the benefits in terms of oil recovery are limited.展开更多
Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recov...Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack.展开更多
Profile control is utilized to redirect the injection water to low permeability region where a large amount of crude oil lies.Performed gel particles are the commonly used agent for redistributing water by blocking th...Profile control is utilized to redirect the injection water to low permeability region where a large amount of crude oil lies.Performed gel particles are the commonly used agent for redistributing water by blocking the pores in high permeability region.But the capability of deep penetration of performed gel particles is poor.Here,we formulate nanoparticle stabilized emulsion(NSE).The stability and the effect of NSE on the fluid redirection in a three-dimensional porous medium were investigated.By usingμ-PIV(particle image velocimetry),it was found that the velocity gradient of continuous fluid close to the nanoparticle stabilized droplets is much higher than that close to surfactant stabilized droplets.NSE behaves as solid particle in preferential seepage channels,which will decrease effectively the permeability,thereby redirecting the subsequent injection water.Furthermore,NSE shows high stability compared with emulsion stabilized by surfactant in static and dynamic tests.In addition,water flooding tests also confirm that the NSE can significantly reduce the permeability of porous media and redirect the fluid flow.Our results demonstrate NSE owns high potential to act as profile control agent in deep formation.展开更多
A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a de...A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a density of 1.08 g/cm^3, and mainly contains over 65% of light CaCO3, MgCO3, CaSO4, Fe2S3 and Ca(OH)2. This paper ascertains the effect of water treatment residue on core permeability and its application in oilfields. Coreflooding tests in laboratory were conducted in two artificial cores and one natural core. Core changes were evaluated by cast model image analysis, mercury injection method and scanning electron microscopy (SEM). Fresh water was injected into another natural core, which was plugged with water treatment residue, to determine the effective life. The results indicate that the water treatment residue has a strongly plugging capability, a resistance to erosion and a long effective life, and thus it can be used as a cheap raw material for profile control. In the past 8 years, a total of 60,164 m^3 of water treatment residue has been used for profile control of 151 well treatments, with a success ratio of 98% and an effective ratio of 83.2%. In the field tests, the profile control agent increased both starting pressure and injection pressure of injectors, and decreased the apparent water injectivity coefficient, significantly improving intake profiles and lengthening average service life of injectors. 28,381 tons of additional oil were recovered from these corresponding oil wells, with economic benefits of ¥3,069.55×10^4 (RMB) and a remarkable input-output ratio of 8.6:1.展开更多
After steam discharge in heavy oil reservoirs,the distribution of temperature,pressure,and permeability in different wells becomes irregular.Flow channels can easily be produced,which affect the sweep efficiency of th...After steam discharge in heavy oil reservoirs,the distribution of temperature,pressure,and permeability in different wells becomes irregular.Flow channels can easily be produced,which affect the sweep efficiency of the oil displacement.Previous studies have shown that the salting-out plugging method can effectively block these channels in high-temperature reservoirs,improve the suction profile,and increase oil production.In the present study,the optimal dosage of the plugging agent is determined taking into account connection transmissibility and inter-well volumes.Together with the connectivity model,a water flooding simulation model is introduced.Moreover,a non-gradient stochastic disturbance algorithm is used to obtain the optimal plugging agent dosage,which provides the basis for the high-temperature salting-out plugging agent adjustment in the field.展开更多
A method for the treatment of hazardous waste drilling fluids,potentially leading to environmental pollution,is considered.The waste drilling fluid is treated with an inorganic flocculant,an organic flocculant,and a p...A method for the treatment of hazardous waste drilling fluids,potentially leading to environmental pollution,is considered.The waste drilling fluid is treated with an inorganic flocculant,an organic flocculant,and a pH regulator.The profile control agent consists of partially hydrolyzed polyacrylamide,formaldehyde,hexamethylenetetramine,resorcinol,phenol,and the treated waste drilling fluid itself.For a waste drilling fluid concentration of 2500 mg/L,the gelling time of the profile control agent is 25 h,and the gelling strength is 32,000 mPa.s.Compared with the profile control agent prepared by recirculated water under the same conditions,the present profile control agent displays better stability,salt-resistance,and performance.展开更多
In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfiel...In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfield as the target area, the variation law of water cut and recovery factor of different injection parameters was analyzed, and the optimization research of injection parameters of polymer enhanced foam flooding was carried out. The results show that the higher the injection rate, the lower the water content curve, and the higher the oil recovery rate. As the foam defoamed when encountering oil, when the injection time was earlier than 80% of water cut, the later the injection time was, the better the oil displacement effect would be. When the injection time was later than 80% of water cut, the later the injection time was, the worse the oil displacement effect would be. The larger the injection volume, the lower the water content curve and the higher the recovery rate. After the injection volume exceeded 0.2 PV, the amplitude of changes in water content and recovery rate slowed down. The optimal injection parameters of profile control agent for high water content well group in Oilfield A were: injection rate of 15 m<sup>3</sup>/d, injection timing of 80% water content, and injection volume of 0.2 PV.展开更多
In view of the rapid decline rate of oil production and gradual increase of water cut in oil wells in Block S, based on the determination of the formula of foam profile control agent, the optimization study of foam pr...In view of the rapid decline rate of oil production and gradual increase of water cut in oil wells in Block S, based on the determination of the formula of foam profile control agent, the optimization study of foam profile control injection scheme was carried out. Petrel software is used to establish a facies controlled geological model based on stochastic modeling method in Block S, and CMG software is used for numerical simulation to design 7 sets of foam profile control prediction schemes. Dynamic data and numerical simulation methods are used to optimize foam injection mode and injection cycle. By simulating and calculating, the optimal injection method of alternating gas and liquid injection and the optimal plan with an injection period of 2 months were selected. Through the calculation results of various research plans, it can be seen that the water content of the optimal plan has decreased significantly, and the oil production rate has increased significantly, in order to slow down production decline, control water content rise, extend the economic recovery period of the oilfield, and achieve the goal of improving oil recovery.展开更多
Block A was fully transferred in December 2011, and has experienced thermal connection, displacement and steam breakthrough. It is currently in the stage of "erosion adjustment". Affected by factors such as ...Block A was fully transferred in December 2011, and has experienced thermal connection, displacement and steam breakthrough. It is currently in the stage of "erosion adjustment". Affected by factors such as reservoir heterogeneity and long development time of steam flooding, the high permeability layer in the block has a single-layer breakthrough in the longitudinal direction and a one-way breakthrough of steam in the transverse direction, resulting in uneven reservoir utilization. In order to further expand the swept volume of steam and improve the efficiency of steam flooding, the multi-medium profile control and oil displacement technology research has been carried out, the formulation of high-temperature profile control agent and foaming agent has been optimized, and a reasonable injection method has been designed. The field implementation of 8 well groups has achieved remarkable oil increase effect, and this technology has broad application prospects.展开更多
Affected by reservoir heterogeneity, there is often a serious problem of water channeling in the late stage of water injection oilfield development. Conventional water injection adjustment is difficult to further impr...Affected by reservoir heterogeneity, there is often a serious problem of water channeling in the late stage of water injection oilfield development. Conventional water injection adjustment is difficult to further improve water drive recovery. It is necessary to adopt deep profile control and displacement technology to block water channeling channel and improve water drive efficiency.Based on the analysis of deep profile control and flooding mechanism, this paper analyzes the composition, technical indexes and adaptive conditions of seven types of profile control and flooding agent formula system, and takes block J as an example to analyze the deep adjustment effect in detail, including profile control and flooding agent system, injection volume and changes of various indexes after profile control and flooding. The effect of increasing oil and controlling water is remarkable, with an efficiency of 36.148 million yuan and an input-output ratio of 1:2.81,To achieve the purpose of cost reduction and efficiency increase under low oil prices, the achievements and understanding can provide reference experience for peers.展开更多
Affected by factors such as rapid change of sedimentary microfacies in plane, serious reservoir heterogeneity in vertical direction and perfection of injection-production well pattern, low utilization rate of injected...Affected by factors such as rapid change of sedimentary microfacies in plane, serious reservoir heterogeneity in vertical direction and perfection of injection-production well pattern, low utilization rate of injected water exists in water injection development of block S, which results in serious water flooding, low water flooding efficiency and high dispersion of remaining oil, as well as poor downhole technical conditions, so it is difficult to further improve oil recovery by conventional water injection adjustment. Including chemical agent system optimization design, pilot test well group optimization, injection volume design, development index prediction, etc. Five well groups were implemented on site. Two wells were sidetracked in the old wells, with an average daily oil production of 43 tons, comprehensive water cut of 4.2%, cumulative oil production of 25,200 tons in stages, improvement in water injection pressure, waterline propulsion speed, formation water absorption status, etc. The purpose of cost reduction and efficiency enhancement was achieved under low oil price. The results and understanding provided reference experience for similar reservoirs.展开更多
Tensor interpolation is a key step in the processing algorithms of diffusion tensor imaging (DTI), such as registration and tractography. The diffusion tensor (DT) in biological tissues is assumed to be positive defin...Tensor interpolation is a key step in the processing algorithms of diffusion tensor imaging (DTI), such as registration and tractography. The diffusion tensor (DT) in biological tissues is assumed to be positive definite. However, the tensor interpolations in most clinical applications have used a Euclidian scheme that does not take this assumption into account. Several Rie-mannian schemes were developed to overcome this limitation. Although each of the Riemannian schemes uses different metrics, they all result in a ‘fixed’ interpolation profile that cannot adapt to a variety of diffusion patterns in biological tissues. In this paper, we propose a DT interpolation scheme to control the interpolation profile, and explore its feasibility in clinical applications. The profile controllability comes from the non-uniform motion of interpolation on the Riemannian geodesic. The interpolation experiment with medical DTI data shows that the profile control improves the interpolation quality by assessing the reconstruction errors with the determinant error, Euclidean norm, and Riemannian norm.展开更多
Inspired by the viscoelastic displacement theory,a product called preformed particle gel(PPG)is developed as conformance control agent to enhance oil recovery and control excess water production.The migration law of P...Inspired by the viscoelastic displacement theory,a product called preformed particle gel(PPG)is developed as conformance control agent to enhance oil recovery and control excess water production.The migration law of PPG suspension in porous media is related to its deep profile control and displacement capability.Laboratory experiments indicate that PPG suspension has good viscosity increasing,and the apparent viscosity decreases with the increase of shear rate.PPG suspension is mainly elastic,and its network structure makes it have certain shear stability.PPG particles realize migration in porous media in the way of“accumulation and blockage/pressure increase/deformation and migration”.When the ratio of the PPG particle size to the pore throat diameter d ranges from 35.52 to 53.38,the particles can match through the porous medium.When the permeability difference of the parallel model is 5,PPG suspension has the highest profile improvement rate,69.10%.PPG suspension can adjust the planar heterogeneity,and increase the oil recovery rate by 20.75%.The PPG suspension can effectively start“cluster"、“film”and“blind end residual oil”,and has a high oil washing efficiency.The core NMR T2 spectrum shows that PPG suspension mainly reduces oil saturation in mesopores and macropores.After PPG flooding,the EOR capacity of small pores is the highest,39.11%.展开更多
Varying contact-length backup roll and linearly variable crown work roll are provided for improving the mill performance of profile and flatness control. Integrated with theses technologies, relevant profile and flatn...Varying contact-length backup roll and linearly variable crown work roll are provided for improving the mill performance of profile and flatness control. Integrated with theses technologies, relevant profile and flatness control models are developed for hot strip mills on the basis of large amount of finite element calculation. These models include shape setup control model in process control system, bending force feedforward control model, crown feedback control model and flatness feedback control model in basis automation system. Such a profile and flatness control system with full functions is applied in 1 700 mm industrial hot strip mills of Ansteel. Large amount of production data shows that the crown precision with the tolerance of±18 μm is over 90%, the strip percentage which the actual flatness is within ±25 I-unit surpasses 96%, and general roll consume is reduced by 28% by using the profile and fiatness control system. In addition, schedule-free rolling is realized.展开更多
基金Lin Du acknowledges the financial support provided by China Scholarship Council(CSC)via a Ph.D.Scholarship(202008510128)supported by Core Technology Project of China National Petroleum Corporation(CNPC)"Research on Thermal Miscible Flooding Technology"(2023ZG18)。
文摘CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.
基金financially supported by the National Natural Science Foundation of China(No.52074335)China University of Petroleum(East China)Independent Innovation Research Program:Oilfield Chemistry and Enhanced Oil Recovery(27RA2302015)+1 种基金Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities(No.24CX04003A)。
文摘Novel wet-phase modified expandable graphite(WMEG)particles were developed for in-depth profile control in carbonate reservoirs.The harsh environment of carbonate reservoirs(≥130℃,≥22×10^(4)mg/L)brings significant challenges for existing profile control agents.WMEG particles were developed to address this problem.WMEG particles were synthesized via intercalation with ultrasound irradiation and chemical oxidation.The critical expansion temperature of WMEG particles is 130℃,and these particles can effectively expand 3-8 times under high temperature and high salinity water.The core flow experiments show that WMEG particles exhibit a good plugging capacity,profile control capacity,and a better-enhanced oil recovery(EOR)capacity in deep carbonate reservoirs.WMEG particles can be expanded in the formation and form larger particles that bridge the upper and lower end faces of the fracture.Then the high-permeability zones are effectively plugged,and the heterogeneity is improved,resulting in an obvious increase in oil recovery.This research provides a novel insight into future applications of profile control agents for in-depth profile control treatment in carbonate reservoirs.
文摘A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional polymers (such as polyacrylamide) used in profile control, profile performance improvement and EOR operations in the Zhongyuan Oilfield, Sinopec. This system has been developed on the basis of the specific molecular structure and the better properties of high temperature resistance, high salinity resistance and strong shearing resistance of the new type of AP-P4 association polymer. Acidity modifying agents and cross-linking agents (MZ-YL, MZ-BE, MZ-XS), compatible with the new polymer system, are selected. Results of performance tests have shown that the new polymer system has excellent thickening, high temperature, high salinity and shearing resistance and anti-dehydrating properties. In 2003, it underwent its first pilot test in 26 wells in China, with remarkable effects in increasing oil production and decreasing water production. The newly developed polymer system and its application technology described in this paper may play a guiding role in polymer profile control operations in the oil reservoirs of high temperature and high salinity.
文摘Scaled physical model tests for steam breakthrough were conducted based on the analysis of mechanisms and influence factors of steam breakthrough. Physical simulation results showed that at the initial steam breakthrough, preferential flow channels were formed in narrow sand packs and most residual oil left in these channels was immobile. This shortened the steam breakthrough time of follow-up steam flooding and decreased the increment of oil recovery efficiency. Steam breakthrough occurred easily for a smaller producer-injector spacing, and a bigger difference in physical properties between fluids and rock. Steam breakthrough is more likely to occur at a larger formation permeability (k), greater steam displacement velocity (u) and smaller producer-injector spacing (L). Steam breakthrough time is a function of the parameter group (uk/L), i.e. tb=3.2151 (uk/L)^-0.5142. A non piston-like displacement model was built based on steam breakthrough observation for a steam stimulated well in the Jinglou Oilfield, Henan Oilfield Company. The steam volume swept in different directions could be obtained from inter-well permeability capacity and breakthrough angle, and the steam swept pore volume (SSPV) was also determined. Numerical simulation showed that steam sweep efficiency reached its peak value when a slug of profile control agent (slug size 10%-15% SSPV) was set at one half of the inter-well spacing. Field test with 12.5% SSPV of profile control agents in the Jinglou Oilfield achieved success in sealing breakthrough channels and good production performance of adjacent producers.
文摘The profile control hard-gel is composed of polyarylamide (5-6g/L), whose molecular weight is 4,000,000 - 7,000,000 and hydrolysis degree is 17.6%, and cross-linking oxidation-reduction agent (Na2Cr2O7 + NH4Cl), with an delayed organic acid crosslinker which contains lactic acid/propionic acid/ethanoic acid and ethylene glycol. After research of the influence factors, such as pH, temperature, salinity and the dosage of delayed crosslinker, the optimum condition(pH 5.2, temperature 55℃, salinity < 7g/L) was found. Gelation time (12-144h) can be controlled by adjusting the dosage of the delayed crosslinker. Deep profile control experiments are carried out on heterogeneous models, which contains three serial high permeable and low permeable cores arranged in a parallel. After water flooding (total recovery, 24.3%), the first, second and third high-permeable cores each are sealed in turn by the profile control agent, and the total displacement recovery increases to 46.8%, 62.2% and 69.1% respectively. So, the greater the sealed depth, the larger the enhancing recovery will be. Finally, the oil displacement mechanisms of deep profile control are discussed.
文摘Heavy oil will play an important role in future resources exploitation.Factors such as reservoir heterogeneity and adverse oil/steam mobility ratio have led to severe steam channeling and fingering,thereby reduced conformance efficiency and affected de-velopment response.Therefore,the research on profile control and water shut-off agents becomes increasingly important for thermal recovery wells.The requirements on the performances of profile control and water shut-off agents are discussed in conjunction with the physical properties of heavy oil reservoirs and the technical conditions of steam injection in China.Based on the mechanism of action,research progress and application status,5 agents are summarized including polymer gel,solid particles plugging agent,foam,water-in-oil emulsion and salt precipitation.Problems in each agent are mentioned,and optimization solutions are put for-ward.At last,the development trend of future profile control and water shut-off agents is put forward,i.e.synthesizing agents of low cost and high-temperature resistance,intensifying mechanism research,developing composite system,and researching on new technologies that are less harmful and environmental friendly.
基金The authors gratefully acknowledge the financial support from the National Science and Technology Major Special Project(2016ZX05058-003).
文摘Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control and flooding measures).Therefore,in this study,a novel method based on“plugging,profile control,and flooding”being implemented at the same time is proposed.To assess the performances of this approach,physical simulations,computer tomography,and nuclear magnetic resonance are used.The results show that the combination of a gel plugging agent,a polymer microsphere flooding agent,and a high-efficiency oil displacement agent leads to better results in terms of oil recovery with respect to the situation in which these approaches are used separately(the oil recovery is increased by 15.37%).Computer tomography scan results show that with the combined approach,a larger sweep volume and higher oil washing efficiency are obtained.The remaining oil in the cluster form can be recovered in the middle and low permeability layer,increasing the proportion of the columnar and blind end states of the oil.The nuclear magnetic resonance test results show that the combined“plugging,profile control,and flooding”treatment can also be used to control more effectively the dominant channels of the high permeability layer and further expand the recovery degree of the remaining oil in the pores of different sizes in the middle and low permeability layers.However,for the low permeability layer(permeability difference of 20),the benefits in terms of oil recovery are limited.
基金supported by the National Natural Science Foundation of China (No.21273286)Doctoral Program Foundation of the Education Ministry (No.20130133110005)
文摘Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack.
基金supported by the National Natural Science Foundation of China(U1663206,51704313)the Taishan Scholar Climbing Program in Shandong Province(tspd20161004)the Fundamental Research Funds for the Central Universities(18CX02028A)
文摘Profile control is utilized to redirect the injection water to low permeability region where a large amount of crude oil lies.Performed gel particles are the commonly used agent for redistributing water by blocking the pores in high permeability region.But the capability of deep penetration of performed gel particles is poor.Here,we formulate nanoparticle stabilized emulsion(NSE).The stability and the effect of NSE on the fluid redirection in a three-dimensional porous medium were investigated.By usingμ-PIV(particle image velocimetry),it was found that the velocity gradient of continuous fluid close to the nanoparticle stabilized droplets is much higher than that close to surfactant stabilized droplets.NSE behaves as solid particle in preferential seepage channels,which will decrease effectively the permeability,thereby redirecting the subsequent injection water.Furthermore,NSE shows high stability compared with emulsion stabilized by surfactant in static and dynamic tests.In addition,water flooding tests also confirm that the NSE can significantly reduce the permeability of porous media and redirect the fluid flow.Our results demonstrate NSE owns high potential to act as profile control agent in deep formation.
文摘A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a density of 1.08 g/cm^3, and mainly contains over 65% of light CaCO3, MgCO3, CaSO4, Fe2S3 and Ca(OH)2. This paper ascertains the effect of water treatment residue on core permeability and its application in oilfields. Coreflooding tests in laboratory were conducted in two artificial cores and one natural core. Core changes were evaluated by cast model image analysis, mercury injection method and scanning electron microscopy (SEM). Fresh water was injected into another natural core, which was plugged with water treatment residue, to determine the effective life. The results indicate that the water treatment residue has a strongly plugging capability, a resistance to erosion and a long effective life, and thus it can be used as a cheap raw material for profile control. In the past 8 years, a total of 60,164 m^3 of water treatment residue has been used for profile control of 151 well treatments, with a success ratio of 98% and an effective ratio of 83.2%. In the field tests, the profile control agent increased both starting pressure and injection pressure of injectors, and decreased the apparent water injectivity coefficient, significantly improving intake profiles and lengthening average service life of injectors. 28,381 tons of additional oil were recovered from these corresponding oil wells, with economic benefits of ¥3,069.55×10^4 (RMB) and a remarkable input-output ratio of 8.6:1.
基金supported by China Postdoctoral Science Foundation(No.2021M702304)Shandong Provincial Natural Science Foundation Youth Fund(No.ZR2021QE260).
文摘After steam discharge in heavy oil reservoirs,the distribution of temperature,pressure,and permeability in different wells becomes irregular.Flow channels can easily be produced,which affect the sweep efficiency of the oil displacement.Previous studies have shown that the salting-out plugging method can effectively block these channels in high-temperature reservoirs,improve the suction profile,and increase oil production.In the present study,the optimal dosage of the plugging agent is determined taking into account connection transmissibility and inter-well volumes.Together with the connectivity model,a water flooding simulation model is introduced.Moreover,a non-gradient stochastic disturbance algorithm is used to obtain the optimal plugging agent dosage,which provides the basis for the high-temperature salting-out plugging agent adjustment in the field.
文摘A method for the treatment of hazardous waste drilling fluids,potentially leading to environmental pollution,is considered.The waste drilling fluid is treated with an inorganic flocculant,an organic flocculant,and a pH regulator.The profile control agent consists of partially hydrolyzed polyacrylamide,formaldehyde,hexamethylenetetramine,resorcinol,phenol,and the treated waste drilling fluid itself.For a waste drilling fluid concentration of 2500 mg/L,the gelling time of the profile control agent is 25 h,and the gelling strength is 32,000 mPa.s.Compared with the profile control agent prepared by recirculated water under the same conditions,the present profile control agent displays better stability,salt-resistance,and performance.
文摘In order to improve the effect of water control and oil stabilization during high water cut period, a mathematical model of five point method well group was established with the high water cut well group of an Oilfield as the target area, the variation law of water cut and recovery factor of different injection parameters was analyzed, and the optimization research of injection parameters of polymer enhanced foam flooding was carried out. The results show that the higher the injection rate, the lower the water content curve, and the higher the oil recovery rate. As the foam defoamed when encountering oil, when the injection time was earlier than 80% of water cut, the later the injection time was, the better the oil displacement effect would be. When the injection time was later than 80% of water cut, the later the injection time was, the worse the oil displacement effect would be. The larger the injection volume, the lower the water content curve and the higher the recovery rate. After the injection volume exceeded 0.2 PV, the amplitude of changes in water content and recovery rate slowed down. The optimal injection parameters of profile control agent for high water content well group in Oilfield A were: injection rate of 15 m<sup>3</sup>/d, injection timing of 80% water content, and injection volume of 0.2 PV.
文摘In view of the rapid decline rate of oil production and gradual increase of water cut in oil wells in Block S, based on the determination of the formula of foam profile control agent, the optimization study of foam profile control injection scheme was carried out. Petrel software is used to establish a facies controlled geological model based on stochastic modeling method in Block S, and CMG software is used for numerical simulation to design 7 sets of foam profile control prediction schemes. Dynamic data and numerical simulation methods are used to optimize foam injection mode and injection cycle. By simulating and calculating, the optimal injection method of alternating gas and liquid injection and the optimal plan with an injection period of 2 months were selected. Through the calculation results of various research plans, it can be seen that the water content of the optimal plan has decreased significantly, and the oil production rate has increased significantly, in order to slow down production decline, control water content rise, extend the economic recovery period of the oilfield, and achieve the goal of improving oil recovery.
文摘Block A was fully transferred in December 2011, and has experienced thermal connection, displacement and steam breakthrough. It is currently in the stage of "erosion adjustment". Affected by factors such as reservoir heterogeneity and long development time of steam flooding, the high permeability layer in the block has a single-layer breakthrough in the longitudinal direction and a one-way breakthrough of steam in the transverse direction, resulting in uneven reservoir utilization. In order to further expand the swept volume of steam and improve the efficiency of steam flooding, the multi-medium profile control and oil displacement technology research has been carried out, the formulation of high-temperature profile control agent and foaming agent has been optimized, and a reasonable injection method has been designed. The field implementation of 8 well groups has achieved remarkable oil increase effect, and this technology has broad application prospects.
文摘Affected by reservoir heterogeneity, there is often a serious problem of water channeling in the late stage of water injection oilfield development. Conventional water injection adjustment is difficult to further improve water drive recovery. It is necessary to adopt deep profile control and displacement technology to block water channeling channel and improve water drive efficiency.Based on the analysis of deep profile control and flooding mechanism, this paper analyzes the composition, technical indexes and adaptive conditions of seven types of profile control and flooding agent formula system, and takes block J as an example to analyze the deep adjustment effect in detail, including profile control and flooding agent system, injection volume and changes of various indexes after profile control and flooding. The effect of increasing oil and controlling water is remarkable, with an efficiency of 36.148 million yuan and an input-output ratio of 1:2.81,To achieve the purpose of cost reduction and efficiency increase under low oil prices, the achievements and understanding can provide reference experience for peers.
文摘Affected by factors such as rapid change of sedimentary microfacies in plane, serious reservoir heterogeneity in vertical direction and perfection of injection-production well pattern, low utilization rate of injected water exists in water injection development of block S, which results in serious water flooding, low water flooding efficiency and high dispersion of remaining oil, as well as poor downhole technical conditions, so it is difficult to further improve oil recovery by conventional water injection adjustment. Including chemical agent system optimization design, pilot test well group optimization, injection volume design, development index prediction, etc. Five well groups were implemented on site. Two wells were sidetracked in the old wells, with an average daily oil production of 43 tons, comprehensive water cut of 4.2%, cumulative oil production of 25,200 tons in stages, improvement in water injection pressure, waterline propulsion speed, formation water absorption status, etc. The purpose of cost reduction and efficiency enhancement was achieved under low oil price. The results and understanding provided reference experience for similar reservoirs.
基金Project (No. 60772092) supported by the National Natural Science Foundation of China
文摘Tensor interpolation is a key step in the processing algorithms of diffusion tensor imaging (DTI), such as registration and tractography. The diffusion tensor (DT) in biological tissues is assumed to be positive definite. However, the tensor interpolations in most clinical applications have used a Euclidian scheme that does not take this assumption into account. Several Rie-mannian schemes were developed to overcome this limitation. Although each of the Riemannian schemes uses different metrics, they all result in a ‘fixed’ interpolation profile that cannot adapt to a variety of diffusion patterns in biological tissues. In this paper, we propose a DT interpolation scheme to control the interpolation profile, and explore its feasibility in clinical applications. The profile controllability comes from the non-uniform motion of interpolation on the Riemannian geodesic. The interpolation experiment with medical DTI data shows that the profile control improves the interpolation quality by assessing the reconstruction errors with the determinant error, Euclidean norm, and Riemannian norm.
基金The work was supported by the National Natural Science Foundation of China(No.51674208)Sichuan Provincial Key Labo-ratory of Applied Chemistry for Oil and Gas Field Open Fund(YQKF202010)Southwest Petroleum University College Students Open Experimental Fund(2020KSZ33001,2020KSZ04047).
文摘Inspired by the viscoelastic displacement theory,a product called preformed particle gel(PPG)is developed as conformance control agent to enhance oil recovery and control excess water production.The migration law of PPG suspension in porous media is related to its deep profile control and displacement capability.Laboratory experiments indicate that PPG suspension has good viscosity increasing,and the apparent viscosity decreases with the increase of shear rate.PPG suspension is mainly elastic,and its network structure makes it have certain shear stability.PPG particles realize migration in porous media in the way of“accumulation and blockage/pressure increase/deformation and migration”.When the ratio of the PPG particle size to the pore throat diameter d ranges from 35.52 to 53.38,the particles can match through the porous medium.When the permeability difference of the parallel model is 5,PPG suspension has the highest profile improvement rate,69.10%.PPG suspension can adjust the planar heterogeneity,and increase the oil recovery rate by 20.75%.The PPG suspension can effectively start“cluster"、“film”and“blind end residual oil”,and has a high oil washing efficiency.The core NMR T2 spectrum shows that PPG suspension mainly reduces oil saturation in mesopores and macropores.After PPG flooding,the EOR capacity of small pores is the highest,39.11%.
基金National Key Scientific Technological Project of the Ninth Five-year of China(No.97-316-01-01)
文摘Varying contact-length backup roll and linearly variable crown work roll are provided for improving the mill performance of profile and flatness control. Integrated with theses technologies, relevant profile and flatness control models are developed for hot strip mills on the basis of large amount of finite element calculation. These models include shape setup control model in process control system, bending force feedforward control model, crown feedback control model and flatness feedback control model in basis automation system. Such a profile and flatness control system with full functions is applied in 1 700 mm industrial hot strip mills of Ansteel. Large amount of production data shows that the crown precision with the tolerance of±18 μm is over 90%, the strip percentage which the actual flatness is within ±25 I-unit surpasses 96%, and general roll consume is reduced by 28% by using the profile and fiatness control system. In addition, schedule-free rolling is realized.