Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.展开更多
BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notabl...BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.展开更多
Gastric carcinoma(GC)is a malignancy with multifactorial involvement,multicellular regulation,and multistage evolution.The classic Correa's cascade of intestinal GC specifies a trilogy of malignant transformation ...Gastric carcinoma(GC)is a malignancy with multifactorial involvement,multicellular regulation,and multistage evolution.The classic Correa's cascade of intestinal GC specifies a trilogy of malignant transformation of the gastric mucosa,in which normal gastric mucosa gradually progresses from inactive or chronic active gastritis(Phase I)to gastric precancerous lesions(Phase II)and finally to GC(Phase III).Correa's cascade highlights the evolutionary pattern of GC and the importance of early intervention to prevent malignant transformation of the gastric mucosa.Intervening in early gastric mucosal lesions,i.e.,Phases I and II,will be the key strategy to prevent and treat GC.Natural products(NPs)have been an important source for drug development due to abundant sources,tremendous safety,and multiple pharmacodynamic mechanisms.This review is the first to investigate and summarize the multi-step effects and regulatory mechanisms of NPs on the Correa's cascade in gastric carcinogenesis.In Phase I,NPs modulate Helicobacter pylori urease activity,motility,adhesion,virulence factors,and drug resistance,thereby inhibiting H.pylori-induced gastric mucosal inflammation and oxidative stress,and facilitating ulcer healing.In Phase II,NPs modulate multiple pathways and mediators regulating gastric mucosal cell cycle,apoptosis,autophagy,and angiogenesis to reverse gastric precancerous lesions.In Phase III,NPs suppress cell proliferation,migration,invasion,angiogenesis,and cancer stem cells,induce apoptosis and autophagy,and enhance chemotherapeutic drug sensitivity for the treatment of GC.In contrast to existing work,we hope to uncover NPs with sequential therapeutic effects on multiple phases of GC development,providing new ideas for gastric cancer prevention,treatment,and drug development.展开更多
OBJECTIVE:To evaluate the therapeutic effects of Xiahuo Pingwei San(夏藿平胃散,XHPWS)on ulcerative colitis(UC)in mice and to explore the underlying mechanisms through a network pharmacology approach.METHODS:Ultra-perf...OBJECTIVE:To evaluate the therapeutic effects of Xiahuo Pingwei San(夏藿平胃散,XHPWS)on ulcerative colitis(UC)in mice and to explore the underlying mechanisms through a network pharmacology approach.METHODS:Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF/MS)was utilized to identify the chemical composition and authenticate the active constituents of XHPWS,ensuring rigorous quality control across batches.A dextran sulfate sodium(DSS)-induced UC model was established in C57BL/6 mice,which were treated with XHPWS in vivo.The efficacy against UC was assessed by measuring parameters such as body weight,disease activity index(DAI)scores,and colon length.Levels of inflammatory cytokines,including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-alpha(TNF-α),in colonic tissue were evaluated using enzymelinked immunosorbent assay(ELISA).Histological analysis of colon sections was conducted using hematoxylin and eosin staining.A network pharmacology approach was employed to explore the mechanisms of XHPWS and to predict its potential targets in UC treatment.Predicted protein expressions in colonic tissue were validated using immune-ohistochemistry(IHC)and Western blotting techniques.RESULTS:XHPWS effectively alle via ted DSS-induced UC symptoms in mice,as evidenced by restored body weight,reduced colon shortening,and decreased DAI scores.Histopathological examination revealed that XHPWS significantly reduced intestinal inflammatory infiltration,restored intestinal epithelial permeability,and increased goblet cell count.Network pharmacology analysis identified 63 active compounds in XHPWS and suggested that it might target 35 potential proteins associated with UC treatment.Functional enrichment analysis indicated that the protective mechanism of XHPWS could be related to the advanced glycation end products-receptor for advanced glycation end products(AGE-RAGE)signaling pathway.Notably,quercetin,kaempferol,wogonin,and nobiletin,the main components of XHPWS,showed strong correlations with the core targets.Additionally,experimental validation demonstrated that XHPWS significantly decreased levels of inflammatory cytokines interleukin 6(IL-6),interleukin 1 beta(IL-1β),and tumor necrosis factor alpha(TNF-α)in UC mice,while downregulating the expression of proteins related to the AGE-RAGE pathway.CONCLUSION:Our study demonstrated that XHPWS effectively alle via tes colitis symptoms and inflammation in UC mice,potentially through the regulation of the AGE-RAGE pathway.These findings provide strong evidence for the therapeutic potential of XHPWS in UC treatment,thereby broadening its clinical applications.展开更多
Natural products,with their remarkable structural and biological diversity,have historically served as a vital bridge between chemistry,the life sciences,and medicine.They not only provide essential scaffolds for drug...Natural products,with their remarkable structural and biological diversity,have historically served as a vital bridge between chemistry,the life sciences,and medicine.They not only provide essential scaffolds for drug discovery but also inspire innovative strategies in drug development.The biomimetic synthesis of natural products employs principles from biomimicry,applying inspiration from biogenetic processes to design synthetic strategies that mimic biosynthetic processes.Biomimetic synthesis is a highly efficient approach in synthetic chemistry,as it addresses critical challenges in the synthesis of structurally complex natural products with significant biological and medicinal importance.It has gained widespread attention from researchers in chemistry,biology,pharmacy,and related fields,underscoring its interdisciplinary impact.In this perspective,we present recent advances and challenges in the biomimetic synthesis of natural products,along with the significance and prospects of this field,highlighting the transformative potential of biomimetic synthesis strategies for both chemical and biosynthetic approaches to natural product synthesis in the pursuit of novel therapeutic agents.展开更多
Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical composit...Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical compositions and multifaceted pharmacological mechanisms,demonstrate widespread application in treating diverse diseases.However,research and development face significant challenges,including component complexity,extraction difficulties,and efficacy validation.AI technology,particularly through deep learning(DL)and machine learning(ML)approaches,enables efficient analysis of extensive datasets,facilitating drug screening,component analysis,and pharmacological mechanism elucidation.The implementation of AI technology demonstrates considerable potential in virtual screening,compound optimization,and synthetic pathway design,thereby enhancing natural medicines’bioavailability and safety profiles.Nevertheless,current applications encounter limitations regarding data quality,model interpretability,and ethical considerations.As AI technologies continue to evolve,natural medicines research and development will achieve greater efficiency and precision,advancing both personalized medicine and contemporary drug development approaches.展开更多
Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI pre...Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.展开更多
Agricultural Products Processing and Storage (ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature) is an international,pect-review ed open access journal with the a...Agricultural Products Processing and Storage (ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature) is an international,pect-review ed open access journal with the aim to offer a platform for the rapid dissemination of significant,novel,and high-impact research in the fields of agricultural product processing science,technology,engineering,and nutrition.Additio nally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.展开更多
Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.展开更多
1 IntroductionChinese Medicine and Natural Products(CMNP)a quar-terly,open-access publication that is funded officially by 2017 Project for Enhancing International Impact of China STM Journals.CMNP is devoted to publi...1 IntroductionChinese Medicine and Natural Products(CMNP)a quar-terly,open-access publication that is funded officially by 2017 Project for Enhancing International Impact of China STM Journals.CMNP is devoted to publishing the theoretical and clinical research achievements in the field of Chinese medicine so as to promote the academic exchange of Chinese medicine.展开更多
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.
文摘BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.
基金supported by the Chengdu University of Traditional Chinese Medicine"Xinglin Scholars"Program,China(Grant No.:MPRC2023014).
文摘Gastric carcinoma(GC)is a malignancy with multifactorial involvement,multicellular regulation,and multistage evolution.The classic Correa's cascade of intestinal GC specifies a trilogy of malignant transformation of the gastric mucosa,in which normal gastric mucosa gradually progresses from inactive or chronic active gastritis(Phase I)to gastric precancerous lesions(Phase II)and finally to GC(Phase III).Correa's cascade highlights the evolutionary pattern of GC and the importance of early intervention to prevent malignant transformation of the gastric mucosa.Intervening in early gastric mucosal lesions,i.e.,Phases I and II,will be the key strategy to prevent and treat GC.Natural products(NPs)have been an important source for drug development due to abundant sources,tremendous safety,and multiple pharmacodynamic mechanisms.This review is the first to investigate and summarize the multi-step effects and regulatory mechanisms of NPs on the Correa's cascade in gastric carcinogenesis.In Phase I,NPs modulate Helicobacter pylori urease activity,motility,adhesion,virulence factors,and drug resistance,thereby inhibiting H.pylori-induced gastric mucosal inflammation and oxidative stress,and facilitating ulcer healing.In Phase II,NPs modulate multiple pathways and mediators regulating gastric mucosal cell cycle,apoptosis,autophagy,and angiogenesis to reverse gastric precancerous lesions.In Phase III,NPs suppress cell proliferation,migration,invasion,angiogenesis,and cancer stem cells,induce apoptosis and autophagy,and enhance chemotherapeutic drug sensitivity for the treatment of GC.In contrast to existing work,we hope to uncover NPs with sequential therapeutic effects on multiple phases of GC development,providing new ideas for gastric cancer prevention,treatment,and drug development.
基金the Guangdong Provincial Basic and Applied Basic Research Project:Mechanistic Study on the Regulation of Inflammatory Microenvironment and Improvement of Ulcerative Colitis by Lingnan Traditional Medicine Ficus Pandurata Hance through Wilms'Tumor 1-associating Protein-Mediated RNA Methyltransferase Promoting Toll Like Receptor 4 m6A Modification(2023A1515011699)the Zhongshan Medical Research Project:Mechanistic Study on the Action of Xiahuo Pingwei San in the Treatment of Ulcerative Colitis(2022A020446)。
文摘OBJECTIVE:To evaluate the therapeutic effects of Xiahuo Pingwei San(夏藿平胃散,XHPWS)on ulcerative colitis(UC)in mice and to explore the underlying mechanisms through a network pharmacology approach.METHODS:Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF/MS)was utilized to identify the chemical composition and authenticate the active constituents of XHPWS,ensuring rigorous quality control across batches.A dextran sulfate sodium(DSS)-induced UC model was established in C57BL/6 mice,which were treated with XHPWS in vivo.The efficacy against UC was assessed by measuring parameters such as body weight,disease activity index(DAI)scores,and colon length.Levels of inflammatory cytokines,including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-alpha(TNF-α),in colonic tissue were evaluated using enzymelinked immunosorbent assay(ELISA).Histological analysis of colon sections was conducted using hematoxylin and eosin staining.A network pharmacology approach was employed to explore the mechanisms of XHPWS and to predict its potential targets in UC treatment.Predicted protein expressions in colonic tissue were validated using immune-ohistochemistry(IHC)and Western blotting techniques.RESULTS:XHPWS effectively alle via ted DSS-induced UC symptoms in mice,as evidenced by restored body weight,reduced colon shortening,and decreased DAI scores.Histopathological examination revealed that XHPWS significantly reduced intestinal inflammatory infiltration,restored intestinal epithelial permeability,and increased goblet cell count.Network pharmacology analysis identified 63 active compounds in XHPWS and suggested that it might target 35 potential proteins associated with UC treatment.Functional enrichment analysis indicated that the protective mechanism of XHPWS could be related to the advanced glycation end products-receptor for advanced glycation end products(AGE-RAGE)signaling pathway.Notably,quercetin,kaempferol,wogonin,and nobiletin,the main components of XHPWS,showed strong correlations with the core targets.Additionally,experimental validation demonstrated that XHPWS significantly decreased levels of inflammatory cytokines interleukin 6(IL-6),interleukin 1 beta(IL-1β),and tumor necrosis factor alpha(TNF-α)in UC mice,while downregulating the expression of proteins related to the AGE-RAGE pathway.CONCLUSION:Our study demonstrated that XHPWS effectively alle via tes colitis symptoms and inflammation in UC mice,potentially through the regulation of the AGE-RAGE pathway.These findings provide strong evidence for the therapeutic potential of XHPWS in UC treatment,thereby broadening its clinical applications.
基金financially supported by the National Key Research and Development Program of China(2023YFC3503902)the National Natural Science Foundation of China(82430108,82293681(82293680),and 82321004)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120015 and 2024A1515030103)the Guangdong Major Project of Basic and Applied Basic Research(2023B0303000026)the Science and Technology Projects in Guangzhou(202102070001)。
文摘Natural products,with their remarkable structural and biological diversity,have historically served as a vital bridge between chemistry,the life sciences,and medicine.They not only provide essential scaffolds for drug discovery but also inspire innovative strategies in drug development.The biomimetic synthesis of natural products employs principles from biomimicry,applying inspiration from biogenetic processes to design synthetic strategies that mimic biosynthetic processes.Biomimetic synthesis is a highly efficient approach in synthetic chemistry,as it addresses critical challenges in the synthesis of structurally complex natural products with significant biological and medicinal importance.It has gained widespread attention from researchers in chemistry,biology,pharmacy,and related fields,underscoring its interdisciplinary impact.In this perspective,we present recent advances and challenges in the biomimetic synthesis of natural products,along with the significance and prospects of this field,highlighting the transformative potential of biomimetic synthesis strategies for both chemical and biosynthetic approaches to natural product synthesis in the pursuit of novel therapeutic agents.
基金supports from the National Key Research and Development Program of China(No.2020YFE0202200)the National Natural Science Foundation of China(Nos.81903538,82322073,92253303)+1 种基金the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No.ZYYCXTD-D-202004)the Science and Technology Commission of Shanghai Municipality(Nos.22ZR1474200,24JS2830200).
文摘Artificial intelligence(AI)has emerged as a transformative technology in accelerating drug discovery and development within natural medicines research.Natural medicines,characterized by their complex chemical compositions and multifaceted pharmacological mechanisms,demonstrate widespread application in treating diverse diseases.However,research and development face significant challenges,including component complexity,extraction difficulties,and efficacy validation.AI technology,particularly through deep learning(DL)and machine learning(ML)approaches,enables efficient analysis of extensive datasets,facilitating drug screening,component analysis,and pharmacological mechanism elucidation.The implementation of AI technology demonstrates considerable potential in virtual screening,compound optimization,and synthetic pathway design,thereby enhancing natural medicines’bioavailability and safety profiles.Nevertheless,current applications encounter limitations regarding data quality,model interpretability,and ethical considerations.As AI technologies continue to evolve,natural medicines research and development will achieve greater efficiency and precision,advancing both personalized medicine and contemporary drug development approaches.
基金supported by the National Natural Science Foundation of China(Nos.82173746 and U23A20530)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission)。
文摘Accurate prediction of drug-target interactions(DTIs)plays a pivotal role in drug discovery,facilitating optimization of lead compounds,drug repurposing and elucidation of drug side effects.However,traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features.In this study,we proposed KG-CNNDTI,a novel knowledge graph-enhanced framework for DTI prediction,which integrates heterogeneous biological information to improve model generalizability and predictive performance.The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm,which were further enriched with contextualized sequence representations obtained from ProteinBERT.For compound representation,multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated.The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor.Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods,particularly in terms of Precision,Recall,F1-Score and area under the precision-recall curve(AUPR).Ablation analysis highlighted the substantial contribution of knowledge graph-derived features.Moreover,KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease,resulting in 40 candidate compounds.5 were supported by literature evidence,among which 3 were further validated in vitro assays.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.
文摘Agricultural Products Processing and Storage (ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature) is an international,pect-review ed open access journal with the aim to offer a platform for the rapid dissemination of significant,novel,and high-impact research in the fields of agricultural product processing science,technology,engineering,and nutrition.Additio nally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identification;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.The research scope includes the quality and processing characteristics of food raw materials,the relationships of nutritional components and bioactive substances with human health,product flavor and sensory characteristics,the control of harmful substances during processing or cooking,product preservation,storage and packaging;microorganisms and fermentation,illegal drug residues and food safety detection;authenticity identifi cation;cell-cultured meat,regulations and standards.
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.
文摘1 IntroductionChinese Medicine and Natural Products(CMNP)a quar-terly,open-access publication that is funded officially by 2017 Project for Enhancing International Impact of China STM Journals.CMNP is devoted to publishing the theoretical and clinical research achievements in the field of Chinese medicine so as to promote the academic exchange of Chinese medicine.