Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
Productivity prediction plays an important role in the efficient and rational development of shale gas reservoirs.Current research on the productivity of multistage fractured horizontal wells in shale gas reservoirs d...Productivity prediction plays an important role in the efficient and rational development of shale gas reservoirs.Current research on the productivity of multistage fractured horizontal wells in shale gas reservoirs does not consider the stress-sensitive effects of natural fractures,hydraulic fracture morphology,and seepage characteristics in the same capacity model.Therefore,we considered the adsorption,desorption,and diffusion mechanisms(pseudo-steady state and transient diffusion)of shale gas in reservoirs and the stress-sensitive effects of natural fractures based on the dual-medium seepage theory model.Thefinite conductivity of the hydraulic fracture and hydraulic fracture azimuth were considered in the hydraulic fracture model.The source function method was used to discretize the crack,and the hydraulic fracture model was superimposed.Finally,the two models were coupled to obtain the unstable seepage and productivity models of the multistage fractured hor-izontal well in a shale gas reservoir.According to the established horizontal well production model of shale gas fracturing,the production characteristic curve was calculated by programming,and the simulation results were compared with thefield data of shale gas wells to verify the accuracy of the model.We used the model to analyze the effects of fracture conductivity,fracture half-length,fracture spacing,skin factor,storage ratio and leakage coefficient on productivity.展开更多
To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around t...To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius,that is,the formation has different permeability characteristics with the perforation depth as the dividing line.Generally,the permeability is measured by the permeability tester,but this approach has a high workload and limited application.In this paper,according to the reservoir characteristics of perforated horizontal wells,the reservoir is divided into two areas:the original reservoir area and the near-well high permeability reservoir area.Based on the theory of seepage mechanics and the formula of open hole productivity,the permeability calculation formula of near-well high permeability reservoir area with perforation parameters is deduced.According to the principle of seepage continuity,the seepage is regarded as the synthesis of two directions:the horizontal plane elliptic seepage field and the vertical plane radial seepage field,and the oil well productivity prediction model of the perforated horizontal well is established by partition.The model comparison demonstrates that the model is reasonable and feasible.To calculate and analyze the effect of oil well production and the law of influencing factors,actual production data of the oilfield are substituted into the oil well productivity formula.It can effectively guide the technical process design and effect prediction of perforated horizontal wells.展开更多
Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable...Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.展开更多
There is a close theoretical similarity between water pressure gradients in aquifers and applied voltage gradients in aqueous solutions. A series of electric field analogue experiments has been conducted by focusing ...There is a close theoretical similarity between water pressure gradients in aquifers and applied voltage gradients in aqueous solutions. A series of electric field analogue experiments has been conducted by focusing on symmetrical multi-lateral wells and dual-lateral wells of arbitrary angles between laterals. This research not only evaluates the productivity equations of a symmetrical multi-lateral well showing the effect of angles on productivity, but also proposes the concept of the multi-lateral productivity coefficient. Moreover, the multi-lateral productivity coefficient equation is designed to calculate the productivity of dual-lateral wells of variable angles, which is in turn supported by experiment. It also helps provide the experimental basis for optimizing the configuration, and building the semi-analytic productivity model, of multi-lateral wells.展开更多
Accurately predicting the estimated ultimate recovery(EUR)of shale gas wells is key to formulating a shale gas reservoir development plan.However,in practice,determining the EUR remains challenging due to the complex ...Accurately predicting the estimated ultimate recovery(EUR)of shale gas wells is key to formulating a shale gas reservoir development plan.However,in practice,determining the EUR remains challenging due to the complex dynamic characteristics of shale gas production,which first decreases rapidly and then slowly.In this study,based on material balance theory and equivalent seepage resistance theory and considering crucial factors including primary water,adsorption,and pore effects,a new production model for fractured horizontal shale gas wells is developed.The calculation process is designed by using Newton's iterative method.The shale gas well EUR prediction method is verified,and the factors influencing the EUR are analyzed.The results show that adsorption has a significant effect on production,especially on the Langmuir volume.Moreover,ignoring the influence of primary water,which exists in shale gas reservoirs in the form of bound water,results in an overestimation of the EUR.Furthermore,production positively correlates with the fracture half-length and the number of fractures,but the action mechanisms of these two factors differ.Unlike the number of fractures,which predominantly affects the initial stage of production,the fracture half-length has a more nuanced role.It is capable of altering the stimulated reservoir volume zone,thereby exerting influence over the entire production life cycle.展开更多
The net primary productivity of vegetation reflects the total amount of carbon fixed by plants through photosynthesis each year. The study of vegetation net primary productivity is one of the core contents of global c...The net primary productivity of vegetation reflects the total amount of carbon fixed by plants through photosynthesis each year. The study of vegetation net primary productivity is one of the core contents of global change and terrestrial ecosystems. This article reviews the current research status of net primary productivity of terrestrial vegetation, and comprehensively analyzes the advantages and disadvantages of three types of productivity estimation models, climate relative models, biogeochemical models, and light energy utilization models. The light energy utilization models have become the mainstream method for estimating vegetation net primary productivity because they can directly use remote sensing data. However, there are still many deficiencies in the estimation of vegetation net primary productivity, which need to be further improved and tested.展开更多
Software productivity has always been one of the most critical metrics for measuring software development.However,with the open-source community(e.g.,GitHub),new software development models are emerging.The traditiona...Software productivity has always been one of the most critical metrics for measuring software development.However,with the open-source community(e.g.,GitHub),new software development models are emerging.The traditional productivity metrics do not provide a comprehensive measure of the new software development models.Therefore,it is necessary to build a productivity measurement model of open source software ecosystem suitable for the open-source community’s production activities.Based on the natural ecosystem,this paper proposes concepts related to the productivity of open source software ecosystems,analyses influencing factors of open source software ecosystem productivity,and constructs a measurement model using these factors.Model validation experiments show that the model is compatible with a large portion of open source software ecosystems in GitHub.This study can provide references for participants of the open-source software ecosystem to choose proper types of ecosystems.The study also provides a basis for ecosystem health assessment for researchers interested in ecosystem quality.展开更多
Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are st...Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.展开更多
The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disa...The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.展开更多
Pakistani marine waters are under an open access regime. Due to poor management and policy implications, blind fishing is continued which may result in ecological as well as economic losses. Thus, it is of utmost impo...Pakistani marine waters are under an open access regime. Due to poor management and policy implications, blind fishing is continued which may result in ecological as well as economic losses. Thus, it is of utmost importance to estimate fishery resources before harvesting. In this study, catch and effort data, 1996-2009, of Kiddi shrimp Parapenaeopsis stylifera fishery from Pakistani marine waters was analyzed by using specialized fishery software in order to know fishery stock status of this commercially important shrimp. Maximum, minimum and average capture production ofP. stylifera was observed as 15 912 metric tons (mr) (1997), 9 438 mt (2009) and 11 667 mt/a. Two stock assessment tools viz. CEDA (catch and effort data analysis) and ASPIC (a stock production model incorporating covariates) were used to compute MSY (maximum sustainable yield) of this organism. In CEDA, three surplus production models, Fox, Schaefer and Pella-Tomlinson, along with three error assumptions, log, log normal and gamma, were used. For initial proportion (IP) 0.8, the Fox model computed MSY as 6 858 nat (CV=0.204, R^2=0.709) and 7 384 mt (CV=0.149, R^2=0.72) for log and log normal error assumption respectively. Here, gamma error produced minimization failure. Estimated MSY by using Schaefer and Pella-Tomlinson models remained the same for log, log normal and gamma error assumptions i.e. 7 083 mt, 8 209 mt and 7 242 mt correspondingly. The Schafer results showed highest goodness of fit R2 (0.712) values. ASPIC computed MSY, CV, R2, FMsv and BMsv parameters for the Fox model as 7 219 nat, 0.142, 0.872, 0.111 and 65 280, while for the Logistic model the computed values remained 7 720 mt, 0.148, 0.868, 0.107 and 72 110 correspondingly. Results obtained have shown that P. stylifera has been overexploited. Immediate steps are needed to conserve this fishery resource for the future and research on other species of commercial importance is urgently needed.展开更多
Surplus production models(SPMs)are among the simplest and most widely used fishery stock assessment models.The catch-effort data analysis(CEDA)and a surplus production model incorporating covariates(ASPIC)are software...Surplus production models(SPMs)are among the simplest and most widely used fishery stock assessment models.The catch-effort data analysis(CEDA)and a surplus production model incorporating covariates(ASPIC)are softwares for analyzing fishery catch and fishing effort data using nonequilibrium SPMs.In China Fishery Statistical Yearbook,annual fishery production and fishing effort data of the Yellow Sea,Bohai Sea,East China Sea,and South China Sea have been published from 1979 till present.Using its catch and fishing effort data from 1980 to 2018,we apply the CEDA and ASPIC to evaluate fishery resources in Chinese coastal waters.The results show that the total maximum sustainable yield(MSY)estimate of the four China seas is 10.05-10.83 million tons,approximately equal to the marine fishery catch(10.44 million tons)reported in 2018.It can be concluded that China’s coastal fishery resources are currently fully exploited and must be protected with a precautionary approach.Both softwares produced similar results;however,the CEDA had a much higher R2 value(above 0.9)than ASPIC(about 0.2),indicating that CEDA can better fit the data and therefore is more suitable for analyzing the fishery resources in the coastal waters of China.展开更多
This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal we...This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells.Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs.In a significant departure from these models,our approach incorporates an initiation pressure gradient and a discrete fracture seepage network,providing a more realistic representation of the seepage process.The model also integrates an enhanced fluid-solid interaction,which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir.This is achieved through the incorporation of improved permeability and stress coupling,leading to more precise predictions of reservoir behavior.The numerical solutions derived from the model are obtained through the sophisticated finite element method,ensuring high accuracy and computational efficiency.To ensure the model’s reliability and accuracy,the outcomes were tested against a real-world case,with results demonstrating strong alignment.A key revelation from the study is the significant difference between uncoupled and fully coupled volumetrically fractured horizontal wells,challenging conventional wisdom in the field.Additionally,the study delves into the effects of stress,fracture length,and fracture number on reservoir production,contributing valuable insights for the design and optimization of tight reservoirs.The findings from this study have the potential to revolutionize the field of tight reservoir prediction and management,offering significant advancements in petroleum engineering.The proposed approach brings forth a more nuanced understanding of tight reservoir systems and opens up new avenues for optimizing reservoir management and production.展开更多
The southern Patagonian stock(SPS) of Argentinian shortfin squid, Illex argentinus, is an economically important squid fishery in the Southwest Atlantic. Environmental conditions in the region play an important role...The southern Patagonian stock(SPS) of Argentinian shortfin squid, Illex argentinus, is an economically important squid fishery in the Southwest Atlantic. Environmental conditions in the region play an important role in regulating the population dynamics of the I. argentinus population. This study develops an environmentally dependent surplus production(EDSP) model to evaluate the stock abundance of I. argentines during the period of 2000 to 2010. The environmental factors(favorable spawning habitat areas with sea surface temperature of 16–18°C) were assumed to be closely associated with carrying capacity(K) in the EDSP model. Deviance Information Criterion(DIC) values suggest that the estimated EDSP model with environmental factors fits the data better than a Schaefer surplus model without environmental factors under uniform and normal scenarios.The EDSP model estimated a maximum sustainable yield(MSY) from 351 600 t to 685 100 t and a biomass from 1 322 400 t to1 803 000 t. The fishing mortality coefficient of I. argentinus from 2000 to 2010 was smaller than the values of F(0.1) and F(MSY). Furthermore, the time series biomass plot of I. argentinus from 2000 to 2010 shows that the biomass of I.argentinus and this fishery were in a good state and not presently experiencing overfishing. This study suggests that the environmental conditions of the habitat should be considered within squid stock assessment and management.展开更多
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
The final product quality is determined by cumulation, coupling and propagation of product quality variations from all stations in multi-stage manufacturing systems (MMSs). Modeling and control of variation propagat...The final product quality is determined by cumulation, coupling and propagation of product quality variations from all stations in multi-stage manufacturing systems (MMSs). Modeling and control of variation propagation is essential to improve product quality. However, the current stream of variations (SOV) theory can only solve the problem that a single SOV affects the product quality. Due to the existence of multiple variation streams, limited research has been done on the quality control in serial-parallel hybrid multi-stage manufacturing systems (SPH-MMSs). A state space model and its modeling strategies are developed to describe the multiple variation streams stack-up in an SPH-MMS. The SOV theory is extended to SPH-MMS. The dimensions of system model are reduced to the production-reality level, and the effect and feasibility of the model is validated by a machining case.展开更多
Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density pe...Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density perforation is an effective one.It is difficult to evaluate well productivity and to analyze inflow profiles of horizontal wells with quantities of unevenly distributed perforations,which are characterized by different parameters.In this paper,fluid flow in each wellbore perforation,as well as the reservoir,was analyzed.A comprehensive model,coupling the fluid flow in the reservoir and the wellbore pressure drawdown,was developed based on potential functions and solved using the numerical discrete method.Then,a bottom water cresting model was established on the basis of the piston-like displacement principle.Finally,bottom water cresting parameters and factors influencing inflow profile were analyzed.A more systematic optimization method was proposed by introducing the concept of cumulative free-water production,which could maintain a balance(or then a balance is achieved)between stabilizing oil production and controlling bottom water cresting.Results show that the inflow profile is affected by the perforation distribution.Wells with denser perforation density at the toe end and thinner density at the heel end may obtain low production,but the water breakthrough time is delayed.Taking cumulative free-water production as a parameter to evaluate perforation strategies is advisable in bottom water reservoirs.展开更多
Fixture design and planning is one of the most important manufacturing activities, playing a pivotal role in deciding the lead time for product development. Fixture design, which affects the part-quality in terms of g...Fixture design and planning is one of the most important manufacturing activities, playing a pivotal role in deciding the lead time for product development. Fixture design, which affects the part-quality in terms of geometric accuracy and surface finish, can be enhanced by using the product manufacturing information(PMI) stored in the neutral standard for the exchange of product model data(STEP) file, thereby integrating design and manufacturing. The present paper proposes a unique fixture design approach, to extract the geometry information from STEP application protocol(AP) 242 files of computer aided design(CAD) models, for providing automatic suggestions of locator positions and clamping surfaces. Automatic feature extraction software "FiXplan", developed using the programming language C#, is used to extract the part feature, dimension and geometry information. The information from the STEP AP 242 file is deduced using geometric reasoning techniques, which in turn is utilized for fixture planning. The developed software is observed to be adept in identifying the primary, secondary, and tertiary locating faces and locator position configurations of prismatic components. Structural analysis of the prismatic part under different locator positions was performed using commercial finite element method software, ABAQUS, and the optimized locator position was identified on the basis of minimum deformation of the workpiece.The area-ratio(base locator enclosed area(%)/work piece base area(%)) for the ideal locator configuration was observed as 33%. Experiments were conducted on a prismatic workpiece using a specially designed fixture, for different locator configurations. The surface roughness and waviness of the machined surfaces were analysed using an Alicona non-contact optical profilometer. The best surface characteristics were obtained for the surface machined under the ideal locator positions having an area-ratio of 33%, thus validating the predicted numerical results. The efficiency, capability and applicability of the developed software is demonstrated for the finishing operation of a sensor cover – a typical prismatic component having applications in the naval industry, under different locator configurations.The best results were obtained under the proposed ideal locator configuration of area-ratio 33%.展开更多
The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive ca...The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.展开更多
Experience economy is a new economic development tendency after agricultural economy, industrial economy and service economy. Tourism consumption shows new characteristics in experience economy. Agricultural tourism p...Experience economy is a new economic development tendency after agricultural economy, industrial economy and service economy. Tourism consumption shows new characteristics in experience economy. Agricultural tourism product coincides with these characteristics, it is necessary to establish a model of agricultural tourism products based on experience economy. It is a model of wide range, strong personality and participation.展开更多
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
基金supported by the National Natural Science Foundation of China(Grant no.U19A2043)the Key Research and Development Projects of Science and Technology Plan of Sichuan Province,China(2018JZ0079).
文摘Productivity prediction plays an important role in the efficient and rational development of shale gas reservoirs.Current research on the productivity of multistage fractured horizontal wells in shale gas reservoirs does not consider the stress-sensitive effects of natural fractures,hydraulic fracture morphology,and seepage characteristics in the same capacity model.Therefore,we considered the adsorption,desorption,and diffusion mechanisms(pseudo-steady state and transient diffusion)of shale gas in reservoirs and the stress-sensitive effects of natural fractures based on the dual-medium seepage theory model.Thefinite conductivity of the hydraulic fracture and hydraulic fracture azimuth were considered in the hydraulic fracture model.The source function method was used to discretize the crack,and the hydraulic fracture model was superimposed.Finally,the two models were coupled to obtain the unstable seepage and productivity models of the multistage fractured hor-izontal well in a shale gas reservoir.According to the established horizontal well production model of shale gas fracturing,the production characteristic curve was calculated by programming,and the simulation results were compared with thefield data of shale gas wells to verify the accuracy of the model.We used the model to analyze the effects of fracture conductivity,fracture half-length,fracture spacing,skin factor,storage ratio and leakage coefficient on productivity.
文摘To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius,that is,the formation has different permeability characteristics with the perforation depth as the dividing line.Generally,the permeability is measured by the permeability tester,but this approach has a high workload and limited application.In this paper,according to the reservoir characteristics of perforated horizontal wells,the reservoir is divided into two areas:the original reservoir area and the near-well high permeability reservoir area.Based on the theory of seepage mechanics and the formula of open hole productivity,the permeability calculation formula of near-well high permeability reservoir area with perforation parameters is deduced.According to the principle of seepage continuity,the seepage is regarded as the synthesis of two directions:the horizontal plane elliptic seepage field and the vertical plane radial seepage field,and the oil well productivity prediction model of the perforated horizontal well is established by partition.The model comparison demonstrates that the model is reasonable and feasible.To calculate and analyze the effect of oil well production and the law of influencing factors,actual production data of the oilfield are substituted into the oil well productivity formula.It can effectively guide the technical process design and effect prediction of perforated horizontal wells.
基金the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD22XYS04).
文摘Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.
文摘There is a close theoretical similarity between water pressure gradients in aquifers and applied voltage gradients in aqueous solutions. A series of electric field analogue experiments has been conducted by focusing on symmetrical multi-lateral wells and dual-lateral wells of arbitrary angles between laterals. This research not only evaluates the productivity equations of a symmetrical multi-lateral well showing the effect of angles on productivity, but also proposes the concept of the multi-lateral productivity coefficient. Moreover, the multi-lateral productivity coefficient equation is designed to calculate the productivity of dual-lateral wells of variable angles, which is in turn supported by experiment. It also helps provide the experimental basis for optimizing the configuration, and building the semi-analytic productivity model, of multi-lateral wells.
基金supported by the National Natural Science Foundation of China(Grant Nos.52304024,52274034,and 52204035)the Natural Science Foundation of Chongqing,China(Grant No.CSTB2023NSCQ-MSX0264)+1 种基金the Project of Science and Technology Research Program of Chongqing Municipal Education Commission,China(Grant Nos.KJQN202201517 and KJQN202001501)the Research Foundation of the Chongqing University of Science and Technology,China(Grant No.ckrc2022025).
文摘Accurately predicting the estimated ultimate recovery(EUR)of shale gas wells is key to formulating a shale gas reservoir development plan.However,in practice,determining the EUR remains challenging due to the complex dynamic characteristics of shale gas production,which first decreases rapidly and then slowly.In this study,based on material balance theory and equivalent seepage resistance theory and considering crucial factors including primary water,adsorption,and pore effects,a new production model for fractured horizontal shale gas wells is developed.The calculation process is designed by using Newton's iterative method.The shale gas well EUR prediction method is verified,and the factors influencing the EUR are analyzed.The results show that adsorption has a significant effect on production,especially on the Langmuir volume.Moreover,ignoring the influence of primary water,which exists in shale gas reservoirs in the form of bound water,results in an overestimation of the EUR.Furthermore,production positively correlates with the fracture half-length and the number of fractures,but the action mechanisms of these two factors differ.Unlike the number of fractures,which predominantly affects the initial stage of production,the fracture half-length has a more nuanced role.It is capable of altering the stimulated reservoir volume zone,thereby exerting influence over the entire production life cycle.
文摘The net primary productivity of vegetation reflects the total amount of carbon fixed by plants through photosynthesis each year. The study of vegetation net primary productivity is one of the core contents of global change and terrestrial ecosystems. This article reviews the current research status of net primary productivity of terrestrial vegetation, and comprehensively analyzes the advantages and disadvantages of three types of productivity estimation models, climate relative models, biogeochemical models, and light energy utilization models. The light energy utilization models have become the mainstream method for estimating vegetation net primary productivity because they can directly use remote sensing data. However, there are still many deficiencies in the estimation of vegetation net primary productivity, which need to be further improved and tested.
基金supported in part by the National Key R&D Program of China under Grant No.2018YFB1003800.
文摘Software productivity has always been one of the most critical metrics for measuring software development.However,with the open-source community(e.g.,GitHub),new software development models are emerging.The traditional productivity metrics do not provide a comprehensive measure of the new software development models.Therefore,it is necessary to build a productivity measurement model of open source software ecosystem suitable for the open-source community’s production activities.Based on the natural ecosystem,this paper proposes concepts related to the productivity of open source software ecosystems,analyses influencing factors of open source software ecosystem productivity,and constructs a measurement model using these factors.Model validation experiments show that the model is compatible with a large portion of open source software ecosystems in GitHub.This study can provide references for participants of the open-source software ecosystem to choose proper types of ecosystems.The study also provides a basis for ecosystem health assessment for researchers interested in ecosystem quality.
基金Foundation: National Natural Science Foundation of China, No.41171328, No.41201184, No.41101537 National Basic Program of China, No.2010CB951502
文摘Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.
基金Supported by National Natural Science Foundation of China(Grant No.51375437)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05019)
文摘The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.
基金Supported by the Earmarked Fund for Modern Agro-Industry Technology Research System of Chinathe Special Research Fund of Ocean University of China(No.201022001)
文摘Pakistani marine waters are under an open access regime. Due to poor management and policy implications, blind fishing is continued which may result in ecological as well as economic losses. Thus, it is of utmost importance to estimate fishery resources before harvesting. In this study, catch and effort data, 1996-2009, of Kiddi shrimp Parapenaeopsis stylifera fishery from Pakistani marine waters was analyzed by using specialized fishery software in order to know fishery stock status of this commercially important shrimp. Maximum, minimum and average capture production ofP. stylifera was observed as 15 912 metric tons (mr) (1997), 9 438 mt (2009) and 11 667 mt/a. Two stock assessment tools viz. CEDA (catch and effort data analysis) and ASPIC (a stock production model incorporating covariates) were used to compute MSY (maximum sustainable yield) of this organism. In CEDA, three surplus production models, Fox, Schaefer and Pella-Tomlinson, along with three error assumptions, log, log normal and gamma, were used. For initial proportion (IP) 0.8, the Fox model computed MSY as 6 858 nat (CV=0.204, R^2=0.709) and 7 384 mt (CV=0.149, R^2=0.72) for log and log normal error assumption respectively. Here, gamma error produced minimization failure. Estimated MSY by using Schaefer and Pella-Tomlinson models remained the same for log, log normal and gamma error assumptions i.e. 7 083 mt, 8 209 mt and 7 242 mt correspondingly. The Schafer results showed highest goodness of fit R2 (0.712) values. ASPIC computed MSY, CV, R2, FMsv and BMsv parameters for the Fox model as 7 219 nat, 0.142, 0.872, 0.111 and 65 280, while for the Logistic model the computed values remained 7 720 mt, 0.148, 0.868, 0.107 and 72 110 correspondingly. Results obtained have shown that P. stylifera has been overexploited. Immediate steps are needed to conserve this fishery resource for the future and research on other species of commercial importance is urgently needed.
基金This study is supported by the project from the Food and Agriculture Organization of the United Nations(FAO)(No.GF.FIRFD.RA20403020400).
文摘Surplus production models(SPMs)are among the simplest and most widely used fishery stock assessment models.The catch-effort data analysis(CEDA)and a surplus production model incorporating covariates(ASPIC)are softwares for analyzing fishery catch and fishing effort data using nonequilibrium SPMs.In China Fishery Statistical Yearbook,annual fishery production and fishing effort data of the Yellow Sea,Bohai Sea,East China Sea,and South China Sea have been published from 1979 till present.Using its catch and fishing effort data from 1980 to 2018,we apply the CEDA and ASPIC to evaluate fishery resources in Chinese coastal waters.The results show that the total maximum sustainable yield(MSY)estimate of the four China seas is 10.05-10.83 million tons,approximately equal to the marine fishery catch(10.44 million tons)reported in 2018.It can be concluded that China’s coastal fishery resources are currently fully exploited and must be protected with a precautionary approach.Both softwares produced similar results;however,the CEDA had a much higher R2 value(above 0.9)than ASPIC(about 0.2),indicating that CEDA can better fit the data and therefore is more suitable for analyzing the fishery resources in the coastal waters of China.
文摘This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells.Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs.In a significant departure from these models,our approach incorporates an initiation pressure gradient and a discrete fracture seepage network,providing a more realistic representation of the seepage process.The model also integrates an enhanced fluid-solid interaction,which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir.This is achieved through the incorporation of improved permeability and stress coupling,leading to more precise predictions of reservoir behavior.The numerical solutions derived from the model are obtained through the sophisticated finite element method,ensuring high accuracy and computational efficiency.To ensure the model’s reliability and accuracy,the outcomes were tested against a real-world case,with results demonstrating strong alignment.A key revelation from the study is the significant difference between uncoupled and fully coupled volumetrically fractured horizontal wells,challenging conventional wisdom in the field.Additionally,the study delves into the effects of stress,fracture length,and fracture number on reservoir production,contributing valuable insights for the design and optimization of tight reservoirs.The findings from this study have the potential to revolutionize the field of tight reservoir prediction and management,offering significant advancements in petroleum engineering.The proposed approach brings forth a more nuanced understanding of tight reservoir systems and opens up new avenues for optimizing reservoir management and production.
基金The National Natural Science Foundation of China under contract No.NSFC31702343the Science Foundation of Shanghai under contract No.13ZR1419700+4 种基金the Innovation Program of Shanghai Municipal Education Commission under contract No.13YZ091the National High-tech R&D Program of China(863 Program)under contract No.2012AA092303the Funding Program for Outstanding Dissertations in Shanghai Ocean Universitythe Funding Scheme for Training Young Teachers in Shanghai Colleges and the Shanghai Leading Academic Discipline Project(Fisheries Discipline)Involvement of Chen Yong was supported by SHOU International Center for Marine Studies and Shanghai 1000 Talent Program
文摘The southern Patagonian stock(SPS) of Argentinian shortfin squid, Illex argentinus, is an economically important squid fishery in the Southwest Atlantic. Environmental conditions in the region play an important role in regulating the population dynamics of the I. argentinus population. This study develops an environmentally dependent surplus production(EDSP) model to evaluate the stock abundance of I. argentines during the period of 2000 to 2010. The environmental factors(favorable spawning habitat areas with sea surface temperature of 16–18°C) were assumed to be closely associated with carrying capacity(K) in the EDSP model. Deviance Information Criterion(DIC) values suggest that the estimated EDSP model with environmental factors fits the data better than a Schaefer surplus model without environmental factors under uniform and normal scenarios.The EDSP model estimated a maximum sustainable yield(MSY) from 351 600 t to 685 100 t and a biomass from 1 322 400 t to1 803 000 t. The fishing mortality coefficient of I. argentinus from 2000 to 2010 was smaller than the values of F(0.1) and F(MSY). Furthermore, the time series biomass plot of I. argentinus from 2000 to 2010 shows that the biomass of I.argentinus and this fishery were in a good state and not presently experiencing overfishing. This study suggests that the environmental conditions of the habitat should be considered within squid stock assessment and management.
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
基金This project is supported by National Natural Science Foundation of China(No.50675137).
文摘The final product quality is determined by cumulation, coupling and propagation of product quality variations from all stations in multi-stage manufacturing systems (MMSs). Modeling and control of variation propagation is essential to improve product quality. However, the current stream of variations (SOV) theory can only solve the problem that a single SOV affects the product quality. Due to the existence of multiple variation streams, limited research has been done on the quality control in serial-parallel hybrid multi-stage manufacturing systems (SPH-MMSs). A state space model and its modeling strategies are developed to describe the multiple variation streams stack-up in an SPH-MMS. The SOV theory is extended to SPH-MMS. The dimensions of system model are reduced to the production-reality level, and the effect and feasibility of the model is validated by a machining case.
文摘Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density perforation is an effective one.It is difficult to evaluate well productivity and to analyze inflow profiles of horizontal wells with quantities of unevenly distributed perforations,which are characterized by different parameters.In this paper,fluid flow in each wellbore perforation,as well as the reservoir,was analyzed.A comprehensive model,coupling the fluid flow in the reservoir and the wellbore pressure drawdown,was developed based on potential functions and solved using the numerical discrete method.Then,a bottom water cresting model was established on the basis of the piston-like displacement principle.Finally,bottom water cresting parameters and factors influencing inflow profile were analyzed.A more systematic optimization method was proposed by introducing the concept of cumulative free-water production,which could maintain a balance(or then a balance is achieved)between stabilizing oil production and controlling bottom water cresting.Results show that the inflow profile is affected by the perforation distribution.Wells with denser perforation density at the toe end and thinner density at the heel end may obtain low production,but the water breakthrough time is delayed.Taking cumulative free-water production as a parameter to evaluate perforation strategies is advisable in bottom water reservoirs.
基金Department of Science and Technology,Government of India for providing financial support under the scheme FIST(No.SR/FST/ETI-388/2015)。
文摘Fixture design and planning is one of the most important manufacturing activities, playing a pivotal role in deciding the lead time for product development. Fixture design, which affects the part-quality in terms of geometric accuracy and surface finish, can be enhanced by using the product manufacturing information(PMI) stored in the neutral standard for the exchange of product model data(STEP) file, thereby integrating design and manufacturing. The present paper proposes a unique fixture design approach, to extract the geometry information from STEP application protocol(AP) 242 files of computer aided design(CAD) models, for providing automatic suggestions of locator positions and clamping surfaces. Automatic feature extraction software "FiXplan", developed using the programming language C#, is used to extract the part feature, dimension and geometry information. The information from the STEP AP 242 file is deduced using geometric reasoning techniques, which in turn is utilized for fixture planning. The developed software is observed to be adept in identifying the primary, secondary, and tertiary locating faces and locator position configurations of prismatic components. Structural analysis of the prismatic part under different locator positions was performed using commercial finite element method software, ABAQUS, and the optimized locator position was identified on the basis of minimum deformation of the workpiece.The area-ratio(base locator enclosed area(%)/work piece base area(%)) for the ideal locator configuration was observed as 33%. Experiments were conducted on a prismatic workpiece using a specially designed fixture, for different locator configurations. The surface roughness and waviness of the machined surfaces were analysed using an Alicona non-contact optical profilometer. The best surface characteristics were obtained for the surface machined under the ideal locator positions having an area-ratio of 33%, thus validating the predicted numerical results. The efficiency, capability and applicability of the developed software is demonstrated for the finishing operation of a sensor cover – a typical prismatic component having applications in the naval industry, under different locator configurations.The best results were obtained under the proposed ideal locator configuration of area-ratio 33%.
基金supported by the National Basic Research Program of China(973 Program,2011CB100501)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2015BAD22B03)+1 种基金the National High-Tech R&D Program of China(2013AA102901)the Special Fund for Agro-scientific Research in the Public Interest,China(201203077)
文摘The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.
文摘Experience economy is a new economic development tendency after agricultural economy, industrial economy and service economy. Tourism consumption shows new characteristics in experience economy. Agricultural tourism product coincides with these characteristics, it is necessary to establish a model of agricultural tourism products based on experience economy. It is a model of wide range, strong personality and participation.