To address the early separation problem in the Menter Shear-Stress Transport(SST)turbulence model,a correction for the Turbulent Kinetic Energy(TKE)production term,P_(k),is introduced to account for the effect of the ...To address the early separation problem in the Menter Shear-Stress Transport(SST)turbulence model,a correction for the Turbulent Kinetic Energy(TKE)production term,P_(k),is introduced to account for the effect of the Adverse Pressure Gradient(APG).The correction is determined based on the distribution of Pkin the APG region before separation.When the friction coefficient C_(f) is decomposed,its direct dependence on Pkis clearly observed.However,with the introduction of Bradshaw’s assumption,Pkin the SST turbulence model is over-suppressed,resulting in a lower inner peak or no significant inner peak distribution at all.To address this problem,this paper proposes a Gaussian function,HGauss,which corrects the numerical values of P_(k) involved in the calculation of the Menter SST model by focusing on the inner peak region of P_(k).The modified SST model is then applied to four cases with APGs.The modification leads to an increase in the wall friction coefficient C_(f)in the APG region and causes a downstream shift in the separation location,improving the model’s consistency with high-accuracy data and experimental results.It is demonstrated that this correction can improve the early separation problem in the Menter SST turbulence model.展开更多
基金supported by the National Natural Science Foundation of China(No.92252201)。
文摘To address the early separation problem in the Menter Shear-Stress Transport(SST)turbulence model,a correction for the Turbulent Kinetic Energy(TKE)production term,P_(k),is introduced to account for the effect of the Adverse Pressure Gradient(APG).The correction is determined based on the distribution of Pkin the APG region before separation.When the friction coefficient C_(f) is decomposed,its direct dependence on Pkis clearly observed.However,with the introduction of Bradshaw’s assumption,Pkin the SST turbulence model is over-suppressed,resulting in a lower inner peak or no significant inner peak distribution at all.To address this problem,this paper proposes a Gaussian function,HGauss,which corrects the numerical values of P_(k) involved in the calculation of the Menter SST model by focusing on the inner peak region of P_(k).The modified SST model is then applied to four cases with APGs.The modification leads to an increase in the wall friction coefficient C_(f)in the APG region and causes a downstream shift in the separation location,improving the model’s consistency with high-accuracy data and experimental results.It is demonstrated that this correction can improve the early separation problem in the Menter SST turbulence model.