The new edition of the International Production Cost Comparison (IPCC) from ITMF has been published.The report benchmarks manufacturing costs for a range of textile products along the primary textile value chain,disag...The new edition of the International Production Cost Comparison (IPCC) from ITMF has been published.The report benchmarks manufacturing costs for a range of textile products along the primary textile value chain,disaggregated by key cost components at each production stage.展开更多
To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an ...To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an innovative electromagnetic coupling intelligent zonal oil production technology has been proposed.The core and accessory tools have been developed and applied in field tests.This technology employs a pipe string structure incorporation a release sub,which separates the production and allocation pipe strings.When the two strings are docked downhole,electromagnetic coupling enables close-range wireless transmission of electrical power and signals between the strings,powering multiple downhole intelligent production allocators(IPAs)and enabling two-way communication.Core tools adapted to the complex working conditions downhole were developed,including downhole electricity&signal transmission equipment based on electromagnetic coupling(EST),IPAs,and ground communication controllers(GCCs).Accessory tools,including large-diameter release sub anchor and cable-crossing packers,have also been technically finalized.Field tests conducted on ten wells in Daqing Oilfield demonstrated that the downhole docking of the two strings was convenient and reliable,and the EST worked stably.Real-time monitoring of flow rate,pressure and temperature in separate layers and regulation of zonal fluid production were also achieved.This technology has enhanced reservoir understanding and achieved practical production results of increased oil output with reduced water cut.展开更多
Proton Exchange Membrane Water Electrolyzers(PEMWE)are efficient and sustainable hydrogen production devices.This article analyzes their static and dynamic electrical models integrated with degradation mechanisms.Stat...Proton Exchange Membrane Water Electrolyzers(PEMWE)are efficient and sustainable hydrogen production devices.This article analyzes their static and dynamic electrical models integrated with degradation mechanisms.Static models reveal steady-state behavior,while dynamic models capture transient responses to input variations.The developed modeling approach combines the activation and diffusion phenomena,resulting in a novel PEMWE model that closely reflects real-world conditions and enables fast simulations.The electrical model is integrated with the aging model through two key ratios,surface degradation ratio and membrane degradation ratio,which characterize degradation mechanisms affecting electrode and membrane performance.The linear model using second-order Taylor approximation enables the development of a diagnosis approach that can contribute to estimating the remaining useful life of PEMWEs.By associating aging models with electrical models through the proposed ratios,a deeper understanding is achieved regarding how degra-dation phenomena evolve and influence electrolyzer efficiency and durability.The integrated framework enables predictive maintenance strategies,making it valuable for industrial hydrogen production applications.展开更多
Exosomes,nanosized extracellular vesicles(30-150 nm),play a crucial role in intercellular communication and are promising biomarkers and therapeutic agents in oncology,neurodegenerative disorders,and immunotherapy.How...Exosomes,nanosized extracellular vesicles(30-150 nm),play a crucial role in intercellular communication and are promising biomarkers and therapeutic agents in oncology,neurodegenerative disorders,and immunotherapy.However,their widespread clinical adoption is constrained by challenges in scalable production,efficient purification,and regulatory standardization.This review critically evaluates recent advancements in exosome bioprocessing,including cell source optimization,culture refinement,and next-generation isolation technologies such as microfluidic microarrays and EXODUS systems.Additionally,we address the limitations of current exosome standardization efforts and propose harmonized protocols to enhance reproducibility.Future research should focus on integrating scalable bioreactor-based systems and artificial intelligence-driven quality control frameworks to accelerate exosome applications in precision medicine and regenerative therapy.展开更多
Based on the analysis of typical lacustrine shale oil zones in China and their geological characteristics,this study elucidates the fundamental differences between the enrichment patterns of shale oil sweet spots and ...Based on the analysis of typical lacustrine shale oil zones in China and their geological characteristics,this study elucidates the fundamental differences between the enrichment patterns of shale oil sweet spots and conventional oil and gas.The key parameters and evaluation methods for assessing the large-scale production potential of lacustrine shale oil are proposed.The results show that shale oil is a petroleum resource that exists in organic-rich shale formations,in other words,it is preserved in its source bed,following a different process of generation-accumulation-enrichment from conventional oil and gas.Thus,the concept of“reservoir”seems to be inapplicable to shale oil.In China,lacustrine shale oil is distributed widely,but the geological characteristics and sweet spots enrichment patterns of shale oil vary significantly in lacustrine basins where the water environment and the tectonic evolution and diagenetic transformation frameworks are distinct.The core of the evaluation of lacustrine shale oil is“sweet spot volume”.The key factors for evaluating the large-scale production of continental shale oil are the oil storage capacity,oil-bearing capacity and oil producing capacity.The key parameters for evaluating these capacities are total porosity,oil content,and free oil content,respectively.It is recommended to determine the total porosity of shale by combining helium porosity measurement with nuclear magnetic resonance(NMR)method,the oil content of key layers by using organic solvent extraction,NMR method and high pressure mercury intrusion methods,and the free oil content by using NMR fluid distribution secondary spectral stripping decomposition and logging.The research results contribute supplemental insights on continental shale oil deliverability in China,and provide a scientific basis for the rapid exploration and large-scale production of lacustrine shale oil.展开更多
The clinical application of solid lipid particles(SLPs)is hampered due to the need for advanced nano/micro-suspension production technology.This research aims to establish a pilot-scale production line employing high-...The clinical application of solid lipid particles(SLPs)is hampered due to the need for advanced nano/micro-suspension production technology.This research aims to establish a pilot-scale production line employing high-speed shears as emulsification equipment.The primary purpose is to manufacture nano/micro-suspensions using solid lipid particles(SLPs).The study also exhaustively introduces and analyzes the regulatory schemes for process parameters and formulations at various stages of production.The process and formulation endured optimization through orthog-onal or single-factor tests at various production steps:laboratory research,small-scale trial production,and pilot production.Quality standards for the product were determined,and key parameters were obtained at each stage.The laboratory research demonstrated that the optimal SLPs comprised 15 mL 3%polyvinyl alcohol(PVA)per 1.0 g tilmicosin and 2.5 g carnauba wax(WAX).During small-scale production,modifications were made to the volume of the aqueous phase,emulsifier concentration,and emulsification strength,setting them to 16 mL,5%,and 2200 r/min,respectively.In the pilot production stage,the shear time was considered optimal at eight min.The impurity,content,polydispersion coefficient(PDI),and size of the pilot product were<3%,5%,0385 and 2.64μm,respectively.Among the several parameters studied,heating temperature,drug-lipid ratio,and emulsifier concentration were identified as the main factors affecting product quality,and they were regulated at 100℃,1:3,and 5%,respectively.A novel hot melt emulsification shear method aided the development of a new solid lipid-based suspension from its preliminary stages in the laboratory to pilot production.This innovation is expected to enhance solid lipid-based suspensions'industrial evolution extensively.展开更多
Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecas...Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecasting.However,existing deep learning models frequently overlook the selective utilization of information from other production wells,resulting in suboptimal performance in long-term production forecasting across multiple wells.To achieve accurate long-term petroleum production forecast,we propose a spatial-geological perception graph convolutional neural network(SGP-GCN)that accounts for the temporal,spatial,and geological dependencies inherent in petroleum production.Utilizing the attention mechanism,the SGP-GCN effectively captures intricate correlations within production and geological data,forming the representations of each production well.Based on the spatial distances and geological feature correlations,we construct a spatial-geological matrix as the weight matrix to enable differential utilization of information from other wells.Additionally,a matrix sparsification algorithm based on production clustering(SPC)is also proposed to optimize the weight distribution within the spatial-geological matrix,thereby enhancing long-term forecasting performance.Empirical evaluations have shown that the SGP-GCN outperforms existing deep learning models,such as CNN-LSTM-SA,in long-term petroleum production forecasting.This demonstrates the potential of the SGP-GCN as a valuable tool for long-term petroleum production forecasting across multiple wells.展开更多
Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunctio...Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunction photocatalyst for water splitting into stoichiometric H_(2)and H_(2)O_(2)under visible light.The catalyst was prepared by depositing 3D bimetallic sulfide(Ag In_(x)S_(y))nanotubes onto 2D g-C_(3)N_(4)nanosheets.Owing to the special 3D-on-2D configuration,the photogenerated carriers could be rapidly transferred and effectively separated through the abundant interfacial heterostructures to avoid recombination,and therefore excellent performance for visible light-driven water splitting could be obtained,with a 24-h H_(2)evolution rate up to 237μmol g^(-1)h^(-1).Furthermore,suitable band alignment enables simultaneous H_(2)and H_(2)O_(2)production in a 1:1 stoichiometric ratio.H_(2)and H_(2)O_(2)were evolved on the conduction band of g-C_(3)N_(4)and on the valance band of Ag In_(x)S_(y),respectively.The novel 3D-on-2D configuration for heterojunction construction proposed in this work provided alternative research ideas toward photocatalytic reaction.展开更多
This study aims to investigate the production of light nuclei,hypertritons,and Ω-hypernuclei in Pb+Pb collisions at √S_(NN)=5.02TeV TeV using a modified analytical nucleon coalescence model with hyperons.To this end...This study aims to investigate the production of light nuclei,hypertritons,and Ω-hypernuclei in Pb+Pb collisions at √S_(NN)=5.02TeV TeV using a modified analytical nucleon coalescence model with hyperons.To this end,the momentum distributions of two bodies coalescing into dibaryon states and of three bodies coalescing into tribaryon states are derived.Available data on coalescence factors B_(2) and B_(3),transverse momentum spectra,averaged transverse momenta,yield rapidity densities,and yield ratios of the deuteron,antihelium-3,antitriton,and hypertriton measured by the ALICE collaboration are explained.Productions of different species of Ω-hypernuclei H(pΩ^(−)),H(nΩ^(−)),and H(pnΩ^(−))are predicted.Particularly,the production correlations of different light(hyper-)nuclei are studied,and two groups of interesting observables-the averaged transverse momentum ratios of light(hyper-)nuclei to protons(hyperons)and their corresponding yield ratios-are studied.The averaged transverse momentum ratio group exhibits a reverse hierarchy of the nucleus size,and the yield raito group is sensitive to the nucleus production mechanism as well as the size of the nucleus.展开更多
The transverse single-spin asymmetry forρ^(0) production in semi-inclusive deep inelastic scattering was recently reported by the COMPASS Collaboration.Using the Sivers function extracted from pion and kaon productio...The transverse single-spin asymmetry forρ^(0) production in semi-inclusive deep inelastic scattering was recently reported by the COMPASS Collaboration.Using the Sivers function extracted from pion and kaon productions,we perform a calculation of the Sivers asymmetry within the transverse momentum-dependent factorization.Our results are consistent with the COMPASS data,supporting the universality of the Sivers function in the semi-inclusive deep inelastic scattering process for different final-state hadrons within current experimental uncertainties.While different parametrizations of the Sivers function from global analyses allow describing the data equally well,we obtain very different predictions on the Sivers asymmetry ofρand K^(*)productions at electron-ion colliders,which therefore are expected to provide further constraints.展开更多
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract...The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.展开更多
Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan ...Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced.展开更多
Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically slug...Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically sluggish oxygen evolution reaction(OER),the thermodynamically advantageous sulfion oxidation reaction(SOR)enables the S^(2-)pollutants recovery while reducing the energy input of water electrolysis.Here,a nanoporous NiMo alloy ligament(np-NiMo)with AlNi_(3)/Al_(5)Mo heterostructure was prepared for hydrogen evolution reaction(HER,-0.134V versus reversible hydrogen electrode(vs.RHE)at 50mA/cm^(2)),which needs an Al_(89)Ni_(10)Mo_(1)as a precursor and dealloying operation.Further,the np-NiMo alloy was thermal-treated with S powder to generate Mo-doped NiS_(2)(np-NiMo-S)for OER(1.544V vs.RHE at 50mA/cm^(2))and SOR(0.364 V vs.RHE at 50mA/cm^(2)),while still maintaining the nanostructuring advantages.Moreover,for a two-electrode electrolyzer system with np-NiMo cathode(1M KOH+seawater)coupling np-NiMo-S anode(1mol/L KOH+seawater+1 mol/L Na_(2)S),a remarkably ultra-low cell potential of 0.532 V is acquired at 50mA/cm^(2),which is about 1.015 V below that of normal alkaline seawater splitting.The theory calculations confirmed that the AlNi_(3)/Al_(5)Mo heterostructure within np-NiMo promotes H_(2)O dissociation for excellent HER,while the Mo-dopant of np-NiMo-S lowers energy barriers for the rate-determining step from^(*)S_(4)to^(*)S_(8).This work develops two kinds of NiMo alloy with tremendous prominence for achieving energy-efficient hydrogen production from alkaline seawater and sulfur recycling from sulfion-rich sewage.展开更多
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho...Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.展开更多
The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a block...The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.展开更多
Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled ...Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled model inter-comparison project phase six(CMIP6)climatic patterns under the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5.The DSSAT-CROPGROCotton model,along with stepwise multiple regression analyses,was used to simulate changes in the potential yield of seed cotton due to climate change.The results show that while future temperatures in the Tarim River Basin will rise significantly,changes in precipitation and radiation during the cotton-growing season are minimal.Seed cotton yields are more sensitive to low temperatures than to precipitation and radiation.The potential yield of seed cotton under the SSP2-4.5 scenario would increase by 14.8%,23.7%,29.0%,and 29.4%in the 2030S,2050S,2070S,and 2090S,respectively.In contrast,under the SSP5-8.5 scenario,the potential yield of seed cotton would see increases of 17.5%,27.1%,30.1%,and 22.6%,respectively.Except for the 2090s under the SSP5-8.5 scenario,future seed cotton production can withstand a 10%to 20%deficit in irrigation.These findings will help develop climate change adaptation strategies for cotton cultivation.展开更多
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy...Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.展开更多
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi...Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.展开更多
Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study...Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2) overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2) marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.展开更多
文摘The new edition of the International Production Cost Comparison (IPCC) from ITMF has been published.The report benchmarks manufacturing costs for a range of textile products along the primary textile value chain,disaggregated by key cost components at each production stage.
基金Supported by the National Natural Science Foundation of China(52374067)PetroChina Scientific Research and Technology Development Project(2021ZG12)PetroChina Technology Project(2023ZZ09).
文摘To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an innovative electromagnetic coupling intelligent zonal oil production technology has been proposed.The core and accessory tools have been developed and applied in field tests.This technology employs a pipe string structure incorporation a release sub,which separates the production and allocation pipe strings.When the two strings are docked downhole,electromagnetic coupling enables close-range wireless transmission of electrical power and signals between the strings,powering multiple downhole intelligent production allocators(IPAs)and enabling two-way communication.Core tools adapted to the complex working conditions downhole were developed,including downhole electricity&signal transmission equipment based on electromagnetic coupling(EST),IPAs,and ground communication controllers(GCCs).Accessory tools,including large-diameter release sub anchor and cable-crossing packers,have also been technically finalized.Field tests conducted on ten wells in Daqing Oilfield demonstrated that the downhole docking of the two strings was convenient and reliable,and the EST worked stably.Real-time monitoring of flow rate,pressure and temperature in separate layers and regulation of zonal fluid production were also achieved.This technology has enhanced reservoir understanding and achieved practical production results of increased oil output with reduced water cut.
文摘Proton Exchange Membrane Water Electrolyzers(PEMWE)are efficient and sustainable hydrogen production devices.This article analyzes their static and dynamic electrical models integrated with degradation mechanisms.Static models reveal steady-state behavior,while dynamic models capture transient responses to input variations.The developed modeling approach combines the activation and diffusion phenomena,resulting in a novel PEMWE model that closely reflects real-world conditions and enables fast simulations.The electrical model is integrated with the aging model through two key ratios,surface degradation ratio and membrane degradation ratio,which characterize degradation mechanisms affecting electrode and membrane performance.The linear model using second-order Taylor approximation enables the development of a diagnosis approach that can contribute to estimating the remaining useful life of PEMWEs.By associating aging models with electrical models through the proposed ratios,a deeper understanding is achieved regarding how degra-dation phenomena evolve and influence electrolyzer efficiency and durability.The integrated framework enables predictive maintenance strategies,making it valuable for industrial hydrogen production applications.
基金supported by the Shanghai Clinical Research Center of Plastic and Reconstructive Surgery,funded by the Science and Technology Commission of Shanghai Municipality(grant no.22MC1940300)the Shanghai Key Research Center—Shanghai Research Center for Plastic Surgery(grant no.2023ZZ02023).
文摘Exosomes,nanosized extracellular vesicles(30-150 nm),play a crucial role in intercellular communication and are promising biomarkers and therapeutic agents in oncology,neurodegenerative disorders,and immunotherapy.However,their widespread clinical adoption is constrained by challenges in scalable production,efficient purification,and regulatory standardization.This review critically evaluates recent advancements in exosome bioprocessing,including cell source optimization,culture refinement,and next-generation isolation technologies such as microfluidic microarrays and EXODUS systems.Additionally,we address the limitations of current exosome standardization efforts and propose harmonized protocols to enhance reproducibility.Future research should focus on integrating scalable bioreactor-based systems and artificial intelligence-driven quality control frameworks to accelerate exosome applications in precision medicine and regenerative therapy.
基金Supported by the National Key R&D Program of China(2024YFE0114000)Science and Technology Project of China National Petroleum Corporation(2024DJ8702).
文摘Based on the analysis of typical lacustrine shale oil zones in China and their geological characteristics,this study elucidates the fundamental differences between the enrichment patterns of shale oil sweet spots and conventional oil and gas.The key parameters and evaluation methods for assessing the large-scale production potential of lacustrine shale oil are proposed.The results show that shale oil is a petroleum resource that exists in organic-rich shale formations,in other words,it is preserved in its source bed,following a different process of generation-accumulation-enrichment from conventional oil and gas.Thus,the concept of“reservoir”seems to be inapplicable to shale oil.In China,lacustrine shale oil is distributed widely,but the geological characteristics and sweet spots enrichment patterns of shale oil vary significantly in lacustrine basins where the water environment and the tectonic evolution and diagenetic transformation frameworks are distinct.The core of the evaluation of lacustrine shale oil is“sweet spot volume”.The key factors for evaluating the large-scale production of continental shale oil are the oil storage capacity,oil-bearing capacity and oil producing capacity.The key parameters for evaluating these capacities are total porosity,oil content,and free oil content,respectively.It is recommended to determine the total porosity of shale by combining helium porosity measurement with nuclear magnetic resonance(NMR)method,the oil content of key layers by using organic solvent extraction,NMR method and high pressure mercury intrusion methods,and the free oil content by using NMR fluid distribution secondary spectral stripping decomposition and logging.The research results contribute supplemental insights on continental shale oil deliverability in China,and provide a scientific basis for the rapid exploration and large-scale production of lacustrine shale oil.
基金supported by the Fundamental Research Funds for the Central Universities(2662020DKPY008)the National Natural Science Foundation of China(grant No.31772797)。
文摘The clinical application of solid lipid particles(SLPs)is hampered due to the need for advanced nano/micro-suspension production technology.This research aims to establish a pilot-scale production line employing high-speed shears as emulsification equipment.The primary purpose is to manufacture nano/micro-suspensions using solid lipid particles(SLPs).The study also exhaustively introduces and analyzes the regulatory schemes for process parameters and formulations at various stages of production.The process and formulation endured optimization through orthog-onal or single-factor tests at various production steps:laboratory research,small-scale trial production,and pilot production.Quality standards for the product were determined,and key parameters were obtained at each stage.The laboratory research demonstrated that the optimal SLPs comprised 15 mL 3%polyvinyl alcohol(PVA)per 1.0 g tilmicosin and 2.5 g carnauba wax(WAX).During small-scale production,modifications were made to the volume of the aqueous phase,emulsifier concentration,and emulsification strength,setting them to 16 mL,5%,and 2200 r/min,respectively.In the pilot production stage,the shear time was considered optimal at eight min.The impurity,content,polydispersion coefficient(PDI),and size of the pilot product were<3%,5%,0385 and 2.64μm,respectively.Among the several parameters studied,heating temperature,drug-lipid ratio,and emulsifier concentration were identified as the main factors affecting product quality,and they were regulated at 100℃,1:3,and 5%,respectively.A novel hot melt emulsification shear method aided the development of a new solid lipid-based suspension from its preliminary stages in the laboratory to pilot production.This innovation is expected to enhance solid lipid-based suspensions'industrial evolution extensively.
基金funded by National Natural Science Foundation of China,grant number 62071491.
文摘Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecasting.However,existing deep learning models frequently overlook the selective utilization of information from other production wells,resulting in suboptimal performance in long-term production forecasting across multiple wells.To achieve accurate long-term petroleum production forecast,we propose a spatial-geological perception graph convolutional neural network(SGP-GCN)that accounts for the temporal,spatial,and geological dependencies inherent in petroleum production.Utilizing the attention mechanism,the SGP-GCN effectively captures intricate correlations within production and geological data,forming the representations of each production well.Based on the spatial distances and geological feature correlations,we construct a spatial-geological matrix as the weight matrix to enable differential utilization of information from other wells.Additionally,a matrix sparsification algorithm based on production clustering(SPC)is also proposed to optimize the weight distribution within the spatial-geological matrix,thereby enhancing long-term forecasting performance.Empirical evaluations have shown that the SGP-GCN outperforms existing deep learning models,such as CNN-LSTM-SA,in long-term petroleum production forecasting.This demonstrates the potential of the SGP-GCN as a valuable tool for long-term petroleum production forecasting across multiple wells.
基金financially supported by the National Natural Science Foundation of China(Nos.52362012,42077162,51978323)Natural Science Foundation of Jiangxi Province(No.2022ACB203014)+4 种基金Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(Nos.20213BCJ22018,20232BCJ22048)Natural Science Project of the Educational Department in Jiangxi Province(No.GJJ2201121)Natural Science Foundation of Nanchang Hangkong University(No.EA202202256)Educational Reform Project of Jiangxi Province(No.JXYJG-2022-135)Nanchang Hangkong University Educational Reform Project(Nos.sz2214,sz2213,JY22017,KCPY1806)。
文摘Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunction photocatalyst for water splitting into stoichiometric H_(2)and H_(2)O_(2)under visible light.The catalyst was prepared by depositing 3D bimetallic sulfide(Ag In_(x)S_(y))nanotubes onto 2D g-C_(3)N_(4)nanosheets.Owing to the special 3D-on-2D configuration,the photogenerated carriers could be rapidly transferred and effectively separated through the abundant interfacial heterostructures to avoid recombination,and therefore excellent performance for visible light-driven water splitting could be obtained,with a 24-h H_(2)evolution rate up to 237μmol g^(-1)h^(-1).Furthermore,suitable band alignment enables simultaneous H_(2)and H_(2)O_(2)production in a 1:1 stoichiometric ratio.H_(2)and H_(2)O_(2)were evolved on the conduction band of g-C_(3)N_(4)and on the valance band of Ag In_(x)S_(y),respectively.The novel 3D-on-2D configuration for heterojunction construction proposed in this work provided alternative research ideas toward photocatalytic reaction.
基金supported by the National Natural Science Foundation of China(Nos.12175115 and 12375074).
文摘This study aims to investigate the production of light nuclei,hypertritons,and Ω-hypernuclei in Pb+Pb collisions at √S_(NN)=5.02TeV TeV using a modified analytical nucleon coalescence model with hyperons.To this end,the momentum distributions of two bodies coalescing into dibaryon states and of three bodies coalescing into tribaryon states are derived.Available data on coalescence factors B_(2) and B_(3),transverse momentum spectra,averaged transverse momenta,yield rapidity densities,and yield ratios of the deuteron,antihelium-3,antitriton,and hypertriton measured by the ALICE collaboration are explained.Productions of different species of Ω-hypernuclei H(pΩ^(−)),H(nΩ^(−)),and H(pnΩ^(−))are predicted.Particularly,the production correlations of different light(hyper-)nuclei are studied,and two groups of interesting observables-the averaged transverse momentum ratios of light(hyper-)nuclei to protons(hyperons)and their corresponding yield ratios-are studied.The averaged transverse momentum ratio group exhibits a reverse hierarchy of the nucleus size,and the yield raito group is sensitive to the nucleus production mechanism as well as the size of the nucleus.
基金supported by the National Key R&D Program of China(Grant No.2024YFA1611004)the National Natural Science Foundation of China(Grant Nos.12175117,12475084,and 12321005)the Shandong Province Natural Science Foundation(Grant Nos.ZFJH202303 and ZR2024MA012)。
文摘The transverse single-spin asymmetry forρ^(0) production in semi-inclusive deep inelastic scattering was recently reported by the COMPASS Collaboration.Using the Sivers function extracted from pion and kaon productions,we perform a calculation of the Sivers asymmetry within the transverse momentum-dependent factorization.Our results are consistent with the COMPASS data,supporting the universality of the Sivers function in the semi-inclusive deep inelastic scattering process for different final-state hadrons within current experimental uncertainties.While different parametrizations of the Sivers function from global analyses allow describing the data equally well,we obtain very different predictions on the Sivers asymmetry ofρand K^(*)productions at electron-ion colliders,which therefore are expected to provide further constraints.
基金financially supported by the National Natural Science Foundation of China(Nos.52404328,52274412,and 52374418)the China Postdoctoral Science Foundation(No.2024M753248)。
文摘The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.
基金supported in part by the High-tech ship scientific research project of the Ministry of Industry and Information Technology of the People’s Republic of China,and the National Nature Science Foundation of China(Grant No.71671113)the Science and Technology Department of Shaanxi Province(No.2020GY-219)the Ministry of Education Collaborative Project of Production,Learning and Research(No.201901024016).
文摘Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced.
基金financially supported by the Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008)the Natural Science Foundation of Jilin Province of China(No.20240101098JC)the National Natural Science Foundation of China(No.22469002)。
文摘Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically sluggish oxygen evolution reaction(OER),the thermodynamically advantageous sulfion oxidation reaction(SOR)enables the S^(2-)pollutants recovery while reducing the energy input of water electrolysis.Here,a nanoporous NiMo alloy ligament(np-NiMo)with AlNi_(3)/Al_(5)Mo heterostructure was prepared for hydrogen evolution reaction(HER,-0.134V versus reversible hydrogen electrode(vs.RHE)at 50mA/cm^(2)),which needs an Al_(89)Ni_(10)Mo_(1)as a precursor and dealloying operation.Further,the np-NiMo alloy was thermal-treated with S powder to generate Mo-doped NiS_(2)(np-NiMo-S)for OER(1.544V vs.RHE at 50mA/cm^(2))and SOR(0.364 V vs.RHE at 50mA/cm^(2)),while still maintaining the nanostructuring advantages.Moreover,for a two-electrode electrolyzer system with np-NiMo cathode(1M KOH+seawater)coupling np-NiMo-S anode(1mol/L KOH+seawater+1 mol/L Na_(2)S),a remarkably ultra-low cell potential of 0.532 V is acquired at 50mA/cm^(2),which is about 1.015 V below that of normal alkaline seawater splitting.The theory calculations confirmed that the AlNi_(3)/Al_(5)Mo heterostructure within np-NiMo promotes H_(2)O dissociation for excellent HER,while the Mo-dopant of np-NiMo-S lowers energy barriers for the rate-determining step from^(*)S_(4)to^(*)S_(8).This work develops two kinds of NiMo alloy with tremendous prominence for achieving energy-efficient hydrogen production from alkaline seawater and sulfur recycling from sulfion-rich sewage.
基金supported by the Natural Science Foundation of China(Grant No.42302170)National Postdoctoral Innovative Talent Support Program(Grant No.BX20220062)+3 种基金CNPC Innovation Found(Grant No.2022DQ02-0104)National Science Foundation of Heilongjiang Province of China(Grant No.YQ2023D001)Postdoctoral Science Foundation of Heilongjiang Province of China(Grant No.LBH-Z22091)the Natural Science Foundation of Shandong Province(Grant No.ZR2022YQ30).
文摘Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies.
基金supported in part by the National Natural Science Foundation of China(62273310)the Natural Science Foundation of Zhejiang Province of China(LY22F030006,LZ24F030009)
文摘The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.
基金supported by the Science and Technology Program of Xinjiang Construction Corps(No.2024AB064)the National Natural Science Foundation of China(Nos.41975044,42001314)。
文摘Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled model inter-comparison project phase six(CMIP6)climatic patterns under the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5.The DSSAT-CROPGROCotton model,along with stepwise multiple regression analyses,was used to simulate changes in the potential yield of seed cotton due to climate change.The results show that while future temperatures in the Tarim River Basin will rise significantly,changes in precipitation and radiation during the cotton-growing season are minimal.Seed cotton yields are more sensitive to low temperatures than to precipitation and radiation.The potential yield of seed cotton under the SSP2-4.5 scenario would increase by 14.8%,23.7%,29.0%,and 29.4%in the 2030S,2050S,2070S,and 2090S,respectively.In contrast,under the SSP5-8.5 scenario,the potential yield of seed cotton would see increases of 17.5%,27.1%,30.1%,and 22.6%,respectively.Except for the 2090s under the SSP5-8.5 scenario,future seed cotton production can withstand a 10%to 20%deficit in irrigation.These findings will help develop climate change adaptation strategies for cotton cultivation.
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
文摘Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
基金National Key R&D Program of China,Grant/Award Number:2021YFA1500900Basic and Applied Basic Research Foundation of Guangdong Province-Regional Joint Fund Project,Grant/Award Number:2021B1515120024+9 种基金Science Funds of the Education Office of Jiangxi Province,Grant/Award Number:GJJ2201324Science Funds of Jiangxi Province,Grant/Award Numbers:20242BAB25168,20224BAB213018Doctoral Research Start-up Funds of JXSTNU,Grant/Award Number:2022BSQD05China Postdoctoral Science Foundation,Grant/Award Number:2023M741121National Natural Science Foundation of China,Grant/Award Number:22172047Provincial Natural Science Foundation of Hunan,Grant/Award Number:2021JJ30089Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20210324122209025Changsha Municipal Natural Science Foundation,Grant/Award Number:kq2107008Hunan Province of Huxiang Talent project,Grant/Award Number:2023rc3118Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ10006.
文摘Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.
基金supported by the National Research Foundation of Korea(NRF)grants(2022R1A2C4001228,2022M3H4A4097524,2022M3I3A1082499,and 2021M3I3A1084818)the Technology Innovation Program(20026415)of the Ministry of Trade,Industry&Energy(MOTIE,Korea)the supports from Nanopac for fabrication of scaled-up reactor.
文摘Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2) overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2) marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.