Blockchain technology has attracted worldwide atten-tion,and has strong application potential in complex product system supply chain and other fields.This paper focuses on the supply chain management issues of complex...Blockchain technology has attracted worldwide atten-tion,and has strong application potential in complex product system supply chain and other fields.This paper focuses on the supply chain management issues of complex product systems,and combines the technical characteristics of blockchain,such as tamper resistance and strong resistance to destruction,to conduct research on the application of blockchain based supply chain management for complex product systems.The block-chain technology is integrated into functional modules such as business interaction,privacy protection,data storage,and sys-tem services.The application technology architecture of com-plex product system supply chain integrated with blockchain is constructed.The application practice in complex product sys-tem supply chain is carried out.The results show that the sup-ply chain of complex product systems has the functions of traceability,cost reduction,and anti-counterfeiting protection.Finally,the future development direction and research focus of the complex product system supply chain based on blockchain are prospected,which provides a reference for the equipment manufacturing supply chain management in the mili-tary industry.展开更多
In terms of reflection transformation of a matrix product state (MPS), the parity of the MPS is defined. Based on the reflective parity non-conserved MPS pair we construct the even-parity state |ψe〉 and the odd-p...In terms of reflection transformation of a matrix product state (MPS), the parity of the MPS is defined. Based on the reflective parity non-conserved MPS pair we construct the even-parity state |ψe〉 and the odd-parity state |ψσ〉. It is interesting to find that the parity non-conserved reflective MPS pair have no long-range correlations; instead the even-parity state |ψe〉 and the odd-parity state |ψo〉 constructed from them have the same long-range correlations for the parity non-conserved block operators. Moreover, the entanglement between a block of n contiguous spins and the rest of the spin chain for the states |ψe〉 and |ψo〉 is larger than that for the reflective MPS pair except for n = 1, and the difference of them approaches 1 monotonically and asymptotically from 0 as n increases from 1. These characteristics indicate that MPS parity as a conserved physical quantity represents a kind of coherent collective quantum mode, and that the parity conserved MPSs contain more correlation, coherence, and entanglement than the parity non-conserved ones.展开更多
This paper is concerned with the sensitivity of set-valued discrete systems. Firstly, this paper obtained the equivalence between <img src="Edit_7024f70b-0568-4ca8-a554-c0d05abc0df0.bmp" alt="" ...This paper is concerned with the sensitivity of set-valued discrete systems. Firstly, this paper obtained the equivalence between <img src="Edit_7024f70b-0568-4ca8-a554-c0d05abc0df0.bmp" alt="" />or <img src="Edit_95636a59-7d5d-4b6c-8bd5-f699dd9208df.bmp" alt="" /> and the product system <img src="Edit_c714caaf-0ed9-46bc-b3e1-b0223474a8f5.bmp" alt="" /> in sensitivity, infinite sensitivity, <em>F</em>-sensitivity, (<em>F</em><sub>1</sub>, <em>F</em><sub>2</sub>)-sensitivity. Then, the relation between (<em>X</em>, <em>f</em><sub>1,∞</sub>) or (<em>Y</em>, <em>g</em><sub>1,∞</sub>) and <img src="Edit_55b4ce47-89f3-4476-a8a8-4d4db5a4e8eb.bmp" alt="" /> in ergodic sensitivity is obtained. Where <img src="Edit_a99604c4-2f72-4e75-a998-8057b8790e03.bmp" alt="" /> is the set-valued dynamical system induced by a non-autonomous discrete dynamical system (<em>X</em>, <em>f</em><sub>1,∞</sub>).展开更多
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi...Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.展开更多
A novel system for measuring net photochemical ozone production rates in the atmosphere based on cavity ring-down spectroscopy(OPR-CRDS)was developed.The system consists of two chambers(a reaction chamber and a refere...A novel system for measuring net photochemical ozone production rates in the atmosphere based on cavity ring-down spectroscopy(OPR-CRDS)was developed.The system consists of two chambers(a reaction chamber and a reference chamber)and a dual-channel O_(x)-CRDS detector.To minimize the wall loss of O_(x)in the chambers,the inner surfaces of both chambers are coated with Teflon film.The performance of the OPR-CRDS system was characterized.It was found that even though the photolysis frequency(J value)decreased by 10%,the decrease in the P(O_(3))caused by the ultraviolet-blocking film coating was less than 3%.The two chambers had a good consistency in the mean residence time and the measurement of NO_(2)and O_(x)under the condition of no sunlight.The detection limit of the OPR-CRDS was determined to be 0.20 ppbv/hr.To further verify the accuracy of the system,the direct measurement values of the OPR-CRDS systemwere comparedwith the calculation results based on radical(OH,HO_(2),and RO_(2))reactions,and a good correlation was obtained between the measured and calculated values.Finally,the developed instrument was applied to obtain the comprehensive field observations at an urban site in the Yangtze River Delta(China)for 40 days,the time series and change characteristics of the P(O_(3))were obtained directly,and the good environmental adaptability and stability of the OPR-CRDS system were demonstrated.It is expected that the new instrument will be beneficial to investigations of the relationship between P(O_(3))and its precursors.展开更多
Alzheimer’s dementia(AD)and type 2 diabetes(T2D)are interrelated global public health problems,and the current epidemics of both AD and T2D are insulin resistance diseases.Thus,AD and T2D may share common risk factor...Alzheimer’s dementia(AD)and type 2 diabetes(T2D)are interrelated global public health problems,and the current epidemics of both AD and T2D are insulin resistance diseases.Thus,AD and T2D may share common risk factors such as an unhealthy diet,lifestyle,and obesity.Meat products is an important part of the diet of consumers worldwide.This systematic review and meta-analysis aims to assess and estimate the effect of meat products consumption on AD and T2D in humans.Web of Science,MEDLINE,PubMed,Cochrane Library,and Embase were searched from January 2012 to April 2024.29 articles reported 32 cohort studies with 1785769 subjects,with 3546 AD cases and 91092 T2D cases that met the inclusion criteria and were included in our analysis.Consumption of various meat products increased the risk of T2D(hazard ratios(HR)=1.19,95%confidence intervals(CI):1.13−1.26,P=0.000;I2=88.5%),consumption of smoked,grilled/roasted and fried meat products was more likely to induce T2D(HR=1.24,95%CI:1.18−1.30,P=0.000;I2=76.1%),but was borderline significant for the risk of AD(HR=1.11,95%CI:0.98−1.25,P=0.094;I2=58.8%),with consumption of mainly livestock and poultry products increasing the risk(HR=1.21,95%CI:1.03−1.42,P=0.017;I2=66.8%).The association between meat products consumption and AD risk was influenced by meat type and sample size,while the risk of T2D was influenced by meat type,follow-up and sex.A daily intake of 27,123 and 170 g of livestock products increased the risk of T2D by 10%,51%and 70%respectively,whereas the risk of T2D was reduced when the intake of various meat products was less than 23 g/day.展开更多
With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty r...With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty recurrence monitoring and agricultural product sales systems can effectively enhance precise identification and early warning capabilities,promoting the sustainable development of rural economies.This paper explores the application of big data technology in poverty recurrence monitoring,analyzes its innovative integration with agricultural product sales systems,and proposes an intelligent monitoring and sales platform model based on big data,aiming to provide a reference for relevant policy formulation.展开更多
Although the Haber–Bosch process supports the growth of modern agriculture with abundant ammonia and fertilizer production,substantial energy consumption and enormous greenhouse emissions demand an alternative and su...Although the Haber–Bosch process supports the growth of modern agriculture with abundant ammonia and fertilizer production,substantial energy consumption and enormous greenhouse emissions demand an alternative and sustainable approach.Here,we report a novel approach that combines the nonphotosynthetic bacterium Shewanella oneidensis MR-1(S.oneidensis MR-1)with cadmium sulfide(CdS)nanoparticles(NPs)to enable the photosynthesis of ammonium(NH_(4)+)from nitrate(NO_(3)^(-))using photoexcited electrons as donors.The NO_(3)^(-)reduction efficiency reached almost 100%,with an NH_(4)^(+)production selectivity of over 90%.The maximum instantaneous quantum efficiency was 3.01%under light irradiation.The reverse metal-reducing(Mtr)pathway is responsible for the transfer of photoexcited electrons to intracellular compartments.Parallel reaction monitoring analysis illustrated that NO_(3)^(-)to NH_(4)^(+)was produced via the dissimilatory nitrate reduction to ammonium(DNRA)pathway in S.oneidensis MR-1.This study provides a facile strategy for light-driven ambient NH4+synthesis and solar-to-chemical conversion.展开更多
To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals l...To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.展开更多
Aqueous Zn-N_(2)batteries with unique configuration are of potential for simultaneous N_(2)electro reduction and electricity generation,in which the electrocatalysts are critical for improving the NH_(3)yield and the ...Aqueous Zn-N_(2)batteries with unique configuration are of potential for simultaneous N_(2)electro reduction and electricity generation,in which the electrocatalysts are critical for improving the NH_(3)yield and the energy efficiency.Herein,a heterostructure Nb_(2)O_(5)/Nb_(2)CT_(x)with abundant exposed Nb active sites and tuned electron density has been synthesized by in situ formation and anchoring of Nb_(2)O_(5) nanoparticles on the surface of Nb_(2)CT_(x)MXene,which shows an enhanced N_(2)adsorption/activation capacity.The heterostructure Nb_(2)O_(5/)Nb_(2)CT_(x)was used as the cathode of Zn-N_(2)battery that can deliver a peak power density of 1.25 mW cm^(-2)in 1.0 M KOH and can continuously produce NH_(3)with a yield of3.62μg h^(-1)mg_(ca)^(t-1).The NH_(3)formed in the battery system can be easily collected as a net product without circulating the electrolyte.Moreover,the Nb_(2)O_(5/)Nb_(2)CT_(x)has a long durability,evidenced by 70 h of operation at-0.4 V vs.reversible hydrogen electrode,which is the highest among the MXene-based electrocatalysts reported thus far.This work may provide a new methodology based on Zn-N_(2)battery for sustainable and large-scale NH_(3)production with minimal energy consumption.展开更多
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e...Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.展开更多
The global green hydrogen industry is experiencing rapid growth,but the high production costs are hindering its widespread adoption.To address this challenge,it is particularly important to rationally configure a rene...The global green hydrogen industry is experiencing rapid growth,but the high production costs are hindering its widespread adoption.To address this challenge,it is particularly important to rationally configure a renewable energy hydrogen production system.For this purpose,the study proposes a model for capacity optimization configuration of a renewable energy hydrogen production system,which integrates wind power,photovoltaic(PV)power,and concentrating solar power(CSP)with alkaline electrolyzer.It conducts capacity optimization configuration and comprehensive evaluations of the hydrogen production system across various scenarios.To minimize the total daily consumption cost,the CPLEX solver is utilized to solve the objective function and determine the capacity configuration of the renewable energy electrolysis of water hydrogen production system generator set under various scenarios.This approach achieves a utilization rate of over 99%for renewable energy.Through comprehensive evaluation,research has found that renewable energy-coupled hydrogen production significantly reduces generator capacity and electricity generation costs compared to separate hydrogen production,enhancing the economic efficiency of the system.The Wind-PV-CSP coupling hydrogen production system has the smallest generator assembly capacity and the lowest hydrogen production cost,which is 18.84 CNY·kg^(-1),significantly lower than the cost of PV-CSP coupling hydrogen production(25.78 CNY·kg^(-1))and wind-PV coupling hydrogen production(25.86 CNY·kg^(-1)).It has good development prospects and plays an important role in exploring the development path of large-scale on-site consumption of new energy.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
The global shift towards sustainable food systems has sparked innovations in food sources and production systems,including cell-based meat,plant-based food products,precision fermentation,and 3D food printing.These ad...The global shift towards sustainable food systems has sparked innovations in food sources and production systems,including cell-based meat,plant-based food products,precision fermentation,and 3D food printing.These advancements pose regulatory challenges and opportunities,with China emerging as a critical player in adopting and regulating new food technologies.This review explores the international landscape of new food sources and production systems(NFPS),focusing on China’s role and regulatory approaches compared to global practices.Through this comparative analysis,we aim to contribute to the ongoing dialogue on food safety regulation,offering insights and recommendations for policymakers,industry stakeholders,and researchers engaged in the global food system’s evolution.This comprehensive overview underscores the dynamic nature of regulatory frameworks governing NFPS,highlighting the international efforts to ensure food safety,consumer protection,and the sustainable evolution of the food industry.展开更多
Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a di...Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a discernible trend wherein adult children have started migrating to cities while their elderly parents return to villages to re-engage in on-farm work.The phenomenon has notably shaped the intergenerational division of labor(IDL)within households.However,it remains to be seen how farmers adjust their rice production systems in response to the IDL.The age of 60 years for employment injury insurance is the eligibility threshold for off-farm employment and is used to obtain a source of exogenous variation in the IDL.Based on a representative household survey of 1,752 rice farmers in the Hubei Province of Central China,our fuzzy regression discontinuity analysis reveals that farmers in IDL households are more likely to adopt ratoon rice(RR)than single cropping rice(SR)or double cropping rice(DR).The effect of the IDL varies under different levels of operational scales and specialized agricultural service availability.Further analysis suggests that farmers’arrangements are associated with two potential mechanisms of downward intergenerational transfer.Monetary transfer for urban housing purchases increases RR in IDL households,and time transfer for intergenerational childcare significantly promotes SR in IDL households.This study enhances the understanding of the relationship between rural labor migration and rice production in China,providing a reference for adjusting rice production systems to ensure food security.展开更多
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract...The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.展开更多
Biochar amendment offers a chance for sustainable agriculture.However,the effectiveness of biochar relies on its physical and chemical properties,which are heavily affected by biochar production conditions and managem...Biochar amendment offers a chance for sustainable agriculture.However,the effectiveness of biochar relies on its physical and chemical properties,which are heavily affected by biochar production conditions and management practices.Therefore,substantial uncertainties regarding the use of biochar exist in agricultural systems globally.This study provides the first quantitative evaluation of the impacts of biochar characteristics and management practices on key ecosystem services by performing a second-order meta-analysis based on 34,628 paired observations in biochar-amended and unamended systems.Overall,biochar enhances phytotoxicity alleviation,physiology regulation,soil remediation and carbon sequestration,and microbial functional gene abundance.However,some prominent trade-offs exist between crop productivity and ecosystem service deliveries including for nutrient cycling,microbial function,climate change mitigation,and the soil microbial community.The adoption of low C:N biochar produced at high pyrolysis temperatures from sewage sludge-derived feedstock,in combination with a moderate application rate and inorganic fertilizer input,shows potential for achieving synergistic promotion of crop productivity and ecosystem services.These outcomes highlight the need for judicious implementation of biochar-based solutions to site-specific soil constraints.The quantified synergy and tradeoff relationships will aid the establishment of a sustainable biochar development framework that strengthens necessary ecosystem services commensurate with food security assurance.展开更多
BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notabl...BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.展开更多
The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way...The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way to judge whether the subsea production control system is normal.However,subsea sensors degrade rapidly due to harsh working environments and long service time.This leads to frequent false alarm incidents.A combinatorial reasoning-based abnormal sensor recognition method for subsea production control system is proposed.A combinatorial algorithm is proposed to group sensors.The long short-term memory network(LSTM)is used to establish a single inference model.A counting-based judging method is proposed to identify abnormal sensors.Field data from an offshore platform in the South China Sea is used to demonstrate the effect of the proposed method.The results show that the proposed method can identify the abnormal sensors effectively.展开更多
The Ground Cover Rice Production System(GCRPS)has considerable potential for securing rice production in hilly areas.However,its impact on yields and nitrogen(N)fates remains uncertain under varying rainfall condition...The Ground Cover Rice Production System(GCRPS)has considerable potential for securing rice production in hilly areas.However,its impact on yields and nitrogen(N)fates remains uncertain under varying rainfall conditions.A two-year field experiment(2021–2022)was conducted in Ziyang,Sichuan Province,located in the hilly areas of Southwest China.The experiment included two cultivation methods:conventional flooding paddy(Paddy,W1)and GCRPS(W2).These methods were combined with three N management practices:N1(no-N fertilizer),N2(135 kg/hm^(2)urea as a base fertilizer in both W1 and W2),and N3(135 kg/hm^(2)urea with split application for W1 and 67.5 kg/hm^(2)urea and chicken manure separately for W2).The WHCNS(Soil Water Heat Carbon Nitrogen Simulator)model was calibrated and validated to simulate ponding water depth,soil water storage,soil mineral N content,leaf area index,aboveground dry matter,crop N uptake,and rice yield.Subsequently,this model was used to simulate the responses of rice yield and N fates to GCRPS under different types of precipitation years using meteorological data from 1980 to 2018.The results indicated that the WHCNS model performed well in simulating crop growth and N fates for both Paddy and GCRPS.Compared with Paddy,GCRPS reduced N leaching(35.1%–54.9%),ammonia volatilization(0.7%–13.6%),N runoff(71.1%–83.5%),denitrification(3.8%–6.7%),and total N loss(33.8%–56.9%)for all precipitation year types.However,GCRPS reduced crop N uptake and yield during wet years,while increasing crop N uptake and yield during dry and normal years.Fertilizer application reduced the stability and sustainability of rice yield in wet years,but increased the stability and sustainability of rice yield in dry and normal years.In conclusion,GCRPS is more suitable for normal and dry years in the study region,leading to increased rice yield and reduced N loss.展开更多
基金supported by the National Natural Science Foundation of China(71871007)Project of Chinese Academy of Engineering.
文摘Blockchain technology has attracted worldwide atten-tion,and has strong application potential in complex product system supply chain and other fields.This paper focuses on the supply chain management issues of complex product systems,and combines the technical characteristics of blockchain,such as tamper resistance and strong resistance to destruction,to conduct research on the application of blockchain based supply chain management for complex product systems.The block-chain technology is integrated into functional modules such as business interaction,privacy protection,data storage,and sys-tem services.The application technology architecture of com-plex product system supply chain integrated with blockchain is constructed.The application practice in complex product sys-tem supply chain is carried out.The results show that the sup-ply chain of complex product systems has the functions of traceability,cost reduction,and anti-counterfeiting protection.Finally,the future development direction and research focus of the complex product system supply chain based on blockchain are prospected,which provides a reference for the equipment manufacturing supply chain management in the mili-tary industry.
基金Supported by the Scientific Research Foundation of CUIT under Grant No.KYTZ201024the National Natural Science Foundation of China under Grant Nos.10775100,10974137 the Fund of Theoretical Nuclear Center of HIRFL of China
文摘In terms of reflection transformation of a matrix product state (MPS), the parity of the MPS is defined. Based on the reflective parity non-conserved MPS pair we construct the even-parity state |ψe〉 and the odd-parity state |ψσ〉. It is interesting to find that the parity non-conserved reflective MPS pair have no long-range correlations; instead the even-parity state |ψe〉 and the odd-parity state |ψo〉 constructed from them have the same long-range correlations for the parity non-conserved block operators. Moreover, the entanglement between a block of n contiguous spins and the rest of the spin chain for the states |ψe〉 and |ψo〉 is larger than that for the reflective MPS pair except for n = 1, and the difference of them approaches 1 monotonically and asymptotically from 0 as n increases from 1. These characteristics indicate that MPS parity as a conserved physical quantity represents a kind of coherent collective quantum mode, and that the parity conserved MPSs contain more correlation, coherence, and entanglement than the parity non-conserved ones.
文摘This paper is concerned with the sensitivity of set-valued discrete systems. Firstly, this paper obtained the equivalence between <img src="Edit_7024f70b-0568-4ca8-a554-c0d05abc0df0.bmp" alt="" />or <img src="Edit_95636a59-7d5d-4b6c-8bd5-f699dd9208df.bmp" alt="" /> and the product system <img src="Edit_c714caaf-0ed9-46bc-b3e1-b0223474a8f5.bmp" alt="" /> in sensitivity, infinite sensitivity, <em>F</em>-sensitivity, (<em>F</em><sub>1</sub>, <em>F</em><sub>2</sub>)-sensitivity. Then, the relation between (<em>X</em>, <em>f</em><sub>1,∞</sub>) or (<em>Y</em>, <em>g</em><sub>1,∞</sub>) and <img src="Edit_55b4ce47-89f3-4476-a8a8-4d4db5a4e8eb.bmp" alt="" /> in ergodic sensitivity is obtained. Where <img src="Edit_a99604c4-2f72-4e75-a998-8057b8790e03.bmp" alt="" /> is the set-valued dynamical system induced by a non-autonomous discrete dynamical system (<em>X</em>, <em>f</em><sub>1,∞</sub>).
基金National Key R&D Program of China,Grant/Award Number:2021YFA1500900Basic and Applied Basic Research Foundation of Guangdong Province-Regional Joint Fund Project,Grant/Award Number:2021B1515120024+9 种基金Science Funds of the Education Office of Jiangxi Province,Grant/Award Number:GJJ2201324Science Funds of Jiangxi Province,Grant/Award Numbers:20242BAB25168,20224BAB213018Doctoral Research Start-up Funds of JXSTNU,Grant/Award Number:2022BSQD05China Postdoctoral Science Foundation,Grant/Award Number:2023M741121National Natural Science Foundation of China,Grant/Award Number:22172047Provincial Natural Science Foundation of Hunan,Grant/Award Number:2021JJ30089Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20210324122209025Changsha Municipal Natural Science Foundation,Grant/Award Number:kq2107008Hunan Province of Huxiang Talent project,Grant/Award Number:2023rc3118Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ10006.
文摘Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.
基金supported by the National Natural Science Foundation of China(Nos.62275250 and 61905003)the Natural Science Foundation of Anhui Province(No.2008085J20)+1 种基金the National Key R&D Program of China(No.2022YFC3700301)Anhui Provincial Key R&D Program(No.2022l07020022).
文摘A novel system for measuring net photochemical ozone production rates in the atmosphere based on cavity ring-down spectroscopy(OPR-CRDS)was developed.The system consists of two chambers(a reaction chamber and a reference chamber)and a dual-channel O_(x)-CRDS detector.To minimize the wall loss of O_(x)in the chambers,the inner surfaces of both chambers are coated with Teflon film.The performance of the OPR-CRDS system was characterized.It was found that even though the photolysis frequency(J value)decreased by 10%,the decrease in the P(O_(3))caused by the ultraviolet-blocking film coating was less than 3%.The two chambers had a good consistency in the mean residence time and the measurement of NO_(2)and O_(x)under the condition of no sunlight.The detection limit of the OPR-CRDS was determined to be 0.20 ppbv/hr.To further verify the accuracy of the system,the direct measurement values of the OPR-CRDS systemwere comparedwith the calculation results based on radical(OH,HO_(2),and RO_(2))reactions,and a good correlation was obtained between the measured and calculated values.Finally,the developed instrument was applied to obtain the comprehensive field observations at an urban site in the Yangtze River Delta(China)for 40 days,the time series and change characteristics of the P(O_(3))were obtained directly,and the good environmental adaptability and stability of the OPR-CRDS system were demonstrated.It is expected that the new instrument will be beneficial to investigations of the relationship between P(O_(3))and its precursors.
基金supported by the Agricultural Science and Technology Innovation Program,Institute of Food Science and Technology,Chinese Academy of Agricultural Sciences under Grant CAAS-ASTIP-2023-IFSTGuangdong Provincial Key R&D Programme(2023B0202080003).
文摘Alzheimer’s dementia(AD)and type 2 diabetes(T2D)are interrelated global public health problems,and the current epidemics of both AD and T2D are insulin resistance diseases.Thus,AD and T2D may share common risk factors such as an unhealthy diet,lifestyle,and obesity.Meat products is an important part of the diet of consumers worldwide.This systematic review and meta-analysis aims to assess and estimate the effect of meat products consumption on AD and T2D in humans.Web of Science,MEDLINE,PubMed,Cochrane Library,and Embase were searched from January 2012 to April 2024.29 articles reported 32 cohort studies with 1785769 subjects,with 3546 AD cases and 91092 T2D cases that met the inclusion criteria and were included in our analysis.Consumption of various meat products increased the risk of T2D(hazard ratios(HR)=1.19,95%confidence intervals(CI):1.13−1.26,P=0.000;I2=88.5%),consumption of smoked,grilled/roasted and fried meat products was more likely to induce T2D(HR=1.24,95%CI:1.18−1.30,P=0.000;I2=76.1%),but was borderline significant for the risk of AD(HR=1.11,95%CI:0.98−1.25,P=0.094;I2=58.8%),with consumption of mainly livestock and poultry products increasing the risk(HR=1.21,95%CI:1.03−1.42,P=0.017;I2=66.8%).The association between meat products consumption and AD risk was influenced by meat type and sample size,while the risk of T2D was influenced by meat type,follow-up and sex.A daily intake of 27,123 and 170 g of livestock products increased the risk of T2D by 10%,51%and 70%respectively,whereas the risk of T2D was reduced when the intake of various meat products was less than 23 g/day.
基金2025 College Students’Innovation Training Program“Return to Poverty Monitoring and Agricultural Products Sales System”2024 College Students’Innovation Training Program“Promoting Straw Recycling to Accelerate the Sustainable Development of Agriculture”(202413207010)。
文摘With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty recurrence monitoring and agricultural product sales systems can effectively enhance precise identification and early warning capabilities,promoting the sustainable development of rural economies.This paper explores the application of big data technology in poverty recurrence monitoring,analyzes its innovative integration with agricultural product sales systems,and proposes an intelligent monitoring and sales platform model based on big data,aiming to provide a reference for relevant policy formulation.
基金supported by the National Key Research and Development Project(2019YFA0705804).
文摘Although the Haber–Bosch process supports the growth of modern agriculture with abundant ammonia and fertilizer production,substantial energy consumption and enormous greenhouse emissions demand an alternative and sustainable approach.Here,we report a novel approach that combines the nonphotosynthetic bacterium Shewanella oneidensis MR-1(S.oneidensis MR-1)with cadmium sulfide(CdS)nanoparticles(NPs)to enable the photosynthesis of ammonium(NH_(4)+)from nitrate(NO_(3)^(-))using photoexcited electrons as donors.The NO_(3)^(-)reduction efficiency reached almost 100%,with an NH_(4)^(+)production selectivity of over 90%.The maximum instantaneous quantum efficiency was 3.01%under light irradiation.The reverse metal-reducing(Mtr)pathway is responsible for the transfer of photoexcited electrons to intracellular compartments.Parallel reaction monitoring analysis illustrated that NO_(3)^(-)to NH_(4)^(+)was produced via the dissimilatory nitrate reduction to ammonium(DNRA)pathway in S.oneidensis MR-1.This study provides a facile strategy for light-driven ambient NH4+synthesis and solar-to-chemical conversion.
文摘To identify the root causes of heavy metal contamination in soils as well as prevent and control such contamination from its sources,this study explored the accumulation patterns and ecological risks of heavy metals like Cd and Pb in solid waste in mining areas and across the water body,sediment,soil and agricultural product ecosystem surrounding the mining areas.Focusing on the residual solid waste samples in lead-zinc deposits in a certain area of Guizhou Province,along with samples of topsoils,irrigation water,river sediments,and crops from surrounding areas.This study analyzed the distributions of eight heavy metals,i.e.,Cd,As,Cr,Hg,Pb,Zn,Cu,and Ni,in the samples through field surveys and sample tests.Furthermore,this study assessed the contamination levels and ecological risks of heavy metals in soils,sediments,and agricultural products using methods such as the single-factor index,Nemerow composite index,and potential ecological risk assessment.The results indicate that heavy metals in the solid waste samples all exhibited concentrations exceeding their risk screening values,with 60%greater than their risk intervention values.The soils and sediments demonstrate slight and moderate comprehensive ecological risks of heavy metals.The single-factor potential ecological risks of heavy metals in both the soil and sediment samples decreased in the order of Hg,Cd,Pb,As,Cu,Zn,Cr,and Ni,suggesting the same sources of heavy metals in the soils and sediments.Most of the agricultural product samples exhibited over-limit concentrations of heavy metals dominated by Cd,Pb,Ni,and Cr,excluding Hg and As.The agricultural product assessment using the Nemerow composite index reveals that 35%of the agricultural product samples reached the heavy metal contamination level,implying that the agricultural products from farmland around the solid waste dumps have been contaminated with heavy metals.The eight heavy metals in the soil,sediment,and agricultural product samples manifested high coefficients of variation(CVs),indicating pronounced spatial variability.This suggests that their concentrations in soils,sediments,and agricultural products are significantly influenced by human mining activities.Additionally,the agricultural products exhibit strong transport and accumulation capacities for Cd,Cu,and Zn.
基金supported by the National Natural Science Foundation of China(Nos.U24B20198,22308139,52071171,52202248)the Natural Science Foundation of Liaoning Province(2023-MS-140)+8 种基金the Key Research Project of Department of Education of Liaoning Province(LJKZZ20220015)the Australian Research Council(ARC)through Future Fellowship(FT210100298)Discovery Project(DP220100603)Linkage Project(LP210200504,LP220100088,LP230200897)the Industrial Transformation Research Hub(IH240100009)schemesthe Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)the Australian Renewable Energy Agency(ARENA)as part of ARENA’s Transformative Research Accelerating Commercialisation Program(TM021)European Commission’s Australia-Spain Network for Innovation and Research Excellence(AuSpire)the Foundation of State Key Laboratory of Clean and Efficient Coal Utilization,Taiyuan University of Technology(MJNYSKL202301)。
文摘Aqueous Zn-N_(2)batteries with unique configuration are of potential for simultaneous N_(2)electro reduction and electricity generation,in which the electrocatalysts are critical for improving the NH_(3)yield and the energy efficiency.Herein,a heterostructure Nb_(2)O_(5)/Nb_(2)CT_(x)with abundant exposed Nb active sites and tuned electron density has been synthesized by in situ formation and anchoring of Nb_(2)O_(5) nanoparticles on the surface of Nb_(2)CT_(x)MXene,which shows an enhanced N_(2)adsorption/activation capacity.The heterostructure Nb_(2)O_(5/)Nb_(2)CT_(x)was used as the cathode of Zn-N_(2)battery that can deliver a peak power density of 1.25 mW cm^(-2)in 1.0 M KOH and can continuously produce NH_(3)with a yield of3.62μg h^(-1)mg_(ca)^(t-1).The NH_(3)formed in the battery system can be easily collected as a net product without circulating the electrolyte.Moreover,the Nb_(2)O_(5/)Nb_(2)CT_(x)has a long durability,evidenced by 70 h of operation at-0.4 V vs.reversible hydrogen electrode,which is the highest among the MXene-based electrocatalysts reported thus far.This work may provide a new methodology based on Zn-N_(2)battery for sustainable and large-scale NH_(3)production with minimal energy consumption.
基金Supported by the National Natural Science Foundation of China(No.51966013)Inner Mongolia Natural Science Foundation Jieqing Project(No.2023JQ04)+1 种基金the National Natural Science Foundation of China(No.51966018)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.STZC202230).
文摘Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.
基金funded by Major Science and Technology Projects of Gansu Province(23ZDGF002)Hongliu Outstanding Youth Support Program of Lanzhou University of Technology(02-062212)the Joint Funds of the National Natural Science Foundation of China(U22A20415).
文摘The global green hydrogen industry is experiencing rapid growth,but the high production costs are hindering its widespread adoption.To address this challenge,it is particularly important to rationally configure a renewable energy hydrogen production system.For this purpose,the study proposes a model for capacity optimization configuration of a renewable energy hydrogen production system,which integrates wind power,photovoltaic(PV)power,and concentrating solar power(CSP)with alkaline electrolyzer.It conducts capacity optimization configuration and comprehensive evaluations of the hydrogen production system across various scenarios.To minimize the total daily consumption cost,the CPLEX solver is utilized to solve the objective function and determine the capacity configuration of the renewable energy electrolysis of water hydrogen production system generator set under various scenarios.This approach achieves a utilization rate of over 99%for renewable energy.Through comprehensive evaluation,research has found that renewable energy-coupled hydrogen production significantly reduces generator capacity and electricity generation costs compared to separate hydrogen production,enhancing the economic efficiency of the system.The Wind-PV-CSP coupling hydrogen production system has the smallest generator assembly capacity and the lowest hydrogen production cost,which is 18.84 CNY·kg^(-1),significantly lower than the cost of PV-CSP coupling hydrogen production(25.78 CNY·kg^(-1))and wind-PV coupling hydrogen production(25.86 CNY·kg^(-1)).It has good development prospects and plays an important role in exploring the development path of large-scale on-site consumption of new energy.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金supported by the National Key Research and Development Program of China(2022YFF1102500)the Special Project of Central Guide to Local Science and Technology Development(Innovation platform construction for food green processing technology and intelligent equipment)(2022BGE247).
文摘The global shift towards sustainable food systems has sparked innovations in food sources and production systems,including cell-based meat,plant-based food products,precision fermentation,and 3D food printing.These advancements pose regulatory challenges and opportunities,with China emerging as a critical player in adopting and regulating new food technologies.This review explores the international landscape of new food sources and production systems(NFPS),focusing on China’s role and regulatory approaches compared to global practices.Through this comparative analysis,we aim to contribute to the ongoing dialogue on food safety regulation,offering insights and recommendations for policymakers,industry stakeholders,and researchers engaged in the global food system’s evolution.This comprehensive overview underscores the dynamic nature of regulatory frameworks governing NFPS,highlighting the international efforts to ensure food safety,consumer protection,and the sustainable evolution of the food industry.
基金supported by the National Natural Science Foundation of China(42207529)the China Postdoctoral Science Foundation(2022M721289).
文摘Rice production is crucial for food security in China,and its relationship with rural labor migration has been studied extensively.Labor migration in rural China has taken new forms in recent years.There has been a discernible trend wherein adult children have started migrating to cities while their elderly parents return to villages to re-engage in on-farm work.The phenomenon has notably shaped the intergenerational division of labor(IDL)within households.However,it remains to be seen how farmers adjust their rice production systems in response to the IDL.The age of 60 years for employment injury insurance is the eligibility threshold for off-farm employment and is used to obtain a source of exogenous variation in the IDL.Based on a representative household survey of 1,752 rice farmers in the Hubei Province of Central China,our fuzzy regression discontinuity analysis reveals that farmers in IDL households are more likely to adopt ratoon rice(RR)than single cropping rice(SR)or double cropping rice(DR).The effect of the IDL varies under different levels of operational scales and specialized agricultural service availability.Further analysis suggests that farmers’arrangements are associated with two potential mechanisms of downward intergenerational transfer.Monetary transfer for urban housing purchases increases RR in IDL households,and time transfer for intergenerational childcare significantly promotes SR in IDL households.This study enhances the understanding of the relationship between rural labor migration and rice production in China,providing a reference for adjusting rice production systems to ensure food security.
基金financially supported by the National Natural Science Foundation of China(Nos.52404328,52274412,and 52374418)the China Postdoctoral Science Foundation(No.2024M753248)。
文摘The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.
基金funded by the National Natural Science Foundation of China(32272233)the National Key Research and Development Program of China(2023YFD2302300)+1 种基金the Shaanxi Innovative Talents Promotion Plan,China(2023KJXX-012)the Science and Technology Plan Project of Inner Mongolia,China(2022YFDZ0018)。
文摘Biochar amendment offers a chance for sustainable agriculture.However,the effectiveness of biochar relies on its physical and chemical properties,which are heavily affected by biochar production conditions and management practices.Therefore,substantial uncertainties regarding the use of biochar exist in agricultural systems globally.This study provides the first quantitative evaluation of the impacts of biochar characteristics and management practices on key ecosystem services by performing a second-order meta-analysis based on 34,628 paired observations in biochar-amended and unamended systems.Overall,biochar enhances phytotoxicity alleviation,physiology regulation,soil remediation and carbon sequestration,and microbial functional gene abundance.However,some prominent trade-offs exist between crop productivity and ecosystem service deliveries including for nutrient cycling,microbial function,climate change mitigation,and the soil microbial community.The adoption of low C:N biochar produced at high pyrolysis temperatures from sewage sludge-derived feedstock,in combination with a moderate application rate and inorganic fertilizer input,shows potential for achieving synergistic promotion of crop productivity and ecosystem services.These outcomes highlight the need for judicious implementation of biochar-based solutions to site-specific soil constraints.The quantified synergy and tradeoff relationships will aid the establishment of a sustainable biochar development framework that strengthens necessary ecosystem services commensurate with food security assurance.
文摘BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.
基金supported by the National Key Research and Development Program of China (No.2022YFC2806102)the National Natural Science Foundation of China (No.52171287,52325107)+3 种基金High-tech Ship Research Project of Ministry of Industry and Information Technology (No.2023GXB01-05-004-03,No.GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province (No.ZR2022JQ25)the Taishan Scholars Project (No.tsqn201909063)the Fundamental Research Funds for the Central Universities (No.24CX10006A)。
文摘The subsea production system is a vital equipment for offshore oil and gas production.The control system is one of the most important parts of it.Collecting and processing the signals of subsea sensors is the only way to judge whether the subsea production control system is normal.However,subsea sensors degrade rapidly due to harsh working environments and long service time.This leads to frequent false alarm incidents.A combinatorial reasoning-based abnormal sensor recognition method for subsea production control system is proposed.A combinatorial algorithm is proposed to group sensors.The long short-term memory network(LSTM)is used to establish a single inference model.A counting-based judging method is proposed to identify abnormal sensors.Field data from an offshore platform in the South China Sea is used to demonstrate the effect of the proposed method.The results show that the proposed method can identify the abnormal sensors effectively.
基金supported by the National Natural Science Foundation of China (Grant No.41977008)the 2115 Talent Development Program of China Agricultural University (Grant No.1191-00109011)。
文摘The Ground Cover Rice Production System(GCRPS)has considerable potential for securing rice production in hilly areas.However,its impact on yields and nitrogen(N)fates remains uncertain under varying rainfall conditions.A two-year field experiment(2021–2022)was conducted in Ziyang,Sichuan Province,located in the hilly areas of Southwest China.The experiment included two cultivation methods:conventional flooding paddy(Paddy,W1)and GCRPS(W2).These methods were combined with three N management practices:N1(no-N fertilizer),N2(135 kg/hm^(2)urea as a base fertilizer in both W1 and W2),and N3(135 kg/hm^(2)urea with split application for W1 and 67.5 kg/hm^(2)urea and chicken manure separately for W2).The WHCNS(Soil Water Heat Carbon Nitrogen Simulator)model was calibrated and validated to simulate ponding water depth,soil water storage,soil mineral N content,leaf area index,aboveground dry matter,crop N uptake,and rice yield.Subsequently,this model was used to simulate the responses of rice yield and N fates to GCRPS under different types of precipitation years using meteorological data from 1980 to 2018.The results indicated that the WHCNS model performed well in simulating crop growth and N fates for both Paddy and GCRPS.Compared with Paddy,GCRPS reduced N leaching(35.1%–54.9%),ammonia volatilization(0.7%–13.6%),N runoff(71.1%–83.5%),denitrification(3.8%–6.7%),and total N loss(33.8%–56.9%)for all precipitation year types.However,GCRPS reduced crop N uptake and yield during wet years,while increasing crop N uptake and yield during dry and normal years.Fertilizer application reduced the stability and sustainability of rice yield in wet years,but increased the stability and sustainability of rice yield in dry and normal years.In conclusion,GCRPS is more suitable for normal and dry years in the study region,leading to increased rice yield and reduced N loss.