Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu ...Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.展开更多
1 Noah Verrier,a 45‑year‑old artist from Tallahassee,Florida,has made a name for himself by painting still life images of ultra‑processed food and selling them online.Verrier's social media accounts showcase his w...1 Noah Verrier,a 45‑year‑old artist from Tallahassee,Florida,has made a name for himself by painting still life images of ultra‑processed food and selling them online.Verrier's social media accounts showcase his works,which have attracted a wide audience,some of whom think highly of them and demand they should be displayed in the Louvre.展开更多
For a long time,the conventional superplastic forming temperature for Ti alloys is generally too high(~900-920℃),which leads to too long production cycles,heavy surface oxidation,and property reduction.In this study,...For a long time,the conventional superplastic forming temperature for Ti alloys is generally too high(~900-920℃),which leads to too long production cycles,heavy surface oxidation,and property reduction.In this study,an ultrafine bimodal microstructure,consisting of ultrafine equiaxed microstructure(0.66μm)and 43.3%lamellar microstructure,was achieved in the Ti-6Al-4V alloy by friction stir processing(FSP).The low-temperature superplastic behavior and deformation mechanism of the FSP Ti-6Al-4V alloy were investigated at temperatures of 550-675℃and strain rates ranging from 1×10^(−4)to 3×10^(−3)s^(−1).The FSP alloy exhibited superplastic elongations of>200%at the temperature range from 550 to 650℃,and an optimal superplastic elongation of 611%was achieved at 625℃and 1×10^(−4)s^(−1).This is the first time to report the low-temperature superplasticity of the bimodal microstructure in Ti alloys.Grain boundary sliding was identified as the dominant deformation mechanism,which was effectively accommodated by the comprehensive effect of dislocation-inducedβphase precipitation and dynamic spheroidization of the lamellar structure.This study provides a novel insight into the low-temperature superplastic deformation behavior of the bimodal microstructure.展开更多
Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic...Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic solar cells(OSCs).In the SqP method,the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling.However,the choice of solvent(s)for both the donor and acceptor have been mostly based on a trial-and-error manner.A single solvent often cannot achieve sufficient yet not excessive swelling,which has long been a difficulty in the high efficient SqP OSCs.Herein,two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer.The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process.Among them,the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP,improving bulk morphology and vertical phase segregation.As a result,champion efficiencies of 17.38%and 20.00%(certified 19.70%)are achieved based on PM6/PYF-T-o(all-polymer)and PM6/BTP-eC9 devices casted by toluene solvent.展开更多
Aconiti Lateralis Radix Praeparata(Fuzi)represents a significant traditional Chinese medicine(TCM)that exhibits both notable pharmacological effects and toxicity.Various processing methods are implemented to reduce th...Aconiti Lateralis Radix Praeparata(Fuzi)represents a significant traditional Chinese medicine(TCM)that exhibits both notable pharmacological effects and toxicity.Various processing methods are implemented to reduce the toxicity of raw Fuzi by modifying its toxic and effective components,primarily diterpenoid alkaloids.To comprehensively analyze the chemical variations between different Fuzi products,ultra-high performance liquid chromatography-linear ion trap quadrupole Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS)was employed to systematically characterize Shengfuzi,Heishunpian and Baifupian.A total of 249 diterpenoid alkaloids present in Shengfuzi were identified,while only 111 and 61 in Heishunpian and Baifupian were detected respectively,indicating substantial differences among these products.An untargeted metabolomics approach combined with multivariate statistical analysis revealed 42 potential chemical markers.Through subsequent validation using 52 batches of commercial Heishunpian and Baifupian samples,8 robust markers distinguishing these products were identified,including AC1-propanoic acid-3OH,HE-glucoside,HE-hydroxyvaleric acid-2OH,dihydrosphingosine,N-dodecoxycarbonylvaline and three unknown compounds.Additionally,the MS imaging(MSI)technique was utilized to visualize the spatial distribution of chemical constituents in raw Fuzi,revealing how different processing procedures affect the chemical variations between Heishunpian and Baifupian.The distribution patterns of different diterpenoid alkaloid subtypes partially explained the chemical differences among products.This research provides valuable insights into the material basis for future investigations of different Fuzi products.展开更多
BACKGROUND Colorectal cancer(CRC)plays a significant role in morbidity,mortality,and economic cost in the Belt and Road Initiative(“B and R”)countries.In addition,these countries have a substantial consumption of pr...BACKGROUND Colorectal cancer(CRC)plays a significant role in morbidity,mortality,and economic cost in the Belt and Road Initiative(“B and R”)countries.In addition,these countries have a substantial consumption of processed meat.However,the burden and trend of CRC in relation to the consumption of a diet high in processed meat(DHPM-CRC)in these“B and R”countries remain unknown.AIM To analyze the burden and trend of DHPM-CRC in the“B and R”countries from 1990 to 2019.METHODS We used the 2019 Global Burden of Disease Study to collate information regarding the burden of DHPM-CRC.Numbers and age-standardized rates(ASRs)of deaths along with the disability-adjusted life years(DALYs)were determined among the“B and R”countries in 1990 and 2019.Using joinpoint regression analysis,the average annual percent change(AAPC)was used to analyze the temporal trends of age-standardized DALYs rate(ASDALR)from 1990 to 2019 and in the final decade(2010–2019).RESULTS We found geographical differences in the burden of DHPM-CRC among“B and R”countries,with the three highest-ranking countries being the Russian Federation,China,and Ukraine in 1990,and China,the Russian Federation,and Poland in 2019.The burden of DHPM-CRC generally increased in most member countries from 1990 to 2019(all P<0.05).The absolute number of deaths and DALYs in DHPM-CRC were 3151.15[95%uncertainty interval(UI)665.74-5696.64]and 83249.31(95%UI 15628.64-151956.31)in China in 2019.However,the number of deaths(2627.57-2528.51)and DALYs(65867.39-55378.65)for DHPM-CRC in the Russian Federation has declined.The fastest increase in ASDALR for DHPM-CRC was observed in Vietnam,Southeast Asia,with an AAPC value of 3.90%[95%confidence interval(CI):3.63%-4.16%],whereas the fastest decline was observed in Kyrgyzstan,Central Asia,with an AAPC value of-2.05%(95%CI:-2.37%to-1.73%).A substantial upward trend in ASR of mortality,years lived with disability,years of life lost,and DALYs from DHPM-CRC changes in 1990-2019 and the final decade(2010-2019)for most Maritime Silk Route members in East Asia,South Asia,Southeast Asia,North Africa,and the Middle East,as well as Central Europe,while those of the most Land Silk Route members in Central Asia and Eastern Europe have decreased markedly(all P<0.05).The ASDALR for DHPM-CRC increased more in males than in females(all P<0.05).For those aged 50-74 years,the ASDALR for DHPM-CRC in 40 members exhibited an increasing trend,except for 20 members,including 7 members in Central Asia,Maldives,and 12 high or high-middle social development index(SDI)members in other regions(all P<0.05).CONCLUSION The burden of DHPM-CRC varies substantially across“B and R”countries and threatens public health.Relevant evidence-based policies and interventions tailored to the different trends of countries in SDIs or Silk Routes should be adopted to reduce the future burden of CRC in“B and R”countries via extensive collaboration.展开更多
The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials develop...The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated.展开更多
The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and arti...The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios.展开更多
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros...The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.展开更多
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol...Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.展开更多
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d...CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.展开更多
Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using n...Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.展开更多
Objective:To clarify the specific mechanisms of action of raw Phellodendron chinense Schneid.(RPC)and saltwater-processed PC(SPC)in the treatment of rats with a kidney-yin deficiency pattern(KYDP).Methods:Healthy rats...Objective:To clarify the specific mechanisms of action of raw Phellodendron chinense Schneid.(RPC)and saltwater-processed PC(SPC)in the treatment of rats with a kidney-yin deficiency pattern(KYDP).Methods:Healthy rats were administered hydrocortisone to establish a KYDP model.The rats were divided into seven groups:blank control,model,positive control(Liuwei Dihuang pills),high-dose RPC,low-dose RPC,high-dose SPC,and low-dose SPC.Enzyme-linked immunosorbent assay was used to measure the levels of cAMP,cGMP,TRH,TSH,T3,T4,IFN-g,TNF-a,and testosterone in the serum and the levels of Na^(+)-K^(+)-ATPase and Ca ^(2+)-Mg ^(2+)-ATPase in the liver.TRH mRNA expression in the rat hypo-thalamus was measured using RT-PCR.THRa1+2 protein expression in the hypothalamus of rats was measured using Western blot.Immunohistochemistry was performed to determine the expression levels of FAS,FasL,and TSHR.Flow cytometry was used to determine CD4^(+)and CD8^(+)T lymphocyte levels.Illumina MiSeq sequencing technology was used to evaluate the diversity of intestinal flora in KYDP rats.Results:The cAMP/cGMP ratio was significantly higher in the model group than in the blank control group(P=0.048).Compared with the model group,after administration,the levels of the above-mentioned serum and liver indexes decreased,except that of testosterone.The CD4^(+)/CD8^(+)ratio also decreased.Compared with the RPC group,the levels of T3,IFN-g,FAS,FasL,and TSHR in the SPC group decreased whereas that of testosterone increased.Additionally,immune function and intestinal flora diversity improved in the SPC group.SPC proved to be more effective in improving liver energy meta-bolism in KYDP rats than RPC.Conclusion:SPC had a better therapeutic effect on KYDP than RPC.The underlying mechanism of action may be related to improvements in liver energy metabolism,immune function,and intestinal flora diversity.展开更多
Fifteen compounds were isolated from the processed seeds of Strychnos nux-vomica and were identified as follows:strychnine(1),brucine(2),pseudostrychnine(3),pseudobrucine(4),secoxyloganin(5),caffeic acid(6...Fifteen compounds were isolated from the processed seeds of Strychnos nux-vomica and were identified as follows:strychnine(1),brucine(2),pseudostrychnine(3),pseudobrucine(4),secoxyloganin(5),caffeic acid(6),p-hydroxybenzoic acid(7),p-hydroxyphenylacetic acid(8),uvaol(9),stigmasta-7,22,25-triene-3-ol(10),lupeol(11),11-oxo-α-amyrin palmitate(12),catechol(13),maltol(14),adenosine(15).Compounds 5-15 were isolated from genus Strychnos for the first time.展开更多
Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and ident...Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psb A-trn H, rbc L, mat K, trnL(UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL(UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%——20% of the processed samples, while the amplification rates of the trnL(UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL(UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control.展开更多
The similarities and differences of essential oil components in the raw ingredients of Ephedra (RIE) and processed products of Ephedra obtained by stir-baking with honey or stir-baking without any supplements were a...The similarities and differences of essential oil components in the raw ingredients of Ephedra (RIE) and processed products of Ephedra obtained by stir-baking with honey or stir-baking without any supplements were analyzed by GC-MS.Wet distillation (WD) and supercritical fluid extraction (SFE) were used to extract essential oil components from the samples.Total 48,57 and 48 compounds were found in the extracted essential oils using WD from RIE,the products obtained by stir-baking with honey from Ephedra (SBHE) and the products obtained by stir-baking without any supplements from Ephedra (SBE),respectively whereas total 22,36 and 28 compounds were identified in the extracted essential oils using SPE from these three samples,respectively.In addition,14 and 9 new compounds were found in the essential oils extracted using WD from SBHE and SBE,whereas 15 and 23 new compounds were found in the essential oils extracted by SFE from SBHE and SBE,respectively.The composition and concentration of the essential oil components in the processed products were significantly different from RIE.Such changes in essential oil components might affect drug actions,which is dependent on the manner in which the sample is processed.The findings in this study may shed some lights on the understanding and further exploration of Ephedra processing.展开更多
To summarize the evidence about the association between red and processed meat intake and the risk of esophageal cancer,we systematically searched the PubMed and EMBASE databases up to May 2012,with a restriction to E...To summarize the evidence about the association between red and processed meat intake and the risk of esophageal cancer,we systematically searched the PubMed and EMBASE databases up to May 2012,with a restriction to English publications,and the references of the retrieved articles.We combined the studyspecific relative risks(RRs) and 95%CI,comparing the highest with the lowest categories of consumption by using a random-effects model.A total of 4 cohort studies and 23 case-control studies were included in the meta-analysis.The combined RRs(95%CI) of the cohort studies comparing the highest and lowest categories were 1.26(1.00-1.59) for red meat and 1.25(0.83-1.86) for processed meat.For the case-control studies,the combined RRs(95%CI) comparing the highest and lowest categories were 1.44(1.16-1.80)for red meat and 1.36(1.07-1.74) for processed meat.Findings from this meta-analysis suggest that a higher consumption of red meat was associated with a greater risk of esophageal cancer.展开更多
Imidacloprid is a newly introduced broad-spectrum chloronicotinyl insecticide and will find its way in agricultural production, particularly in Asia. However, information on the fate of imidacloprid in crop plants is ...Imidacloprid is a newly introduced broad-spectrum chloronicotinyl insecticide and will find its way in agricultural production, particularly in Asia. However, information on the fate of imidacloprid in crop plants is lacking. The degradation of imidaclopnd in processed CTC tea and tea liquor was investigated in the present study in which imidacloprid was applied at recommended application rate (30.0 g a.i./ha) and twice the recommended application rate (60.0 g a.i./ha) for three consecutive seasons. Imidacloprid was rapidly dissipated in processed tea following first order reaction kinetics at all application rates and had half-lives of 0.9 1-1.16 d with the residue in tea liquor found to be below detectable limit on 3rd day samples. The study revealed that imidacloprid is safe for human consumption and will not pose any residual toxicity problem.展开更多
By controlling Dy vapor deposition process, the amount of Dy that diffused into the magnet was increased gradually from 0.1 wt.% to 0.3 wt.%. Compared with the original status, the coercivity increment was not proport...By controlling Dy vapor deposition process, the amount of Dy that diffused into the magnet was increased gradually from 0.1 wt.% to 0.3 wt.%. Compared with the original status, the coercivity increment was not proportional to the Dy diffusion amount. Subsequent H(cj) and Dy content gradient data showed that slope of the 0.3 wt.% sample gradient was bigger than that of 0.1 wt.% one, and the gaps between outer flakes and inner flakes enlarged with the increasement of Dy diffusion amount. Although Dy mostly enriched in triple-junction regions in electron-probe microscope analysis(EPMA) images, the following Auger depth graph showed that Dy content was as high as 3.0 at.% in 1.5 mm deep center. It proved that Dy tended to get into the main phase rather than stayed in the grain boundary during the diffusion process, and over-diffusion of Dy in the main phase was unhelpful for the coercivity enhancement.展开更多
Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through soluti...Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.展开更多
基金supported by the National Natural Science Foundation of China(32060577 and 32360619)Natural Science Foundation of Jiangxi Province(20224ACB203016 and 20212BAB203034)the Open Project of China Food Flavor and Nutrition Health Innovation Center(CFC2023B-013).
文摘Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.
文摘1 Noah Verrier,a 45‑year‑old artist from Tallahassee,Florida,has made a name for himself by painting still life images of ultra‑processed food and selling them online.Verrier's social media accounts showcase his works,which have attracted a wide audience,some of whom think highly of them and demand they should be displayed in the Louvre.
基金supported by the funding from the Shi Changxu Innovation Center for Advanced Materials(No.SCXKFJJ202210)the National Natural Science Foundation of China(No.52271043)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021193)the Liaoning Province Excellent Youth Foundation(No.2024JH3/10200021)the Liaoning Revitalization Talents Program(No.XLYC2403094).
文摘For a long time,the conventional superplastic forming temperature for Ti alloys is generally too high(~900-920℃),which leads to too long production cycles,heavy surface oxidation,and property reduction.In this study,an ultrafine bimodal microstructure,consisting of ultrafine equiaxed microstructure(0.66μm)and 43.3%lamellar microstructure,was achieved in the Ti-6Al-4V alloy by friction stir processing(FSP).The low-temperature superplastic behavior and deformation mechanism of the FSP Ti-6Al-4V alloy were investigated at temperatures of 550-675℃and strain rates ranging from 1×10^(−4)to 3×10^(−3)s^(−1).The FSP alloy exhibited superplastic elongations of>200%at the temperature range from 550 to 650℃,and an optimal superplastic elongation of 611%was achieved at 625℃and 1×10^(−4)s^(−1).This is the first time to report the low-temperature superplasticity of the bimodal microstructure in Ti alloys.Grain boundary sliding was identified as the dominant deformation mechanism,which was effectively accommodated by the comprehensive effect of dislocation-inducedβphase precipitation and dynamic spheroidization of the lamellar structure.This study provides a novel insight into the low-temperature superplastic deformation behavior of the bimodal microstructure.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2022A1515010875)National Natural Science Foundation of China (12404480)+4 种基金Shenzhen Science and Technology Program (JCYJ20240813113238050, JCYJ20240813113306008)Education Department of Guangdong Province (2021KCXTD045)National Natural Science Foundation of China (12274303)the Shenzhen Key Laboratory of Applied Technologies of Super-Diamond and Functional Crystals (ZDSYS20230626091303007)Characteristic Innovation Foundation of Higher Education Institutions of Guangdong Province (2022KTSCX116)
文摘Sequential processing(SqP)of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design,which is considered the most promising strategy for achieving efficient organic solar cells(OSCs).In the SqP method,the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling.However,the choice of solvent(s)for both the donor and acceptor have been mostly based on a trial-and-error manner.A single solvent often cannot achieve sufficient yet not excessive swelling,which has long been a difficulty in the high efficient SqP OSCs.Herein,two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer.The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process.Among them,the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP,improving bulk morphology and vertical phase segregation.As a result,champion efficiencies of 17.38%and 20.00%(certified 19.70%)are achieved based on PM6/PYF-T-o(all-polymer)and PM6/BTP-eC9 devices casted by toluene solvent.
基金supported by the Qi-Huang Chief Scientist Program of the National Administration of Traditional Chinese Medicine(2020)the National Key Research and Development Program of China(No.2022YFC3501705)+1 种基金Shanghai Sailing Program(No.23YF1447500)the China Postdoctoral Science Foundation(No.2023M732335).
文摘Aconiti Lateralis Radix Praeparata(Fuzi)represents a significant traditional Chinese medicine(TCM)that exhibits both notable pharmacological effects and toxicity.Various processing methods are implemented to reduce the toxicity of raw Fuzi by modifying its toxic and effective components,primarily diterpenoid alkaloids.To comprehensively analyze the chemical variations between different Fuzi products,ultra-high performance liquid chromatography-linear ion trap quadrupole Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS)was employed to systematically characterize Shengfuzi,Heishunpian and Baifupian.A total of 249 diterpenoid alkaloids present in Shengfuzi were identified,while only 111 and 61 in Heishunpian and Baifupian were detected respectively,indicating substantial differences among these products.An untargeted metabolomics approach combined with multivariate statistical analysis revealed 42 potential chemical markers.Through subsequent validation using 52 batches of commercial Heishunpian and Baifupian samples,8 robust markers distinguishing these products were identified,including AC1-propanoic acid-3OH,HE-glucoside,HE-hydroxyvaleric acid-2OH,dihydrosphingosine,N-dodecoxycarbonylvaline and three unknown compounds.Additionally,the MS imaging(MSI)technique was utilized to visualize the spatial distribution of chemical constituents in raw Fuzi,revealing how different processing procedures affect the chemical variations between Heishunpian and Baifupian.The distribution patterns of different diterpenoid alkaloid subtypes partially explained the chemical differences among products.This research provides valuable insights into the material basis for future investigations of different Fuzi products.
基金Supported by National Natural Science Foundation of China,No.82260532,and No.32060208.
文摘BACKGROUND Colorectal cancer(CRC)plays a significant role in morbidity,mortality,and economic cost in the Belt and Road Initiative(“B and R”)countries.In addition,these countries have a substantial consumption of processed meat.However,the burden and trend of CRC in relation to the consumption of a diet high in processed meat(DHPM-CRC)in these“B and R”countries remain unknown.AIM To analyze the burden and trend of DHPM-CRC in the“B and R”countries from 1990 to 2019.METHODS We used the 2019 Global Burden of Disease Study to collate information regarding the burden of DHPM-CRC.Numbers and age-standardized rates(ASRs)of deaths along with the disability-adjusted life years(DALYs)were determined among the“B and R”countries in 1990 and 2019.Using joinpoint regression analysis,the average annual percent change(AAPC)was used to analyze the temporal trends of age-standardized DALYs rate(ASDALR)from 1990 to 2019 and in the final decade(2010–2019).RESULTS We found geographical differences in the burden of DHPM-CRC among“B and R”countries,with the three highest-ranking countries being the Russian Federation,China,and Ukraine in 1990,and China,the Russian Federation,and Poland in 2019.The burden of DHPM-CRC generally increased in most member countries from 1990 to 2019(all P<0.05).The absolute number of deaths and DALYs in DHPM-CRC were 3151.15[95%uncertainty interval(UI)665.74-5696.64]and 83249.31(95%UI 15628.64-151956.31)in China in 2019.However,the number of deaths(2627.57-2528.51)and DALYs(65867.39-55378.65)for DHPM-CRC in the Russian Federation has declined.The fastest increase in ASDALR for DHPM-CRC was observed in Vietnam,Southeast Asia,with an AAPC value of 3.90%[95%confidence interval(CI):3.63%-4.16%],whereas the fastest decline was observed in Kyrgyzstan,Central Asia,with an AAPC value of-2.05%(95%CI:-2.37%to-1.73%).A substantial upward trend in ASR of mortality,years lived with disability,years of life lost,and DALYs from DHPM-CRC changes in 1990-2019 and the final decade(2010-2019)for most Maritime Silk Route members in East Asia,South Asia,Southeast Asia,North Africa,and the Middle East,as well as Central Europe,while those of the most Land Silk Route members in Central Asia and Eastern Europe have decreased markedly(all P<0.05).The ASDALR for DHPM-CRC increased more in males than in females(all P<0.05).For those aged 50-74 years,the ASDALR for DHPM-CRC in 40 members exhibited an increasing trend,except for 20 members,including 7 members in Central Asia,Maldives,and 12 high or high-middle social development index(SDI)members in other regions(all P<0.05).CONCLUSION The burden of DHPM-CRC varies substantially across“B and R”countries and threatens public health.Relevant evidence-based policies and interventions tailored to the different trends of countries in SDIs or Silk Routes should be adopted to reduce the future burden of CRC in“B and R”countries via extensive collaboration.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515010875)Guangdong Basic and Applied Basic Research Foundation(2021A1515110017)+10 种基金Natural Science Foundation of Top Talent of SZTU(grant no.20200205)Project of Education Commission of Guangdong Province of China(2021KQNCX080)Research on the electrochemical reaction mechanism of the anode of mediumlow temperature direct ammonia SOFCs(20231063020006)the project of al solid-state high energy density energy storage system(20221063010031)the project of Shenzhen Overseas Talent upon Industrialization of 1kw stack for direct ammonia SOFCs(20221061010002)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011673)Education Department of Guangdong Province(No.2021KCXTD045)National Natural Science Foundation of China(No.12274303)the support from the Fundamental Research Funds for the Central Universities(2232023A-01)NSFC No.52103202beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF)for the synchrotron experiment
文摘The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated.
基金obtained from Comunidad de Madrid through the Universidad Politécnica de Madrid in the line of Action for Encouraging Research from Young Doctors(project CdM ref:APOYO-JOVENES779NQU-57-LSWH0F,UPM ref M190020074AOC,CAREDEL)MINECO(Spain)Project MAT2015-68919-C3-1-R(MINECO/FEDER)+4 种基金project PID2020-118626RB-I00(RAPIDAL)awarded by MCIN/AEI/10.13039/501100011033FSP assistanceProject CAREDELProject RAPIDAL for research contractsMCIN/AEI for a FPI contract number PRE2021-096977。
文摘The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios.
文摘The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.
基金UK Engineering and Physical Sciences Research Council(EPSRC)New Investigator Award(2018,EP/R043272/1)Newton Advanced Fellowship(192097)for financial support+3 种基金the Royal Society,the Engineering and Physical Sciences Research Council(EPSRC,EP/R023980/1,EP/V027131/1)the European Research Council(ERC)under the European Union's Horizon 2020 research and innovation program(HYPERION,Grant Agreement Number 756962)the Royal Society and Tata Group(UF150033)EPSRC SPECIFIC IKC(EP/N020863/1)
文摘Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.
基金financially supported by the Guangzhou Basic and Applied Basic Research Foundation,China(No.303523)。
文摘CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
基金supported by the High Value-added Food Technology Development Program in Korea (Grant No. 323002-4)the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry, Republic of Korea。
文摘Convenience rice has become widely popular due to its easy availability for cooking. This study investigated the starch structure and composition of leachate and the microstructure of reheated convenience rice using novel processing technologies: super-heated steaming(SHS), auto-electric cooking(AEC), and pressurized-steam cooking(PSC). Additionally, the effect of two different target water contents(58% and 63%) was also evaluated. The PSC_63% sample had the highest total solids and amylopectin amount in the leachate. The amylopectin amount in the leachate differed significantly based on the targeted water content. Morphological characterization revealed that the swelling of starch and the coated layer on the surface of rice grains were most pronounced in the PSC_63% sample due to the pressure processing. The textural hardness of the AEC_58% sample was much higher than that of the other samples. The PSC_63% sample had the highest textural adhesiveness value, which can be attributed to the highest amylopectin amount in the leachate. Sensory characterization showed that the PSC_63% sample had the highest glossiness, whiteness, moistness, and overall acceptability. The principal component analysis score plots presented substantial differences in the leachate and textural and sensory characteristics of reheated convenience rice among the different processing technologies.
基金supported by the National Natural Science Foundation of China for Youth(81903801)the National Traditional Chinese Medicine Industry Natural Science Foundation of Liaoning Province(2022-MS-287)the Shenyang Science and Technology Innovation Talent Project(RC210192),and the Project of Educational Department of Liaoning Province(JYTCB-024).
文摘Objective:To clarify the specific mechanisms of action of raw Phellodendron chinense Schneid.(RPC)and saltwater-processed PC(SPC)in the treatment of rats with a kidney-yin deficiency pattern(KYDP).Methods:Healthy rats were administered hydrocortisone to establish a KYDP model.The rats were divided into seven groups:blank control,model,positive control(Liuwei Dihuang pills),high-dose RPC,low-dose RPC,high-dose SPC,and low-dose SPC.Enzyme-linked immunosorbent assay was used to measure the levels of cAMP,cGMP,TRH,TSH,T3,T4,IFN-g,TNF-a,and testosterone in the serum and the levels of Na^(+)-K^(+)-ATPase and Ca ^(2+)-Mg ^(2+)-ATPase in the liver.TRH mRNA expression in the rat hypo-thalamus was measured using RT-PCR.THRa1+2 protein expression in the hypothalamus of rats was measured using Western blot.Immunohistochemistry was performed to determine the expression levels of FAS,FasL,and TSHR.Flow cytometry was used to determine CD4^(+)and CD8^(+)T lymphocyte levels.Illumina MiSeq sequencing technology was used to evaluate the diversity of intestinal flora in KYDP rats.Results:The cAMP/cGMP ratio was significantly higher in the model group than in the blank control group(P=0.048).Compared with the model group,after administration,the levels of the above-mentioned serum and liver indexes decreased,except that of testosterone.The CD4^(+)/CD8^(+)ratio also decreased.Compared with the RPC group,the levels of T3,IFN-g,FAS,FasL,and TSHR in the SPC group decreased whereas that of testosterone increased.Additionally,immune function and intestinal flora diversity improved in the SPC group.SPC proved to be more effective in improving liver energy meta-bolism in KYDP rats than RPC.Conclusion:SPC had a better therapeutic effect on KYDP than RPC.The underlying mechanism of action may be related to improvements in liver energy metabolism,immune function,and intestinal flora diversity.
基金Research Platform for Quality Standard of TCM and Information System Building(Grant No.2009ZX09308-04)National S&T Major Project-Created Major New Drugs Projects(Grant No.2009ZX09311-004)
文摘Fifteen compounds were isolated from the processed seeds of Strychnos nux-vomica and were identified as follows:strychnine(1),brucine(2),pseudostrychnine(3),pseudobrucine(4),secoxyloganin(5),caffeic acid(6),p-hydroxybenzoic acid(7),p-hydroxyphenylacetic acid(8),uvaol(9),stigmasta-7,22,25-triene-3-ol(10),lupeol(11),11-oxo-α-amyrin palmitate(12),catechol(13),maltol(14),adenosine(15).Compounds 5-15 were isolated from genus Strychnos for the first time.
基金supported by the Major Scientific and Technological Special Project for“Significant New Drugs Creation(No.2014ZX09304307)the Key Projects in he National Science and Technology Pillar Program(No.2011BAI07B08)
文摘Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psb A-trn H, rbc L, mat K, trnL(UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL(UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%——20% of the processed samples, while the amplification rates of the trnL(UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL(UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control.
基金State Projects of the Eleventh-Five-year Plan (Grant No.2006BAI09B06-08-05)
文摘The similarities and differences of essential oil components in the raw ingredients of Ephedra (RIE) and processed products of Ephedra obtained by stir-baking with honey or stir-baking without any supplements were analyzed by GC-MS.Wet distillation (WD) and supercritical fluid extraction (SFE) were used to extract essential oil components from the samples.Total 48,57 and 48 compounds were found in the extracted essential oils using WD from RIE,the products obtained by stir-baking with honey from Ephedra (SBHE) and the products obtained by stir-baking without any supplements from Ephedra (SBE),respectively whereas total 22,36 and 28 compounds were identified in the extracted essential oils using SPE from these three samples,respectively.In addition,14 and 9 new compounds were found in the essential oils extracted using WD from SBHE and SBE,whereas 15 and 23 new compounds were found in the essential oils extracted by SFE from SBHE and SBE,respectively.The composition and concentration of the essential oil components in the processed products were significantly different from RIE.Such changes in essential oil components might affect drug actions,which is dependent on the manner in which the sample is processed.The findings in this study may shed some lights on the understanding and further exploration of Ephedra processing.
文摘To summarize the evidence about the association between red and processed meat intake and the risk of esophageal cancer,we systematically searched the PubMed and EMBASE databases up to May 2012,with a restriction to English publications,and the references of the retrieved articles.We combined the studyspecific relative risks(RRs) and 95%CI,comparing the highest with the lowest categories of consumption by using a random-effects model.A total of 4 cohort studies and 23 case-control studies were included in the meta-analysis.The combined RRs(95%CI) of the cohort studies comparing the highest and lowest categories were 1.26(1.00-1.59) for red meat and 1.25(0.83-1.86) for processed meat.For the case-control studies,the combined RRs(95%CI) comparing the highest and lowest categories were 1.44(1.16-1.80)for red meat and 1.36(1.07-1.74) for processed meat.Findings from this meta-analysis suggest that a higher consumption of red meat was associated with a greater risk of esophageal cancer.
基金Project supported by Bayer Crop. Science India Ltd
文摘Imidacloprid is a newly introduced broad-spectrum chloronicotinyl insecticide and will find its way in agricultural production, particularly in Asia. However, information on the fate of imidacloprid in crop plants is lacking. The degradation of imidaclopnd in processed CTC tea and tea liquor was investigated in the present study in which imidacloprid was applied at recommended application rate (30.0 g a.i./ha) and twice the recommended application rate (60.0 g a.i./ha) for three consecutive seasons. Imidacloprid was rapidly dissipated in processed tea following first order reaction kinetics at all application rates and had half-lives of 0.9 1-1.16 d with the residue in tea liquor found to be below detectable limit on 3rd day samples. The study revealed that imidacloprid is safe for human consumption and will not pose any residual toxicity problem.
文摘By controlling Dy vapor deposition process, the amount of Dy that diffused into the magnet was increased gradually from 0.1 wt.% to 0.3 wt.%. Compared with the original status, the coercivity increment was not proportional to the Dy diffusion amount. Subsequent H(cj) and Dy content gradient data showed that slope of the 0.3 wt.% sample gradient was bigger than that of 0.1 wt.% one, and the gaps between outer flakes and inner flakes enlarged with the increasement of Dy diffusion amount. Although Dy mostly enriched in triple-junction regions in electron-probe microscope analysis(EPMA) images, the following Auger depth graph showed that Dy content was as high as 3.0 at.% in 1.5 mm deep center. It proved that Dy tended to get into the main phase rather than stayed in the grain boundary during the diffusion process, and over-diffusion of Dy in the main phase was unhelpful for the coercivity enhancement.
基金The authors acknowledge funding from the National Natural Science Foundation of China(61974150 and 51773213)Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC047)+1 种基金the Fundamental Research Funds for the Central Universities,the CAS-EU S&T cooperation partner program(174433KYSB20150013)the Natural Science Foundation of Ningbo(2018A610135).
文摘Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.