期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Research on process-induced effect in 14-nm FinFET gate formation and digital unit optimization design
1
作者 Yafen Yang Hang Xu +2 位作者 Tianyang Feng Jianbin Guo David Wei Zhang 《Journal of Semiconductors》 EI CAS CSCD 2024年第12期88-93,共6页
The advanced fin-shaped field-effect transistor(FinFET)technology offers higher integration density and stronger channel control capabilities,however,more complex process effects are also introduced which have signifi... The advanced fin-shaped field-effect transistor(FinFET)technology offers higher integration density and stronger channel control capabilities,however,more complex process effects are also introduced which have significant influence on device performance.To address these issues,we complete a design-technology co-optimization(DTCO)focused on FinFET,including both process-induced effect during gate formation and corresponding digital unit optimization design.The 14 nm Fin-FET complementary metal oxide semiconductor(CMOS)technology is used to illustrate the sensitivity of transistor perfor-mance to process-induced effect,specifically the poly pitch effect(PPE)and cut poly effect(CPE).Predictive technology com-puter aided design(TCAD)simulations have been carried out to evaluate the transistor performance in advance.Based on the results,optimizations in digital unit design is proposed.Fall delay of the digital unit inverter is decreased by 0.7%,and the rise delay is decreased by 2.1%.For multiple selector(MUX2NV),the delay decreases by 4.64%for rise and 3.56%for drop,respec-tively. 展开更多
关键词 FINFET TCAD process-induced effect digital unit optimization design
在线阅读 下载PDF
An alternative method to reduce process-induced deformation of CFRP by introducing prestresses 被引量:2
2
作者 Zhendong LIU Xitao ZHENG +3 位作者 Wenjing FAN Fei WANG Sohail AHMED Leilei YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第8期314-323,共10页
Process-induced deformation is an important limiting factor to the application of high performance composite structures.An alternative method to reduce process-induced deformation is proposed by introducing prestress ... Process-induced deformation is an important limiting factor to the application of high performance composite structures.An alternative method to reduce process-induced deformation is proposed by introducing prestress to a single layer or part of the layers instead of all the applicable layers.In this method,the necessary prestress level that applied to the single layer was in the reasonable range.Two kinds of unsymmetric laminates are manufactured at varying prestress levels.The experimental results described that the curing deformation is changed rapidly with the growing prestress level and flipped after a certain prestress level.Moreover,there is a good linear relationship between prestress level and final curing deformation,which gives a convenient way to calculate the prestress level that can fully counteract the curing deformation.The numerical model to predict the curing deformation was built.A good agreement between the numerical and the experimental results shows the effectiveness of the numerical model.To predict the prestress level that can fully counteract the curing deformation,an analytical model is also proposed.Theoretically,the prestress method can fully counteract the curing deformation of the specimens,while the experimental results show that the prestressing layer reduces more than 80%of the curing deformation. 展开更多
关键词 Curing deformation PRESTRESSING PRE-TENSION process-induced deforamtion Residual stress
原文传递
MnS/MnO heterostructures with dual ion defects for high-performance aqueous magnesium ion capacitors
3
作者 Minghui Liu Mudi Li +7 位作者 Siwen Zhang Yaxi Ding Ying Sun Jiazhuo Li Haixi Gu Bosi Yin Hui Li Tianyi Ma 《Journal of Magnesium and Alloys》 2025年第1期219-228,共10页
The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary mate... The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary material.Consequently,this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method,marking its initial application in aqueous magnesium ion capacitors(AMICs).The fabricated MnS/MnO heterostructure,characterized by S defects,also generates Mn defects via in-situ initiation of early electrochemical processes.This unique dual ion defects MnS/MnO heterostructure(DID-MnS/MnO)enables the transformation of MnS and MnO,initially not highly active electrochemically for Mg^(2+),into cathode materials exhibiting high electrochemical activity and superior performance.Moreover,DID-MnS/MnO enhances conductivity,improves the kinetics of surface redox reactions,and increases the diffusion rate of Mg^(2+).Furthermore,this study introduces a dual energy storage mechanism for DID-MnS/MnO,which,in conjunction with dual ion defects,offers additional active sites for Mg^(2+)insertion/deinsertion in the host material,mitigating volume expansion and structural degradation during repeated charge-discharge cycles,thereby significantly enhancing cycling reversibility.As anticipated,using a three-electrode system,the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g.Remarkably,the constructed AMIC maintained a capacity retention rate of 94.3%after 10000 cycles at a current density of 1.0 A/g,with a specific capacitance of 165.7 F/g.Hence,DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector. 展开更多
关键词 DID-MnS/MnO Dual ion defects Initial electrochemical process-induced defects Dual energy storage mechanism Aqueous magnesium ion capacitors
在线阅读 下载PDF
Temperature and strain registration by fibre-optic strain sensor in the polymer composite materials manufacturing
4
作者 V.P.Matveenko N.A.Kosheleva +1 位作者 I.N.Shardakov A.A.Voronkov 《International Journal of Smart and Nano Materials》 SCIE EI 2018年第2期99-110,I0003,共13页
The presence of process-induced strains induced by various manufacturing and operational factors is one of the characteristics of polymer composite materials(PCM).Conventional methods of registration and evaluation of... The presence of process-induced strains induced by various manufacturing and operational factors is one of the characteristics of polymer composite materials(PCM).Conventional methods of registration and evaluation of process-induced strains can be laborious,time-consuming and demanding in terms of technical applications.The employment of embedded fibre-optic strain sensors(FOSS)offers a real prospect of measuring residual strains.This paper demonstrates the potential for using embedded FOSS for recording technological strains in a PCM plate.The PCM plate is manufactured from prepreg,using the direct compression-moulding method.In this method,the prepared reinforcing package is placed inside a mould,heated,and then exposed to compaction pressure.The examined technology can be used for positioning FOSS between the layers of the composite material.Fibre-optic sensors,interacting with the material of the examined object,make it possible to register the evolution of the strain process during all stages of polymer-composite formation.FOSS data were recorded with interrogator ASTRO X 327.The obtained data were processed using specially developed algorithms. 展开更多
关键词 Polymer composite materials fibre-optic strain sensors process-induced strains smart-materials
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部