The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process f...The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process flow that is aimed at improving efficiency, while giving attention to stability and safety at the same time. The paper describes the process flow of dual drilling centers and a hierarchical division of rigs based on the different modes of transportation of various drilling support systems. The general layout-centripetal overall arrangement spatially was determined based on drilling efficiency. We derived our modules according to drilling functionality; the modules became our basic layout units. We applied different layout algorithm to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck's calculations were based on the best-fit scope. Storage configurations in columns and pontoons were also considered for the layout design. Finally the center of gravity was taken into consideration and the general layout was adjusted accordingly, to result in an optimal center of gravity. The methodology of the general layout can provide a reference for implementation of domestic designs of semi-submersible rigs.展开更多
Inconel 718 superalloy has extensive applications in a variety of industries such as the moulding,aerospace and medical due to its excellent mechanical features such as poor thermal conductivity,high strength at high ...Inconel 718 superalloy has extensive applications in a variety of industries such as the moulding,aerospace and medical due to its excellent mechanical features such as poor thermal conductivity,high strength at high temperatures and corrosion resistance.However,it is very difficult to process by traditional machining and finishing methods.Abrasive based finishing process is one of non-traditional finishing method applied to complex surfaces.Shot peening process is one of the surface treatment processes mostly applied to improve the surface strength.The superior advantages of these two processes are combined into one process.This newly developed and patented process is called as GOV process.In this study,the effects of GOV process parameters(number of cycles,steel ball size,media concentration)on the surface quality of Inconel 718 already pre-processed by wire electric discharge machining are investigated.The performance parameters are identified as surface roughness,material removal and white layer thickness.Surface finishing with the GOV process improves the surface roughness,Ra value by decreasing from 2.63μm to 0.46μm by removing micro-level chips up to 10.7 mg which is supported by SEM images.White layer formed due to nature of EDM process is completely removed from specimen surface.展开更多
Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel...Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.展开更多
The flow behavior of delta-processed Inconel 718 was studied in temperature range of 900-1 060℃ and strain rate range of 0.001-0.5s-1.The effects of friction and temperature on the compressive deformation behavior we...The flow behavior of delta-processed Inconel 718 was studied in temperature range of 900-1 060℃ and strain rate range of 0.001-0.5s-1.The effects of friction and temperature on the compressive deformation behavior were investigated,and the flow stress-strain error caused by friction was revised.The results showed that the effect of the friction was obvious with increasing strain rate and decreasing deformation temperature.The revised flow stress is decreased by increasing temperature and decreasing strain rate and exhibits a typical dynamic recrystallization behavior.The constitutive model has been developed through a hyperbolic-sine Arrhenius type equation to relate the flow stress,strain rate and temperature.The influence of strain has also been incorporated by considering the variation of material constants as a function of strain.The prediction accuracy of developed constitutive model has been assessed using standard statistical formulae.According to the analysis results,the proposed deformation constitutive equation gives an accurate and precise estimate of flow stress of delta-processed Inconel 718 alloy.展开更多
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a cata...Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.展开更多
The flow and mixing characteristics of molten steel during the vacuum circulation refining, including RH(Ruhrstahl Heraeus) and RH KTB(Ruhrstahl Heraeus Kawasaki top blowing) processes, were investigated on a 1/5 ...The flow and mixing characteristics of molten steel during the vacuum circulation refining, including RH(Ruhrstahl Heraeus) and RH KTB(Ruhrstahl Heraeus Kawasaki top blowing) processes, were investigated on a 1/5 linear scale water model of a 90 t multifunction RH degasser. The circulation rate was directly and more accurately determined, using a new method by which the more reliable results can be obtained. The fluid flow pattern and flow field in the ladle were demonstrated, observed and analyzed. The mixing time of liquid in the ladle was measured using electrical conductivity method. The residence time distribution in the RH model was obtained by tracer response technique. The influence of the main technological and geometric factors, including the gas top blowing (KTB) operation, was examined. The results indicated that the circulation rate of molten steel in the RH degasser can be fairly precisely calculated by the formula: Q lp =0.0333 Q 0.26 g D 0.69 u D 0.80 d(t/min), where Q g-the lifting gas flow rate (NL/min); D u and D d-the inner diameters of the up and down snorkels (cm), respectively. The maximum value of circulation rate of molten steel in the case of the 30 cm diameters either of the up and down snorkels for the RH degasser (the “saturated” rate) is approximately 31 t/min. The corresponding gas flow rate is 900 NL/min. Blowing gas into the vacuum chamber through the top lance like KTB operation does not markedly influence the circulatory flow and mixing characteristics of the RH process under the conditions of the present work. There exist a major loop and a large number of small vortices and eddies in the ladle during the RH refining process. A liquid liquid two phase flow is formed between the descending stream from the down snorkel and the liquid around the stream. All of these flow situation and pattern will strongly influence and determine the mixing and mass transfer in the ladle during the refining. The correlation between the mixing time and the stirring energy density is τ m∝ε -0.50 for the RH degasser. The mixing time rapidly shortens with an increase in the lifting gas flowrate. At a same gas flow rate, the mixing times with the up and down snorkel diameters either of 6 and 7 cm are essentially same. The 30 cm diameters either of the up and down snorkels for the RH degasser would be reasonable. The concentration time curve showed that three circulation cycles are at least needed for complete mixing of the liquid steel in the RH degasser.展开更多
From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship betw...From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.展开更多
A new process for swirling flow generation in the submerged entry nozzle (SEN) in continuous casting process of steel was proposed. A rotating electromagnetic field was set up around the SEN to induce swirling flow ...A new process for swirling flow generation in the submerged entry nozzle (SEN) in continuous casting process of steel was proposed. A rotating electromagnetic field was set up around the SEN to induce swirling flow by Lorentz force. The flow and temperature fields in the SEN and round billet mold with electromagnetic swirling were numerically simulated and then verified by the electromagnetic swirling model experiment of low melting point alloy. The effects of divergent angle of the SEN on the flow and temperature fields in mold with electromagnetic swirling were investigated. The electromagnetic swirling flow generator (EMSFG) could effectively induce swirling flow of molten steel in the SEN, which consequently improved greatly the flow and temperature fields in the mold. Below the nozzle outlet in mold, with the increase of divergent angle, the stream of bulk flow diverged more widely, the high temperature zone shifted up, and the temperature field became more uniform. Above the nozzle outlet in mold, with 350 A electromagnetic swirling, when the divergent angle of the SEN increased, the upward flow velocity and the meniscus temperature first increased and then decreased. With a divergent angle of 60~, the upward flow velocity and meniscus temperature reaced the largest value.展开更多
With its high repeatability,the airgun source has been used to monitor the temporal variations of subsurface structures. However,under different working conditions,there will be subtle differences in the airgun source...With its high repeatability,the airgun source has been used to monitor the temporal variations of subsurface structures. However,under different working conditions,there will be subtle differences in the airgun source signals. To some extent,deconvolution can eliminate changes of the recorded signals due to source variations. Generally speaking,in order to remove the airgun source wavelet signal and obtain the Green's functions between the airgun source and stations,we need to select an appropriate method to perform the deconvolution process for seismic waveform data. Frequency domain water level deconvolution and time domain iterative deconvolution are two kinds of deconvolution methods widely used in the field of receiver functions,etc. We use the Binchuan( in Yunnan Province,China) airgun data as an example to compare the performance of these two deconvolution methods in airgun source data processing. The results indicate that frequency domain water level deconvolution is better in terms of computational efficiency;time domain iterative deconvolution is better in terms of the signal-to-noise ratio( SNR),and the initial motion of P-wave is also clearer. We further discuss the sequence issue of deconvolution and stack for multiple-shot airgun data processing. Finally,we propose a general processing flow for the airgun source data to extract the Green 's functions between the airgun source and stations.展开更多
The packet classification is a fundamental process in provisioning security and quality of service for many intelligent network-embedded systems running in the Internet of Things(IoT).In recent years,researchers have ...The packet classification is a fundamental process in provisioning security and quality of service for many intelligent network-embedded systems running in the Internet of Things(IoT).In recent years,researchers have tried to develop hardware-based solutions for the classification of Internet packets.Due to higher throughput and shorter delays,these solutions are considered as a major key to improving the quality of services.Most of these efforts have attempted to implement a software algorithm on the FPGA to reduce the processing time and enhance the throughput.The proposed architectures,however,cannot reach a compromise among power consumption,memory usage,and throughput rate.In view of this,the architecture proposed in this paper contains a pipelinebased micro-core that is used in network processors to classify packets.To this end,three architectures have been implemented using the proposed micro-core.The first architecture performs parallel classification based on header fields.The second one classifies packets in a serial manner.The last architecture is the pipeline-based classifier,which can increase performance by nine times.The proposed architectures have been implemented on an FPGA chip.The results are indicative of a reduction in memory usage as well as an increase in speedup and throughput.The architecture has a power consumption of is 1.294w,and its throughput with a frequency of 233 MHz exceeds 147 Gbps.展开更多
Due to the high heterogeneity and complexity of water flow movement for multiple karst water-bearing mediums,the evaluation,effective development,and utilization of karst water resources are significantly limited.Matr...Due to the high heterogeneity and complexity of water flow movement for multiple karst water-bearing mediums,the evaluation,effective development,and utilization of karst water resources are significantly limited.Matrix flow is usually laminar,whereas conduit flow is usually turbulent.The driving mechanisms of water exchange that occur between the karst conduit and its adjacent matrix are not well understood.This paper investigates the hydrodynamic characteristics and the mechanism of flow exchange in dual water-bearing mediums(conduit and matrix)of karst aquifers through laboratory experimentation and numerical simulation.A karst aquifer consisting of a matrix network and a conduit was proposed,and the relationship between the water exchange flux and hydraulic head differences generated from the laboratory experiments was analyzed.Two modes of experimental tests were performed with different fixed water level boundaries in the laboratory karst aquifer.The results indicate that the water exchange capacity was proportional to the square root of hydraulic head differences.The linear exchange term in the conduit flow process(CFP)source program was modified according to experimental results.The modified CFP and the original CFP model experimental data results were compared,and it was found that the modified CFP model had better fitting effects.These results showed that the water exchange mechanism between conduit and matrix is very important for solid-liquid interface reaction,water resource evaluation,and understanding of karst hydrodynamic behavior.展开更多
The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount...The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.展开更多
The standard material flow diagram in steel manufacturing process was proposed to analyze the influences of various material flows on environmental load of 1tof final product.Two influence factors and reducing measure...The standard material flow diagram in steel manufacturing process was proposed to analyze the influences of various material flows on environmental load of 1tof final product.Two influence factors and reducing measures of environmental load were pointed out.The environmental load was appraised for a typical technological process in a Chinese steel plant.展开更多
To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas util...To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas utilization rate,a method for recognizing distribution features of blast furnace gas flow center was proposed based on infrared image processing,and distribution features of blast furnace gas flow center and corresponding gas utilization rates were categorized by using fuzzy C-means clustering and statistical methods.A concept of gas flow center offset was introduced.The results showed that,when the percentage of gas flow center without offset exceeded 85%,the average blast furnace gas utilization rate was as high as 41%;when the percentage of gas flow center without offset exceeded50%,the gas utilization rate was primarily the center gas utilization rate,and exhibited a positive correlation with no center offset degree;when the percentage of gas flow center without offset was below 50% but the sum of the percentage of gas flow center without offset and that of gas flow center with small offset exceeded 86%,the gas utilization rate depended on both the center and the edges,and was primarily the edge gas utilization rate.The method proposed was able to accurately and effectively recognize gas flow center distribution state and the relationship between it and gas utilization rate,providing evidence in favor of on-line blast furnace control.展开更多
Internet of Car, resulting from the Internet of Things, is a key point for the forthcoming smart city. In this article, GPS technology, 3G wireless technology and cloud-processing technology are employed to construct ...Internet of Car, resulting from the Internet of Things, is a key point for the forthcoming smart city. In this article, GPS technology, 3G wireless technology and cloud-processing technology are employed to construct a cloud-processing network platform based on the Internet of Car. By this platform, positions and velocity of the running cars, information of traffic flow from fixed monitoring points and transportation videos are combined to be a virtual traffic flow data platform, which is a parallel system with real traffic flow and is able to supply basic data for analysis and decision of intelligent transportation system.展开更多
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a...Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.展开更多
A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape fac...A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape factors of the "slot" and the preset depth used in "wetting-drying" algorithm. Two typical tests are conducted to examine the performance of the method with the effect of the shape factors of the "slot" being checked in detail in the first test. Numerical results demonstrate that: 1 ) no additional effort to improve the finite difference scheme is needed to implement "slot method" in DIVAST, and 2) "slot method" will simulate wetting and diying processes correctly if the shape factors of the "slot" being selected properly.展开更多
A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained d...A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern(BP), transition pattern(TP), and wave pattern(WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.展开更多
The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant t...The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow(KTGF), kinetic-frictional constitutive correlation and turbulence model, a two-fluid model(TFM) was established to study the flow dynamics of the core shooting process. Two-fluid model(TFM) simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction(αs) and sand velocity(Vs).展开更多
基金Supported by the National High Technology Research and Development Program of China (863 Program) under Grant No.2006AA09A104
文摘The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process flow that is aimed at improving efficiency, while giving attention to stability and safety at the same time. The paper describes the process flow of dual drilling centers and a hierarchical division of rigs based on the different modes of transportation of various drilling support systems. The general layout-centripetal overall arrangement spatially was determined based on drilling efficiency. We derived our modules according to drilling functionality; the modules became our basic layout units. We applied different layout algorithm to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck's calculations were based on the best-fit scope. Storage configurations in columns and pontoons were also considered for the layout design. Finally the center of gravity was taken into consideration and the general layout was adjusted accordingly, to result in an optimal center of gravity. The methodology of the general layout can provide a reference for implementation of domestic designs of semi-submersible rigs.
文摘Inconel 718 superalloy has extensive applications in a variety of industries such as the moulding,aerospace and medical due to its excellent mechanical features such as poor thermal conductivity,high strength at high temperatures and corrosion resistance.However,it is very difficult to process by traditional machining and finishing methods.Abrasive based finishing process is one of non-traditional finishing method applied to complex surfaces.Shot peening process is one of the surface treatment processes mostly applied to improve the surface strength.The superior advantages of these two processes are combined into one process.This newly developed and patented process is called as GOV process.In this study,the effects of GOV process parameters(number of cycles,steel ball size,media concentration)on the surface quality of Inconel 718 already pre-processed by wire electric discharge machining are investigated.The performance parameters are identified as surface roughness,material removal and white layer thickness.Surface finishing with the GOV process improves the surface roughness,Ra value by decreasing from 2.63μm to 0.46μm by removing micro-level chips up to 10.7 mg which is supported by SEM images.White layer formed due to nature of EDM process is completely removed from specimen surface.
文摘Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.
基金Sponsored by National High Technology Research and Development Program of China(2012AA03A514)Youth Scientific Research Foundation of Central South University of Forestry and Technology of China(QJ2010001A)
文摘The flow behavior of delta-processed Inconel 718 was studied in temperature range of 900-1 060℃ and strain rate range of 0.001-0.5s-1.The effects of friction and temperature on the compressive deformation behavior were investigated,and the flow stress-strain error caused by friction was revised.The results showed that the effect of the friction was obvious with increasing strain rate and decreasing deformation temperature.The revised flow stress is decreased by increasing temperature and decreasing strain rate and exhibits a typical dynamic recrystallization behavior.The constitutive model has been developed through a hyperbolic-sine Arrhenius type equation to relate the flow stress,strain rate and temperature.The influence of strain has also been incorporated by considering the variation of material constants as a function of strain.The prediction accuracy of developed constitutive model has been assessed using standard statistical formulae.According to the analysis results,the proposed deformation constitutive equation gives an accurate and precise estimate of flow stress of delta-processed Inconel 718 alloy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41861134008 and 41601476)the National Key Research and Development Program of China (Grant No. 2018YFC1505202)the 135 Strategic Program of the IMHE, CAS (Grant No. SDS-1351705)
文摘Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.
文摘The flow and mixing characteristics of molten steel during the vacuum circulation refining, including RH(Ruhrstahl Heraeus) and RH KTB(Ruhrstahl Heraeus Kawasaki top blowing) processes, were investigated on a 1/5 linear scale water model of a 90 t multifunction RH degasser. The circulation rate was directly and more accurately determined, using a new method by which the more reliable results can be obtained. The fluid flow pattern and flow field in the ladle were demonstrated, observed and analyzed. The mixing time of liquid in the ladle was measured using electrical conductivity method. The residence time distribution in the RH model was obtained by tracer response technique. The influence of the main technological and geometric factors, including the gas top blowing (KTB) operation, was examined. The results indicated that the circulation rate of molten steel in the RH degasser can be fairly precisely calculated by the formula: Q lp =0.0333 Q 0.26 g D 0.69 u D 0.80 d(t/min), where Q g-the lifting gas flow rate (NL/min); D u and D d-the inner diameters of the up and down snorkels (cm), respectively. The maximum value of circulation rate of molten steel in the case of the 30 cm diameters either of the up and down snorkels for the RH degasser (the “saturated” rate) is approximately 31 t/min. The corresponding gas flow rate is 900 NL/min. Blowing gas into the vacuum chamber through the top lance like KTB operation does not markedly influence the circulatory flow and mixing characteristics of the RH process under the conditions of the present work. There exist a major loop and a large number of small vortices and eddies in the ladle during the RH refining process. A liquid liquid two phase flow is formed between the descending stream from the down snorkel and the liquid around the stream. All of these flow situation and pattern will strongly influence and determine the mixing and mass transfer in the ladle during the refining. The correlation between the mixing time and the stirring energy density is τ m∝ε -0.50 for the RH degasser. The mixing time rapidly shortens with an increase in the lifting gas flowrate. At a same gas flow rate, the mixing times with the up and down snorkel diameters either of 6 and 7 cm are essentially same. The 30 cm diameters either of the up and down snorkels for the RH degasser would be reasonable. The concentration time curve showed that three circulation cycles are at least needed for complete mixing of the liquid steel in the RH degasser.
基金Item Sponsored by National Basic Research Programof China (200002600)
文摘From the viewpoint of systems energy conservation, the influences of material flow on its energy consumption in a steel manufacturing process is an important subject. The quantitative analysis of the relationship between material flow and the energy intensity is useful to save energy in steel industry. Based on the concept of standard material flow diagram, all possible situations of ferric material flow in steel manufacturing process are analyzed. The expressions of the influence of material flow deviated from standard material flow diagram on energy consumption are put forward.
基金Item Sponsored by Fundamental Research Funds for Central Universities of China(N100409010)Project for Key Laboratory of Liaoning Province of China(LS2010065)"111 Project"of Northeastern University of China(B07015)
文摘A new process for swirling flow generation in the submerged entry nozzle (SEN) in continuous casting process of steel was proposed. A rotating electromagnetic field was set up around the SEN to induce swirling flow by Lorentz force. The flow and temperature fields in the SEN and round billet mold with electromagnetic swirling were numerically simulated and then verified by the electromagnetic swirling model experiment of low melting point alloy. The effects of divergent angle of the SEN on the flow and temperature fields in mold with electromagnetic swirling were investigated. The electromagnetic swirling flow generator (EMSFG) could effectively induce swirling flow of molten steel in the SEN, which consequently improved greatly the flow and temperature fields in the mold. Below the nozzle outlet in mold, with the increase of divergent angle, the stream of bulk flow diverged more widely, the high temperature zone shifted up, and the temperature field became more uniform. Above the nozzle outlet in mold, with 350 A electromagnetic swirling, when the divergent angle of the SEN increased, the upward flow velocity and the meniscus temperature first increased and then decreased. With a divergent angle of 60~, the upward flow velocity and meniscus temperature reaced the largest value.
基金jointly sponsored by the Special Fund for Earthquake Scientific Research in the Public Welfare of China Earthquake Administration(201508008)the tundamental Research Funds for the Central University(WK2080000053)Academician Chen Yong Workstation Project in Yunnan Province
文摘With its high repeatability,the airgun source has been used to monitor the temporal variations of subsurface structures. However,under different working conditions,there will be subtle differences in the airgun source signals. To some extent,deconvolution can eliminate changes of the recorded signals due to source variations. Generally speaking,in order to remove the airgun source wavelet signal and obtain the Green's functions between the airgun source and stations,we need to select an appropriate method to perform the deconvolution process for seismic waveform data. Frequency domain water level deconvolution and time domain iterative deconvolution are two kinds of deconvolution methods widely used in the field of receiver functions,etc. We use the Binchuan( in Yunnan Province,China) airgun data as an example to compare the performance of these two deconvolution methods in airgun source data processing. The results indicate that frequency domain water level deconvolution is better in terms of computational efficiency;time domain iterative deconvolution is better in terms of the signal-to-noise ratio( SNR),and the initial motion of P-wave is also clearer. We further discuss the sequence issue of deconvolution and stack for multiple-shot airgun data processing. Finally,we propose a general processing flow for the airgun source data to extract the Green 's functions between the airgun source and stations.
文摘The packet classification is a fundamental process in provisioning security and quality of service for many intelligent network-embedded systems running in the Internet of Things(IoT).In recent years,researchers have tried to develop hardware-based solutions for the classification of Internet packets.Due to higher throughput and shorter delays,these solutions are considered as a major key to improving the quality of services.Most of these efforts have attempted to implement a software algorithm on the FPGA to reduce the processing time and enhance the throughput.The proposed architectures,however,cannot reach a compromise among power consumption,memory usage,and throughput rate.In view of this,the architecture proposed in this paper contains a pipelinebased micro-core that is used in network processors to classify packets.To this end,three architectures have been implemented using the proposed micro-core.The first architecture performs parallel classification based on header fields.The second one classifies packets in a serial manner.The last architecture is the pipeline-based classifier,which can increase performance by nine times.The proposed architectures have been implemented on an FPGA chip.The results are indicative of a reduction in memory usage as well as an increase in speedup and throughput.The architecture has a power consumption of is 1.294w,and its throughput with a frequency of 233 MHz exceeds 147 Gbps.
基金funded by the Guangxi Natural Science Foundation(2018JJA150153)China Geological Survey Research Fund(JYYWF20180402)the project of China Geological Survey(DD20190342)。
文摘Due to the high heterogeneity and complexity of water flow movement for multiple karst water-bearing mediums,the evaluation,effective development,and utilization of karst water resources are significantly limited.Matrix flow is usually laminar,whereas conduit flow is usually turbulent.The driving mechanisms of water exchange that occur between the karst conduit and its adjacent matrix are not well understood.This paper investigates the hydrodynamic characteristics and the mechanism of flow exchange in dual water-bearing mediums(conduit and matrix)of karst aquifers through laboratory experimentation and numerical simulation.A karst aquifer consisting of a matrix network and a conduit was proposed,and the relationship between the water exchange flux and hydraulic head differences generated from the laboratory experiments was analyzed.Two modes of experimental tests were performed with different fixed water level boundaries in the laboratory karst aquifer.The results indicate that the water exchange capacity was proportional to the square root of hydraulic head differences.The linear exchange term in the conduit flow process(CFP)source program was modified according to experimental results.The modified CFP and the original CFP model experimental data results were compared,and it was found that the modified CFP model had better fitting effects.These results showed that the water exchange mechanism between conduit and matrix is very important for solid-liquid interface reaction,water resource evaluation,and understanding of karst hydrodynamic behavior.
基金Project supported by the Science Project of Harbin City(No. H2001-12)the Youth Foundation of School of Municipal and Environmental Engineering in Harbin Institute of Technology(No. 01306914).
文摘The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.
基金Sponsored by National Natural Science Foundation of China(50334020)
文摘The standard material flow diagram in steel manufacturing process was proposed to analyze the influences of various material flows on environmental load of 1tof final product.Two influence factors and reducing measures of environmental load were pointed out.The environmental load was appraised for a typical technological process in a Chinese steel plant.
基金Item Sponsored by National Natural Science Foundation of China(61263015)
文摘To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas utilization rate,a method for recognizing distribution features of blast furnace gas flow center was proposed based on infrared image processing,and distribution features of blast furnace gas flow center and corresponding gas utilization rates were categorized by using fuzzy C-means clustering and statistical methods.A concept of gas flow center offset was introduced.The results showed that,when the percentage of gas flow center without offset exceeded 85%,the average blast furnace gas utilization rate was as high as 41%;when the percentage of gas flow center without offset exceeded50%,the gas utilization rate was primarily the center gas utilization rate,and exhibited a positive correlation with no center offset degree;when the percentage of gas flow center without offset was below 50% but the sum of the percentage of gas flow center without offset and that of gas flow center with small offset exceeded 86%,the gas utilization rate depended on both the center and the edges,and was primarily the edge gas utilization rate.The method proposed was able to accurately and effectively recognize gas flow center distribution state and the relationship between it and gas utilization rate,providing evidence in favor of on-line blast furnace control.
基金supported by National Basic Research Program of China (973 Program) 2012CB821200 (2012CB821206)National Natural Science Foundation under Grant No. 61170113, No.91024001, No.61070142+1 种基金Beijing Natural Science Foundation(No.4111002)KM201010011006, PHR201008242
文摘Internet of Car, resulting from the Internet of Things, is a key point for the forthcoming smart city. In this article, GPS technology, 3G wireless technology and cloud-processing technology are employed to construct a cloud-processing network platform based on the Internet of Car. By this platform, positions and velocity of the running cars, information of traffic flow from fixed monitoring points and transportation videos are combined to be a virtual traffic flow data platform, which is a parallel system with real traffic flow and is able to supply basic data for analysis and decision of intelligent transportation system.
基金Project(2010AA065201)supported by the High Technology Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited,China
文摘Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.
基金the National Natural Science Foundation of China (Grant No.10702050)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC07500)the Support Plan of Science and Technology of Tianjin (Grant No.07ZCGYSH01700)
文摘A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape factors of the "slot" and the preset depth used in "wetting-drying" algorithm. Two typical tests are conducted to examine the performance of the method with the effect of the shape factors of the "slot" being checked in detail in the first test. Numerical results demonstrate that: 1 ) no additional effort to improve the finite difference scheme is needed to implement "slot method" in DIVAST, and 2) "slot method" will simulate wetting and diying processes correctly if the shape factors of the "slot" being selected properly.
基金financially supported by the National Natural Science Foundation of China (No.51704203)the PhD Early Development Program of Taiyuan University of Science and Technology (Nos. 20152008, 20152013, and 20152018)+2 种基金Shanxi Province Science Foundation for Youths (No. 201601D202027)Key Project of Research and Development Plan of Shanxi Province (Nos. 201603D111004 and 201603D121010)NSFC-Shanxi Coal Based Low Carbon Joint Fund (No. U1510131)
文摘A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern(BP), transition pattern(TP), and wave pattern(WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.
基金supported by the National Science Foundation of China(Grant Number 51575304)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant Number 2012ZX04012011)
文摘The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow(KTGF), kinetic-frictional constitutive correlation and turbulence model, a two-fluid model(TFM) was established to study the flow dynamics of the core shooting process. Two-fluid model(TFM) simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction(αs) and sand velocity(Vs).