Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as ...Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as heuristics, mathematical programming, and pinch analysis. Nonetheless, progress continues from different formulations of design problems using bottom-up approaches, to the utilization of new tools such as artificial intelligence (AI). It was not until recently that AI methods were involved again in assisting the decision-making steps for chemical engineers. This has led to a gap in understanding AI's capabilities and limitations within the field of CPD research. Thus, this article aims to provide an overview of conventional methods for process synthesis, integration, and intensification approaches and survey emerging AI-assisted process design applications to bridge the gap. A review of all AI-assisted methods is highlighted, where AI is used as a key component within a design framework, to explain the utility of AI with comparative examples. The studies were categorized into supervised and reinforcement learning based on the machine learning training principles they used to enhance the understanding of requirements, benefits, and challenges that come with it. Furthermore, we provide challenges and prospects that can facilitate or hinder the progress of AI-assisted approaches in the future.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
The metallurgy industry consumes a considerable amount of coal and fossil fuels,and its carbon dioxide emissions are increasing every year.Replacing coal with renewable,carbon-neutral biomass for metallurgical product...The metallurgy industry consumes a considerable amount of coal and fossil fuels,and its carbon dioxide emissions are increasing every year.Replacing coal with renewable,carbon-neutral biomass for metallurgical production is of great significance in reducing global carbon consumption.This study describes the current state of research in biomass metallurgy in recent years and analyzes the concept and scientific principles of biomass metallurgy.The fundamentals of biomass pretreatment technology and biomass metallurgy technology were discussed,and the industrial application framework of biomass metallurgy was proposed.Furthermore,the economic and social advantages of biomass metallurgy were analyzed to serve as a reference for the advancement of fundamental theory and industrial application of biomass metallurgy.展开更多
In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and en...In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and environmental impact is minimized simultaneously. Moreover, the random behavior in the process,property, market fluctuation, errors in model prediction and so on would affect the performance of a process. Therefore, it is essential to develop a MOO methodology under uncertainty. In this article, the authors propose a generic and systematic optimization methodology for chemical process design under uncertainty. It aims at identifying the optimal design from a number of candidates. The utility of this methodology is demonstrated by a case study based on the design of a condensate treatment unit in an ammonia plant.展开更多
C4 components are useful in industry and should be separated as individuals. A new process was proposed to separate them by extractive distillation, with the advantages of low equipment investment, energy consumption...C4 components are useful in industry and should be separated as individuals. A new process was proposed to separate them by extractive distillation, with the advantages of low equipment investment, energy consumption and liquid load in the columns. One principle to improve the extractive distillation process was put forward. Moreover, the analysis of operation state of the new process was done. There were eight operation states found for the whole process, but only one operation state was desirable. This work provides a way to effectively separate C4 mixtures and helps the reasonable utilization of C4 resource.展开更多
The separation characteristics of the PVA-CS (polyvinyl alcohol-chitosan) blended composite membrane for dehydration of ethanol-water mixture are examined. The relationships of flux and separation factor with the feed...The separation characteristics of the PVA-CS (polyvinyl alcohol-chitosan) blended composite membrane for dehydration of ethanol-water mixture are examined. The relationships of flux and separation factor with the feed concentration and operation temperature are established. Using this correlated equation, the continuous-flow pervaporation process about 500 kilolitres/year dehydrated ethanol is designed. The numbers of stage and reheater are calculated by stage-by-stage method for two kinds of cascades: one with equal membrane area and the other with 10℃ of temperature decrement per section. The results show that when the numbers of stage and reheater are the same, the cascade with 10℃ of temperature decrement has more advantages than that with equal membrane area. The influences of feed concentration and flow rate on the numbers of stage and reheater in the cascades are discussed.展开更多
There are multiple processes and corresponding parameters in steel production, and combinations of these comprise various process routes.Different steel products require distinct process routes due to variations in pe...There are multiple processes and corresponding parameters in steel production, and combinations of these comprise various process routes.Different steel products require distinct process routes due to variations in performance targets.Thus, how to accurately set each key process parameter in certain process routes is an ongoing conundrum, because it not only requires a wealth of expert experience but also generates additional costs from the trial productions.In this paper, a new production design system for plate steels is proposed.The proposed system consists of methodology and function development.For methodology, multi-task Elastic Net, clustering, classification, and other methods are used to design process routes.Furthermore, the results are expressed in the form of parameter confidence intervals, which are close to practical application scenarios.For function development, the steel plate process route design function is developed on the Process Intelligent Data Application System(PIDAS) intelligent big data platform.The results demonstrate the method’s practical application value.展开更多
To design a stepping-mode laser blanking process,in this study,CAD software was redeveloped based on VBA and a computer interface was established in the process design system. The program employs the modularization me...To design a stepping-mode laser blanking process,in this study,CAD software was redeveloped based on VBA and a computer interface was established in the process design system. The program employs the modularization method to perform functions including one-key initialization of the process planning environment,creation and deletion of blanking steps,automatic identification of belt coordinates,recognition of the number of blanking steps in each domain,and the output and import of process data. The difficult problem of recognizing CAD block references with the same name in the automatic acquisition of belt coordinates is solved using the selection sets method,which greatly improves the efficiency of the process design,while also guaranteeing rapid development of the flexible data mold in stepping-mode laser blanking.展开更多
A growing number of international studies have highlighted that ambient air pollution exposures are related to different health outcomes. To do so, researchers need to estimate exposure levels to air pollution through...A growing number of international studies have highlighted that ambient air pollution exposures are related to different health outcomes. To do so, researchers need to estimate exposure levels to air pollution throughout everyday life. In the literature, the most commonly used estimate is based on home address only or taking into account, in addition, the work address. However, several studies have shown the importance of daily mobility in the estimate of exposure to air pollutants. In this context, we developed an R procedure that estimates individual exposures combining home addresses, several important places, and itineraries of the principal mobility during a week. It supplies researchers a useful tool to calculate individual daily exposition to air pollutants weighting by the time spent at each of the most frequented locations (work, shopping, residential address, etc.) and while commuting. This task requires the efficient calculation of travel time matrices or the examination of multimodal transport routes. This procedure is freely available from the Equit’Area project website: (https://www.equitarea.org). This procedure is structured in three parts: the first part is to create a network, the second allows to estimate main itineraries of the daily mobility and the last one tries to reconstitute the level of air pollution exposure. One main advantage of the tool is that the procedure can be used with different spatial scales and for any air pollutant.展开更多
Chemical process design is a comprehensive project, involving many aspects. Its main contents include production safety, economic benefits and environmental protection. Therefore, it is necessary to strictly control a...Chemical process design is a comprehensive project, involving many aspects. Its main contents include production safety, economic benefits and environmental protection. Therefore, it is necessary to strictly control all links in the actual operation of chemical process, which can provide some help for relevant enterprises. In chemical process design, it is mainly to make reasonable arrangements for the production process, and the actual work needs to be carried out in strict accordance with relevant regulations. In this paper, the safety problems and control management in chemical process design are analyzed and discussed in detail. Firstly, the safety problems and solutions in chemical process design are described. Secondly, in view of this case, the problems and control points in solving management and avoiding hidden problems are put forward for detailed description and discussion, Finally, it is concluded that the chemical process design scheme can effectively ensure the safety of employees' lives and property and the personal health of staff, which plays a positive role in reducing the risk and has a certain practical significance. At the same time, it can also promote the continuous progress of China's social and economic development level, improve work efficiency and quality, achieve the goal of sustainable and healthy development, and further accelerate the construction process of socialist market economy.展开更多
This paper summarizes the results of a study of adsorption of sulfur compounds from a high-sulfur feed on improved spherical-shaped nano-AgX zeolite. For this purpose, the nano-AgX zeolite was initially synthesized an...This paper summarizes the results of a study of adsorption of sulfur compounds from a high-sulfur feed on improved spherical-shaped nano-AgX zeolite. For this purpose, the nano-AgX zeolite was initially synthesized and improved with silver compounds such as silver nitrate, and then it was utilized in the adsorption process. In order to investigate the equilibrium and dynamics of the adsorption process, adsorptive desulfurization of real feed(i.e., sour gas condensate from the South Pars gas field) was carried out in batch and continuous processes under several operating conditions; a temperature-dependent Langmuir isotherm model was used to fit the equilibrium data. The value of monolayer adsorption capacity(q_m) and adsorption enthalpy(ΔH) were calculated to be 1.044 mmol/g and 16.8 kJ/mol, respectively. Furthermore, a detailed theoretical model was employed in order to model the breakthrough experiments. The results revealed that an increase in the feed flow rate and 1/T values will cause linear and exponential increase in the total mass transfer coefficient(ks). Isotherm and dynamic breakthrough models were found to be in agreement with the experimental data.展开更多
Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the e...Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.展开更多
The number of products used as agro-chemicals, food additives, flavors, aromas, pharmaceuticals and nutraceuticals which are made by fermentation or extraction from plants has increased significantly. Despite this gro...The number of products used as agro-chemicals, food additives, flavors, aromas, pharmaceuticals and nutraceuticals which are made by fermentation or extraction from plants has increased significantly. Despite this growth, initial predictions for a potential product purification process for these complex mixtures remains entirely experimentally based. The present work represents an initial study to demonstrate the benefits of a systematic approach. For process development of chemically well-studied systems model based process design methods are already available. Therefore the proposed approach focuses on a method for the efficient characterization of the physical properties of the key components. Once this is adequately defined, unit operations and their potential to separate the feed components can be modeled. The current state of research is discussed. Based on this evaluation the most efficient method for conceptual process development has been identified and further developed. The resulting methodology consists of model-based cost accounting accompanied by experimental model-parameter determination. The latter is carried out at in miniaturized laboratory-scale measurement cells for each unit operation using the complete original feed. The model-based modelparameter determination from these experiments is accompanied by a comprehensive error analysis. The experimental plan currently includes the determination of thermodynamic equilibrium conditions in the mixture directly from the raw material mixture. Transport kinetics and fluid dynamic parameters are first estimated from known correlations or preexisting knowledge. Later on these parameters are determined exactly in mini-plant experiments. Furthermore, biological and botanical-based guidelines are developed to identify thermodynamically favored basic operations. Finally, the developed approaches are successfully validated using two plant extracts. Firstly, it could be proven that the botanical pre-selection can reduce the experimental plan significantly. Secondly, it was shown that the experimental equilibrium data of the kinetics and fluid dynamics can have a significant impact on the separation costs. Therefore, detailed rigorous modeling approaches have to be chosen instead of short-cut methods in order to make any valid process development conclusions or to further optimize the system.展开更多
Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF ...Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.展开更多
Correction:Systems Microbiology and Biomanufacturing https://doi.org/10.1007/s43393-023-00197-w In the original article,the author name‘Emmanuel Olusola Oke’was given incorrectly as'Olushola E.Oke'.The origi...Correction:Systems Microbiology and Biomanufacturing https://doi.org/10.1007/s43393-023-00197-w In the original article,the author name‘Emmanuel Olusola Oke’was given incorrectly as'Olushola E.Oke'.The origi-nal article has been corrected.展开更多
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea...In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.展开更多
基金financial support from The University of Manchester
文摘Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as heuristics, mathematical programming, and pinch analysis. Nonetheless, progress continues from different formulations of design problems using bottom-up approaches, to the utilization of new tools such as artificial intelligence (AI). It was not until recently that AI methods were involved again in assisting the decision-making steps for chemical engineers. This has led to a gap in understanding AI's capabilities and limitations within the field of CPD research. Thus, this article aims to provide an overview of conventional methods for process synthesis, integration, and intensification approaches and survey emerging AI-assisted process design applications to bridge the gap. A review of all AI-assisted methods is highlighted, where AI is used as a key component within a design framework, to explain the utility of AI with comparative examples. The studies were categorized into supervised and reinforcement learning based on the machine learning training principles they used to enhance the understanding of requirements, benefits, and challenges that come with it. Furthermore, we provide challenges and prospects that can facilitate or hinder the progress of AI-assisted approaches in the future.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
基金financially supported by the National Natural Science Foundation of China(No.51704216)the State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(Nos.41620025,41620026,and 41621009)+1 种基金the Interdisciplinary Research Project for Young Teachers of University of ScienceTechnology Beijing(Fundamental Research Funds f or the Central Universities)(No.FRF-IDRY-20-014)。
文摘The metallurgy industry consumes a considerable amount of coal and fossil fuels,and its carbon dioxide emissions are increasing every year.Replacing coal with renewable,carbon-neutral biomass for metallurgical production is of great significance in reducing global carbon consumption.This study describes the current state of research in biomass metallurgy in recent years and analyzes the concept and scientific principles of biomass metallurgy.The fundamentals of biomass pretreatment technology and biomass metallurgy technology were discussed,and the industrial application framework of biomass metallurgy was proposed.Furthermore,the economic and social advantages of biomass metallurgy were analyzed to serve as a reference for the advancement of fundamental theory and industrial application of biomass metallurgy.
基金Supported by Dalian University of Technology, the US National Science Foundation (No.CTS-0407494) and the Texas Advanced Technology program (No.003581-0044-2003)
文摘In many circumstances, chemical process design can be formulated as a multi-objective optimization (MOO) problem. Examples include bi-objective optimization problems, where the economic objective is maximized and environmental impact is minimized simultaneously. Moreover, the random behavior in the process,property, market fluctuation, errors in model prediction and so on would affect the performance of a process. Therefore, it is essential to develop a MOO methodology under uncertainty. In this article, the authors propose a generic and systematic optimization methodology for chemical process design under uncertainty. It aims at identifying the optimal design from a number of candidates. The utility of this methodology is demonstrated by a case study based on the design of a condensate treatment unit in an ammonia plant.
文摘C4 components are useful in industry and should be separated as individuals. A new process was proposed to separate them by extractive distillation, with the advantages of low equipment investment, energy consumption and liquid load in the columns. One principle to improve the extractive distillation process was put forward. Moreover, the analysis of operation state of the new process was done. There were eight operation states found for the whole process, but only one operation state was desirable. This work provides a way to effectively separate C4 mixtures and helps the reasonable utilization of C4 resource.
基金Supported by the National Natural Science Foundation of China(No.29836160) and Commission of Science & Technology of Zhejiang Province(No.924010,No.85-12-02-05).
文摘The separation characteristics of the PVA-CS (polyvinyl alcohol-chitosan) blended composite membrane for dehydration of ethanol-water mixture are examined. The relationships of flux and separation factor with the feed concentration and operation temperature are established. Using this correlated equation, the continuous-flow pervaporation process about 500 kilolitres/year dehydrated ethanol is designed. The numbers of stage and reheater are calculated by stage-by-stage method for two kinds of cascades: one with equal membrane area and the other with 10℃ of temperature decrement per section. The results show that when the numbers of stage and reheater are the same, the cascade with 10℃ of temperature decrement has more advantages than that with equal membrane area. The influences of feed concentration and flow rate on the numbers of stage and reheater in the cascades are discussed.
文摘There are multiple processes and corresponding parameters in steel production, and combinations of these comprise various process routes.Different steel products require distinct process routes due to variations in performance targets.Thus, how to accurately set each key process parameter in certain process routes is an ongoing conundrum, because it not only requires a wealth of expert experience but also generates additional costs from the trial productions.In this paper, a new production design system for plate steels is proposed.The proposed system consists of methodology and function development.For methodology, multi-task Elastic Net, clustering, classification, and other methods are used to design process routes.Furthermore, the results are expressed in the form of parameter confidence intervals, which are close to practical application scenarios.For function development, the steel plate process route design function is developed on the Process Intelligent Data Application System(PIDAS) intelligent big data platform.The results demonstrate the method’s practical application value.
文摘To design a stepping-mode laser blanking process,in this study,CAD software was redeveloped based on VBA and a computer interface was established in the process design system. The program employs the modularization method to perform functions including one-key initialization of the process planning environment,creation and deletion of blanking steps,automatic identification of belt coordinates,recognition of the number of blanking steps in each domain,and the output and import of process data. The difficult problem of recognizing CAD block references with the same name in the automatic acquisition of belt coordinates is solved using the selection sets method,which greatly improves the efficiency of the process design,while also guaranteeing rapid development of the flexible data mold in stepping-mode laser blanking.
文摘A growing number of international studies have highlighted that ambient air pollution exposures are related to different health outcomes. To do so, researchers need to estimate exposure levels to air pollution throughout everyday life. In the literature, the most commonly used estimate is based on home address only or taking into account, in addition, the work address. However, several studies have shown the importance of daily mobility in the estimate of exposure to air pollutants. In this context, we developed an R procedure that estimates individual exposures combining home addresses, several important places, and itineraries of the principal mobility during a week. It supplies researchers a useful tool to calculate individual daily exposition to air pollutants weighting by the time spent at each of the most frequented locations (work, shopping, residential address, etc.) and while commuting. This task requires the efficient calculation of travel time matrices or the examination of multimodal transport routes. This procedure is freely available from the Equit’Area project website: (https://www.equitarea.org). This procedure is structured in three parts: the first part is to create a network, the second allows to estimate main itineraries of the daily mobility and the last one tries to reconstitute the level of air pollution exposure. One main advantage of the tool is that the procedure can be used with different spatial scales and for any air pollutant.
文摘Chemical process design is a comprehensive project, involving many aspects. Its main contents include production safety, economic benefits and environmental protection. Therefore, it is necessary to strictly control all links in the actual operation of chemical process, which can provide some help for relevant enterprises. In chemical process design, it is mainly to make reasonable arrangements for the production process, and the actual work needs to be carried out in strict accordance with relevant regulations. In this paper, the safety problems and control management in chemical process design are analyzed and discussed in detail. Firstly, the safety problems and solutions in chemical process design are described. Secondly, in view of this case, the problems and control points in solving management and avoiding hidden problems are put forward for detailed description and discussion, Finally, it is concluded that the chemical process design scheme can effectively ensure the safety of employees' lives and property and the personal health of staff, which plays a positive role in reducing the risk and has a certain practical significance. At the same time, it can also promote the continuous progress of China's social and economic development level, improve work efficiency and quality, achieve the goal of sustainable and healthy development, and further accelerate the construction process of socialist market economy.
文摘This paper summarizes the results of a study of adsorption of sulfur compounds from a high-sulfur feed on improved spherical-shaped nano-AgX zeolite. For this purpose, the nano-AgX zeolite was initially synthesized and improved with silver compounds such as silver nitrate, and then it was utilized in the adsorption process. In order to investigate the equilibrium and dynamics of the adsorption process, adsorptive desulfurization of real feed(i.e., sour gas condensate from the South Pars gas field) was carried out in batch and continuous processes under several operating conditions; a temperature-dependent Langmuir isotherm model was used to fit the equilibrium data. The value of monolayer adsorption capacity(q_m) and adsorption enthalpy(ΔH) were calculated to be 1.044 mmol/g and 16.8 kJ/mol, respectively. Furthermore, a detailed theoretical model was employed in order to model the breakthrough experiments. The results revealed that an increase in the feed flow rate and 1/T values will cause linear and exponential increase in the total mass transfer coefficient(ks). Isotherm and dynamic breakthrough models were found to be in agreement with the experimental data.
文摘Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.
文摘The number of products used as agro-chemicals, food additives, flavors, aromas, pharmaceuticals and nutraceuticals which are made by fermentation or extraction from plants has increased significantly. Despite this growth, initial predictions for a potential product purification process for these complex mixtures remains entirely experimentally based. The present work represents an initial study to demonstrate the benefits of a systematic approach. For process development of chemically well-studied systems model based process design methods are already available. Therefore the proposed approach focuses on a method for the efficient characterization of the physical properties of the key components. Once this is adequately defined, unit operations and their potential to separate the feed components can be modeled. The current state of research is discussed. Based on this evaluation the most efficient method for conceptual process development has been identified and further developed. The resulting methodology consists of model-based cost accounting accompanied by experimental model-parameter determination. The latter is carried out at in miniaturized laboratory-scale measurement cells for each unit operation using the complete original feed. The model-based modelparameter determination from these experiments is accompanied by a comprehensive error analysis. The experimental plan currently includes the determination of thermodynamic equilibrium conditions in the mixture directly from the raw material mixture. Transport kinetics and fluid dynamic parameters are first estimated from known correlations or preexisting knowledge. Later on these parameters are determined exactly in mini-plant experiments. Furthermore, biological and botanical-based guidelines are developed to identify thermodynamically favored basic operations. Finally, the developed approaches are successfully validated using two plant extracts. Firstly, it could be proven that the botanical pre-selection can reduce the experimental plan significantly. Secondly, it was shown that the experimental equilibrium data of the kinetics and fluid dynamics can have a significant impact on the separation costs. Therefore, detailed rigorous modeling approaches have to be chosen instead of short-cut methods in order to make any valid process development conclusions or to further optimize the system.
基金the National Science and Technology Major Project of China(No.2019-VII0017e0158)the National Natural Science Foundation of China(No.U21A20131)+1 种基金the Industry-University Research Cooperation Project,China(No.HFZL2020CXY025)the National Key Laboratory of Science and Technology on Helicopter Transmission,China(No.HTL-O-21G05).
文摘Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods.
文摘Correction:Systems Microbiology and Biomanufacturing https://doi.org/10.1007/s43393-023-00197-w In the original article,the author name‘Emmanuel Olusola Oke’was given incorrectly as'Olushola E.Oke'.The origi-nal article has been corrected.
基金the financial support of the Natural Science Foundation of Hubei Province,China (Grant No.2022CFB770)。
文摘In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.