The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models...The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement.展开更多
This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy pro...This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.展开更多
Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSW...Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSWI) are employed as interpolating functions to construct plate and shell elements for stability analysis and 3D elastic elements for static mechanics analysis.The main advantages of BSWI scaling functions are the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis.The performances of the present elements are demonstrated by typical numerical examples.展开更多
This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the...This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.展开更多
This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial diffe...This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.展开更多
In this paper,two kinds of contact problems in 2-D dodecagonal quasicrystals were discussed using the complex variable function method:one is the finite frictional contact problem,the other is the adhesive contact pr...In this paper,two kinds of contact problems in 2-D dodecagonal quasicrystals were discussed using the complex variable function method:one is the finite frictional contact problem,the other is the adhesive contact problem.The analytic expressions of contact stresses in the phonon and phason fields were obtained for a flat rigid punch,which showed that:(1) for the finite frictional contact problem,the contact stress exhibited power-type singularities at the edge of the contact zone;(2) for the adhesive contact problem,the contact stress exhibited oscillatory singularities at the edge of the contact zone.The distribution regulation of contact stress under punch was illustrated;and the low friction property of quasicrystals was verified graphically.展开更多
This paper studies the eigenfunction expansion method to solve the two dimensional (2D) elasticity problems based on the stress formulation. The fundamental system of partial differential equations of the 2D problem...This paper studies the eigenfunction expansion method to solve the two dimensional (2D) elasticity problems based on the stress formulation. The fundamental system of partial differential equations of the 2D problems is rewritten as an upper tri angular differential system based on the known results, and then the associated upper triangular operator matrix matrix is obtained. By further research, the two simpler com plete orthogonal systems of eigenfunctions in some space are obtained, which belong to the two block operators arising in the operator matrix. Then, a more simple and conve nient general solution to the 2D problem is given by the eigenfunction expansion method. Furthermore, the boundary conditions for the 2D problem, which can be solved by this method, are indicated. Finally, the validity of the obtained results is verified by a specific example.展开更多
In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experiment...In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.展开更多
基金the National Natural Science Foundation of China(https://www.nsfc.gov.cn/,Project No.11972179)the Natural Science Foundation of Guangdong Province(http://gdstc.gd.gov.cn/,No.2020A1515010685)the Department of Education of Guangdong Province(http://edu.gd.gov.cn/,No.2020ZDZX2008).
文摘The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement.
基金supported by the National Natural Science Foundation of China(Nos.51378293 and 51078199)
文摘This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.
基金supported by the National Natural Science Foundation of China (No. 50805028)the Key Project of Chinese Ministry of Education (No. 210170)+1 种基金Guangxi key Technologies R & D Program of China (Nos. 1099022-1 and 0900705 003)supported in part by the Excellent Talents in Guangxi Higher Education Institutions of China
文摘Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSWI) are employed as interpolating functions to construct plate and shell elements for stability analysis and 3D elastic elements for static mechanics analysis.The main advantages of BSWI scaling functions are the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis.The performances of the present elements are demonstrated by typical numerical examples.
基金Project supported by the National Natural Science Foundation of China(No.11074170)the State Key Laboratory Foundation of Shanghai Jiao Tong University(No.MSVMS201105)
文摘This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.
基金Project supported by the National Natural Science Foundation of China (No. 10962004)the Special-ized Research Fund for the Doctoral Program of Higher Education of China (No. 20070126002)+1 种基金the Chunhui Program of Ministry of Education of China (No. Z2009-1-01010)the Natural Science Foundation of Inner Mongolia (No. 2009BS0101)
文摘This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.
基金Project supported by the National Natural Science Foundation of China(Nos.11362018,11261045 and 11261401)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘In this paper,two kinds of contact problems in 2-D dodecagonal quasicrystals were discussed using the complex variable function method:one is the finite frictional contact problem,the other is the adhesive contact problem.The analytic expressions of contact stresses in the phonon and phason fields were obtained for a flat rigid punch,which showed that:(1) for the finite frictional contact problem,the contact stress exhibited power-type singularities at the edge of the contact zone;(2) for the adhesive contact problem,the contact stress exhibited oscillatory singularities at the edge of the contact zone.The distribution regulation of contact stress under punch was illustrated;and the low friction property of quasicrystals was verified graphically.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070126002)the National Natural Science Foundation of China (No. 10962004)
文摘This paper studies the eigenfunction expansion method to solve the two dimensional (2D) elasticity problems based on the stress formulation. The fundamental system of partial differential equations of the 2D problems is rewritten as an upper tri angular differential system based on the known results, and then the associated upper triangular operator matrix matrix is obtained. By further research, the two simpler com plete orthogonal systems of eigenfunctions in some space are obtained, which belong to the two block operators arising in the operator matrix. Then, a more simple and conve nient general solution to the 2D problem is given by the eigenfunction expansion method. Furthermore, the boundary conditions for the 2D problem, which can be solved by this method, are indicated. Finally, the validity of the obtained results is verified by a specific example.
文摘In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.