Precise control and measurement of nanoparticles using low-power optical tweezers are pivotal for advancing single-particle analysis,nanoscale sensing,and energy transport research.In this work,we present the tipassis...Precise control and measurement of nanoparticles using low-power optical tweezers are pivotal for advancing single-particle analysis,nanoscale sensing,and energy transport research.In this work,we present the tipassisted nanoparticle capture system that simultaneously achieves localized temperature probing and nanoparticle trapping,significantly lowering the required laser power input.Unlike traditional metal-tip plasmonic techniques that predominantly rely on intense electric field gradients,our approach employs a silicon nanotip under resonant laser excitation,uniquely integrating optical forces,thermophoretic forces,and interatomic interactions for stable nanoparticle confinement.This synergistic collaboration mechanism enables approximately a 42%reduction in laser power density compared to conventional bowtie nanoaperture methods.This experimental method achieved direct and simultaneous Raman-based measurements of localized thermal dynamics,providing new insights into nanoscale thermodynamics during optical trapping.Additionally,the silicon nanotip demonstrates reduced thermal transport due to its confined nanoscale geometry,aligning closely with our theoretical predictions.Our integrated strategy of efficient nanoparticle manipulation coupled with precise thermal probing not only enhances overall energy efficiency but also broadens the scope of potential applications in cutting-edge nanoscience and nanotechnology.展开更多
We demonstrate an all-optical technique for in situ monitoring of strong-field ionization(SFI)dynamics.The method relies on coherent scattering of a probe pulse from a transient plasma grating(TPG)formed by two interf...We demonstrate an all-optical technique for in situ monitoring of strong-field ionization(SFI)dynamics.The method relies on coherent scattering of a probe pulse from a transient plasma grating(TPG)formed by two interfering femtosecond pulses in a gas target.The diffracted signal provides a real-time,relative measure of the ionization yield.We demonstrate the method’s sensitivity by resolving the attosecond-scale coherent control of the ionization rate.Unlike conventional diagnostics that directly measure charged particles,our ensemble-based optical method is non-invasive and particularly suited for non-vacuum environments.To demonstrate its utility,we apply the technique to investigate the relationship between ionization and terahertz(THz)generation in a two-color(ω+2ω)field.We measure a phase offset of(0.18±0.05)π between the maxima of the ionization yield and the THz emission.This result provides a quantitative benchmark for theoretical models and establishes the TPG technique as a practical tool for probing SFI dynamics in ensemble systems.展开更多
AIM:To investigate the clinical outcomes of different intubation techniques in the cases of failed primary probing.METHODS: This retrospective study was performed on338 patients with the diagnosis of congenital naso...AIM:To investigate the clinical outcomes of different intubation techniques in the cases of failed primary probing.METHODS: This retrospective study was performed on338 patients with the diagnosis of congenital nasolacrimal duct obstruction with age 1-4y that had failed primary probing.Intubation was performed under light sedation in operating room and the stent was left 3mo in place.Clinical outcome was investigated 3mo after tube removal.RESULTS: Bicanalicular intubation method had higher complete and relative success rates compared to monocanalicular intubation(P =0.00).In addition,Monoka intubation had better outcomes compared to Masterka technique(P =0.046).No difference was found between genders but the higher the age,the better the outcomes with bicanalicular technique rather than monocanalicular.CONCLUSION: Overall success rate of bicanalicular intubation is superior to monocanalicular technique especially in older ages.Also,based upon our clinical outcomes,Masterka intubation is not recommended in cases of failed probing.展开更多
The second IGCP-649 Workshop, held in Agros-Cyprus during 14-20 May 2016, brought together nearly fifty international scientists from around the world, and included a 5-day field excursion on the classic Troodos ophio...The second IGCP-649 Workshop, held in Agros-Cyprus during 14-20 May 2016, brought together nearly fifty international scientists from around the world, and included a 5-day field excursion on the classic Troodos ophiolite. Organized by the IGCP-649 Project Leadership and the Geological Survey Department of Cyprus, the workshop provided a forum for discussions on the latest views and interpretations on the petrogenesis of crustal and upper mantle peridotites in ophiolites, and introduced many young researchers and students to the intemal structure of the classical Troodos ophiolite. This was particularly the case for a large group of Chinese scholars and students, who visited Cyprus and the Troodos ophiolite for the first time. A 4-day profile across the complete ophiolite sequence gave these scientists a first- hand opportunity to examine the lithological and compositional variations within the Cretaceous oceanic crust and to study the igneous and tectonic contacts between them. Lively discussions by the experts and students in front of some of the best 3-dimensional outcrops were most fruitful and allowed all participants to compare the Troodos tectonics with some of ophiolites elsewhere. structure, geochemistry and the other well-documented展开更多
Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, ...Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving(ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.展开更多
Dissolved inorganic carbon(DIC) is an important source of carbon in aquatic ecosystems,especially under conditions of increased frequency of cyanobacterial bloom. However, the importance of bacteria in direct or indir...Dissolved inorganic carbon(DIC) is an important source of carbon in aquatic ecosystems,especially under conditions of increased frequency of cyanobacterial bloom. However, the importance of bacteria in direct or indirect utilization of DIC has been widely overlooked in eutrophic freshwater. To identify the functional bacteria that can actively utilize DIC in eutrophic freshwater during cyanobacterial bloom, stable-isotope probing(SIP) experiments were conducted on eutrophic river water with or without inoculation with cyanobacteria(Microcystis aeruginosa). Our 16 S rRNA sequencing results revealed the significance of Betaproteobacteria, with similar relative abundance as Alphaproteobacteria, in the active assimilation of H^(13)CO^(3-) into their DNA directly or indirectly, which include autotrophic genera Betaproteobacterial ammonia-oxidizing bacteria. Other bacterial groups containing autotrophic members, e.g. Planctomycetes and Nitrospira, also presented higher abundance among free-living bacteria in water without cyanobacteria. Microcystis aggregates showed a preference for some specific bacterial members that may utilize H^(13)CO^(3-) metabolized by Microcystis as organic matter, e.g. Bacteroidetes(Cytophagales, Sphingobacteriales), and microcystindegrading bacteria Betaproteobacteria(Paucibacter/Burkholderiaceae). This study provides some valuable information regarding the functional bacteria that can actively utilize DIC in eutrophic freshwater.展开更多
The Qinghai (青海)-Tibet plateau is the newest and biggest orogenic belt in the world and a natural laboratory for researching continental geodynamics, such as continent-continent collision, convergence, subduction,...The Qinghai (青海)-Tibet plateau is the newest and biggest orogenic belt in the world and a natural laboratory for researching continental geodynamics, such as continent-continent collision, convergence, subduction, and plateau uplift. From the 1950s to the present, there have been many active-source (deep seismic sounding and deep seismic reflection profiling) and passive-source seismic probing (broadband seismic observations) implemented to reveal the crust-mantle structure. In this article, the authors mainly summarize the three seismic probings to discuss the Moho depth of the Qinghai-Tibet plateau based on the previous summaries. The result shows that the Moho of the Qinghai-Tibet plateau is very complex and its depth is very different; the whole outline of it is that the Moho depth is deeper beneath the south than the north and deeper in the west than in the east. In the Qiangtang (羌塘) terrane, the hinterland of the Qinghai-Tibet plateau, the Moho is shallower than both the southern and the northern sides. The deepest Moho is 40 km deeper than the shallowest Moho. This trend records the crustal thickening and thinning caused by the mutual response between the India plate and the Eurasia plate, and the eastward mass flow in the Qinghai-Tibet plateau.展开更多
Ultrafast dissociation dynamics of chloroiodomethane (CH2ICl) in the B band is studied by femtosecond time- resolved time-of-flight (TOF) mass spectrometry. Time-resolved TOF mass signal of parent ion (CH2ICl+)...Ultrafast dissociation dynamics of chloroiodomethane (CH2ICl) in the B band is studied by femtosecond time- resolved time-of-flight (TOF) mass spectrometry. Time-resolved TOF mass signal of parent ion (CH2ICl+) and main daughter ion (CH2Cl+) are obtained. The curve for the transient signal of CH2ICl+ is simple and can be well fitted by an exponential decay convoluted with a Gaussian function. The decay constant determined to be less than 35 fs reflects the lifetime of the B band. Significant substituent effects on photodissociation dynamics of CH2IC1 compared with CH3I are discussed. The dissociation time from the parent ion CH2IC1+ to the daughter ion CH2Cl+ is determined in the experiment. The optimized geometry of the ionic state of CH2ICl and the ionization energy are calculated for further analysis of the measurements. In addition, compared with the parent ion, a new decay component with time constant of -596 fs is observed for CH2Cl+, and reasonable mechanisms are proposed for the explanation.展开更多
In this paper, we propose a very simple scheme to probe the quantum and classical correlation including quantum entanglement of Bell diagonal state. In the probing process, the correlation of Bell diagonal state, even...In this paper, we propose a very simple scheme to probe the quantum and classical correlation including quantum entanglement of Bell diagonal state. In the probing process, the correlation of Bell diagonal state, even the state itself, is not disturbed, which means a non-destructive probing. In addition, our scheme can be performed even though the two qubits of the Bell diagonal state are separate in space.展开更多
Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However a...Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks.展开更多
Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,ther...Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,there is a lack of research on the optimization of the probing process.This study investigates how to optimize correlated parameters to maximize the SKG rate(SKGR)in the time-division duplex(TDD)mode.First,we build a probing model which includes the effects of transmitting power,the probing period,and the dimension of sample vectors.Based on the model,the analytical expression of the SKGR is given.Next,we formulate an optimization problem for maximizing the SKGR and give an algorithm to solve it.We conclude the SKGR monotonically increases as the transmitting power increases.Relevant mathematical proofs are given in this study.From the simulation results,increasing appropriately the probing period and the dimension of the sample vector could increase the SKGR dramatically compared to a yardstick,which indicates the importance of optimizing the parameters related to the channel probing phase.展开更多
To evaluate the ^(125)I radioactive probing re-canalizing stenostic nasolacrimal duct,the nasolacrimal duct stenosis models in epithelium and connective tissues are experimentally structured by inbred white rabbits(Ne...To evaluate the ^(125)I radioactive probing re-canalizing stenostic nasolacrimal duct,the nasolacrimal duct stenosis models in epithelium and connective tissues are experimentally structured by inbred white rabbits(New Zealand),including the nasolacrimal duct stenosis,the mechanical probing with outer layer of thermoplastic tube,and the ^(125)I radioactive probing with the ^(125)I seeds sealing into the thermoplastic tube.After re-canalized for four weeks, tissue specimens from bilateral nasolacrimal ducts are obtained,and the Bcl-2 and Bax protein expression levels are evaluated by immunohistochemical staining analysis.Comparing with the blank control,the expression levels of the Bcl-2 and Bax in the nasolacrimal duct stenosis and the mechanical probing are significantly up-/down-regulated(p<0.05),but in the ^(125)I radioactive probing are down-/up-regulated(p<0.05) and can be used to re-canalize the stenostic lacrimal passage.The results show that the ^(125)I radioactive probing is a therapeutical mechanism for radioactive probing strategy for treating nasolacrimal duct stenosis to induce cell apoptosis.展开更多
We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon ...We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon photoemission electron microscopy. Different photoemission patterns induced by the plasmon effect are observed when the bowties are excited by s- and p-polarized femtosecond laser pulses. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interfer- ence of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies.展开更多
Quantum dots/two-dimensional(0D/2D)semiconductor photocatalysts demonstrate wide solar light absorption region and high charge transfer efficiency.However,the relation between the interfacial electric field and the ch...Quantum dots/two-dimensional(0D/2D)semiconductor photocatalysts demonstrate wide solar light absorption region and high charge transfer efficiency.However,the relation between the interfacial electric field and the charge transfer during the photocatalytic hydrogen production process is still unclear.Here,we construct NiCo_(2)O_(4)quantum dots(QDs)and NiCo_(2)O_(4)nanoparticles(NPs)anchored with 2D g-C_(3)N_(4)(CN)to form NiCo_(2)O_(4)-QDs/CN and NiCo_(2)O_(4)-NPs/CN heterojunctions.The hydrogen production rate of CN loaded with NiCo_(2)O_(4)QDs is about 3 times higher than that of CN loaded with NiCo_(2)O_(4)NPs.The electric field intensity at the NiCo_(2)O_(4)-QDs/CN interface is calculated to be about 15,600 V cm^(−2),about 9 times higher than that of NiCo_(2)O_(4)-NPs/CN,which could effectively drive the electrons of CN to flow toward NiCo_(2)O_(4)QDs,promoting photocarriers separation and hence greatly improving the photocatalytic performance.This work provides a method to understand the relationship between interfacial electric field strength and photogenerated charges of heterostructure photocatalysts.展开更多
Spatial distribution of acoustic and elastic waves generated by an elementary vibration source at seismic profiling frequencies in an infinite medium close to a layer inclusion, i.e., an extended layer, is numerically...Spatial distribution of acoustic and elastic waves generated by an elementary vibration source at seismic profiling frequencies in an infinite medium close to a layer inclusion, i.e., an extended layer, is numerically simulated. Point dipole radiation in a homogeneous infinite medium separated by a liquid layer of different medium density or acoustic wave velocity is considered. Transverse elastic SH-waves excited by an oscillating power source in a solid medium also located close to the layer of different propagation velocity than the velocity of the vicinity are analyzed. Formulae for the spatial distribution of the wave field amplitude are derived and computer graphics of field distribution images is presented. Wave reflection, penetration deep into the layer inclusion, and transmittance through it are examined. Results of the analysis can be applied to seismoacoustic probing of geologic environment by the near field of a harmonic vibration source.展开更多
A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion...A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion of the functionalized rotaxane system.The UV-vis,^(1) H NMR and PL spectroscopic data clearly demonstrated that the DPAC ring was interlocked onto the thread and the fluorescence intensity of the DPAC unit in the macrocycle was effectively regulated by the location change of the macrocycle along the thread under acid/base stimulation,which was attributed to the modulation of the intramolecular photo-induced electron transfer between the DPAC unit and the methyltriazole(MTA)unit.This bistable rotaxane system containing a conformation-adaptive fluorophore unit in the macrocycle moiety opens an alternative way to design functional bistable mechanically interlocked molecules.展开更多
Mitochondrial damage is closely related to the occurrence of many diseases.However,accurate monitoring and reporting of mitochondrial damage are not easy.Here,we developed a small molecule fluorescent probe named CB-C...Mitochondrial damage is closely related to the occurrence of many diseases.However,accurate monitoring and reporting of mitochondrial damage are not easy.Here,we developed a small molecule fluorescent probe named CB-Cl,which has splendid spectral properties(large Stokes shift,strong affinity for RNA,etc.)and excellent targeting ability to intracellular mitochondria.After mitochondria were damaged by external stimuli,CB-Cl would light up the nucleolus as a signal reporter.The cascade imaging of mitochondria and nucleolus using CB-Cl can monitor and visualize the mitochondrial status in living cells in real-time.Based on the above advantages,the probe CB-Cl has reference significance for the related research of mitochondrial damage and the prevention and treatment of related diseases.展开更多
To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometri...To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometrical features high precisely because the parameters of the ball tips are not appropriate. The ball tips with a diameter of less than 100 μm, a sphericity and eccentricity of far less than 1 μm are required urgently. A review on the state-of-the-art of ball tips of micro/nano probing systems is presented. The material characteristics and geometric parameters of now available ball tips are introduced sepa- rately. The existing fabrication methods for the ball tips are demonstrated and summarized. The ball tips' future trends, which are smaller diameter, better sphericity and smaller eccentricity, are proposed in view of the practical requirements of high-precision measurement for micro geometrical features. Some challenges have to be faced in future, such as the promotion and high-precision measurement for the small ball tip's sphericity and eccentricity. Fusion method without the gravity effect when the molten ball tip solidifying is a more suitable way to fabricate a small diameter ball tip together with a shaft.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52206107)the National Key R&D Program of China(Grant No.2023YFE0120200)。
文摘Precise control and measurement of nanoparticles using low-power optical tweezers are pivotal for advancing single-particle analysis,nanoscale sensing,and energy transport research.In this work,we present the tipassisted nanoparticle capture system that simultaneously achieves localized temperature probing and nanoparticle trapping,significantly lowering the required laser power input.Unlike traditional metal-tip plasmonic techniques that predominantly rely on intense electric field gradients,our approach employs a silicon nanotip under resonant laser excitation,uniquely integrating optical forces,thermophoretic forces,and interatomic interactions for stable nanoparticle confinement.This synergistic collaboration mechanism enables approximately a 42%reduction in laser power density compared to conventional bowtie nanoaperture methods.This experimental method achieved direct and simultaneous Raman-based measurements of localized thermal dynamics,providing new insights into nanoscale thermodynamics during optical trapping.Additionally,the silicon nanotip demonstrates reduced thermal transport due to its confined nanoscale geometry,aligning closely with our theoretical predictions.Our integrated strategy of efficient nanoparticle manipulation coupled with precise thermal probing not only enhances overall energy efficiency but also broadens the scope of potential applications in cutting-edge nanoscience and nanotechnology.
基金supported by the NUDT Science Foundation for Indigenous Innovation(Grant No.24-ZZCX-ZXGC-15)the National Natural Science Foundation of China(Grant Nos.12234020,12450403,and 12374263)。
文摘We demonstrate an all-optical technique for in situ monitoring of strong-field ionization(SFI)dynamics.The method relies on coherent scattering of a probe pulse from a transient plasma grating(TPG)formed by two interfering femtosecond pulses in a gas target.The diffracted signal provides a real-time,relative measure of the ionization yield.We demonstrate the method’s sensitivity by resolving the attosecond-scale coherent control of the ionization rate.Unlike conventional diagnostics that directly measure charged particles,our ensemble-based optical method is non-invasive and particularly suited for non-vacuum environments.To demonstrate its utility,we apply the technique to investigate the relationship between ionization and terahertz(THz)generation in a two-color(ω+2ω)field.We measure a phase offset of(0.18±0.05)π between the maxima of the ionization yield and the THz emission.This result provides a quantitative benchmark for theoretical models and establishes the TPG technique as a practical tool for probing SFI dynamics in ensemble systems.
文摘AIM:To investigate the clinical outcomes of different intubation techniques in the cases of failed primary probing.METHODS: This retrospective study was performed on338 patients with the diagnosis of congenital nasolacrimal duct obstruction with age 1-4y that had failed primary probing.Intubation was performed under light sedation in operating room and the stent was left 3mo in place.Clinical outcome was investigated 3mo after tube removal.RESULTS: Bicanalicular intubation method had higher complete and relative success rates compared to monocanalicular intubation(P =0.00).In addition,Monoka intubation had better outcomes compared to Masterka technique(P =0.046).No difference was found between genders but the higher the age,the better the outcomes with bicanalicular technique rather than monocanalicular.CONCLUSION: Overall success rate of bicanalicular intubation is superior to monocanalicular technique especially in older ages.Also,based upon our clinical outcomes,Masterka intubation is not recommended in cases of failed probing.
文摘The second IGCP-649 Workshop, held in Agros-Cyprus during 14-20 May 2016, brought together nearly fifty international scientists from around the world, and included a 5-day field excursion on the classic Troodos ophiolite. Organized by the IGCP-649 Project Leadership and the Geological Survey Department of Cyprus, the workshop provided a forum for discussions on the latest views and interpretations on the petrogenesis of crustal and upper mantle peridotites in ophiolites, and introduced many young researchers and students to the intemal structure of the classical Troodos ophiolite. This was particularly the case for a large group of Chinese scholars and students, who visited Cyprus and the Troodos ophiolite for the first time. A 4-day profile across the complete ophiolite sequence gave these scientists a first- hand opportunity to examine the lithological and compositional variations within the Cretaceous oceanic crust and to study the igneous and tectonic contacts between them. Lively discussions by the experts and students in front of some of the best 3-dimensional outcrops were most fruitful and allowed all participants to compare the Troodos tectonics with some of ophiolites elsewhere. structure, geochemistry and the other well-documented
基金supported in part by the National Natural Science Foundation of China(Nos.61101180,61401491 and 61490692)
文摘Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving(ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.
基金supported by the National Key Research and Development Program of China(No.2017YFD0800101)the State Natural Science Foundation of China(Nos.31600419,41571458,41471415)
文摘Dissolved inorganic carbon(DIC) is an important source of carbon in aquatic ecosystems,especially under conditions of increased frequency of cyanobacterial bloom. However, the importance of bacteria in direct or indirect utilization of DIC has been widely overlooked in eutrophic freshwater. To identify the functional bacteria that can actively utilize DIC in eutrophic freshwater during cyanobacterial bloom, stable-isotope probing(SIP) experiments were conducted on eutrophic river water with or without inoculation with cyanobacteria(Microcystis aeruginosa). Our 16 S rRNA sequencing results revealed the significance of Betaproteobacteria, with similar relative abundance as Alphaproteobacteria, in the active assimilation of H^(13)CO^(3-) into their DNA directly or indirectly, which include autotrophic genera Betaproteobacterial ammonia-oxidizing bacteria. Other bacterial groups containing autotrophic members, e.g. Planctomycetes and Nitrospira, also presented higher abundance among free-living bacteria in water without cyanobacteria. Microcystis aggregates showed a preference for some specific bacterial members that may utilize H^(13)CO^(3-) metabolized by Microcystis as organic matter, e.g. Bacteroidetes(Cytophagales, Sphingobacteriales), and microcystindegrading bacteria Betaproteobacteria(Paucibacter/Burkholderiaceae). This study provides some valuable information regarding the functional bacteria that can actively utilize DIC in eutrophic freshwater.
基金supported by the National Natural Science Foundation of China (Nos. 40830316, 40874045)International Sciences and Technology Cooperation (No. 2006DFA21340)+5 种基金the Special Fund for Sciences and Technology Research of Public Welfare Trades (No. 200811021)the Key Innovation Project for Sciences and Technology of the Ministry of Land and Resources (No. 1212010711813)the China Geological Survey and Resources Land Investigation Project (No. 1212010611809)the Basic Outlay of Scientific Research Work from Ministry of Science and Technology of the People’s Republic of China (No. J0803)SINOPPROBE-II, the Ministry of Land and Resources of China (No. 2004DKA20280-2-5)Open Fund of Key Laboratory of Geo-detection (China University of Geosciences, Beijing) (No. GDL0603)
文摘The Qinghai (青海)-Tibet plateau is the newest and biggest orogenic belt in the world and a natural laboratory for researching continental geodynamics, such as continent-continent collision, convergence, subduction, and plateau uplift. From the 1950s to the present, there have been many active-source (deep seismic sounding and deep seismic reflection profiling) and passive-source seismic probing (broadband seismic observations) implemented to reveal the crust-mantle structure. In this article, the authors mainly summarize the three seismic probings to discuss the Moho depth of the Qinghai-Tibet plateau based on the previous summaries. The result shows that the Moho of the Qinghai-Tibet plateau is very complex and its depth is very different; the whole outline of it is that the Moho depth is deeper beneath the south than the north and deeper in the west than in the east. In the Qiangtang (羌塘) terrane, the hinterland of the Qinghai-Tibet plateau, the Moho is shallower than both the southern and the northern sides. The deepest Moho is 40 km deeper than the shallowest Moho. This trend records the crustal thickening and thinning caused by the mutual response between the India plate and the Eurasia plate, and the eastward mass flow in the Qinghai-Tibet plateau.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304157,21303255 and 11475229the‘Six Talent Peaks’Project in Jiangsu Province under Grant No 2015-JNHB-011the College Students Practice Innovative Training Program of Nuist under Grant No 201610300042
文摘Ultrafast dissociation dynamics of chloroiodomethane (CH2ICl) in the B band is studied by femtosecond time- resolved time-of-flight (TOF) mass spectrometry. Time-resolved TOF mass signal of parent ion (CH2ICl+) and main daughter ion (CH2Cl+) are obtained. The curve for the transient signal of CH2ICl+ is simple and can be well fitted by an exponential decay convoluted with a Gaussian function. The decay constant determined to be less than 35 fs reflects the lifetime of the B band. Significant substituent effects on photodissociation dynamics of CH2IC1 compared with CH3I are discussed. The dissociation time from the parent ion CH2IC1+ to the daughter ion CH2Cl+ is determined in the experiment. The optimized geometry of the ionic state of CH2ICl and the ionization energy are calculated for further analysis of the measurements. In addition, compared with the parent ion, a new decay component with time constant of -596 fs is observed for CH2Cl+, and reasonable mechanisms are proposed for the explanation.
基金Supported by the National Natural Science Foundation of China under Grant No. 11175033the Fundamental Research Funds of the Central Universities under Grant No. DUT12LK42
文摘In this paper, we propose a very simple scheme to probe the quantum and classical correlation including quantum entanglement of Bell diagonal state. In the probing process, the correlation of Bell diagonal state, even the state itself, is not disturbed, which means a non-destructive probing. In addition, our scheme can be performed even though the two qubits of the Bell diagonal state are separate in space.
基金supported by National Key Basic Research Program of China (973 program) under Grant No.2007CB310703Funds for Creative Research Groups of China under Grant No.60821001+1 种基金National Natural Science Foundation of China under Grant No. 60973108National S&T Major Project under Grant No.2011ZX03005-004-02
文摘Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks.
基金supported in part by the national natural science foundation of China (NSFC) under Grant61871193in part by the R&D Program of key science and technology fields in Guangdong province under Grant 2019B090912001in part by the Guangzhou Key Field R&D Program under Grant 202206030005
文摘Secret key generation(SKG)is a promising solution to the problem of wireless communications security.As the first step of SKG,channel probing affects it significantly.Although there have been some probing schemes,there is a lack of research on the optimization of the probing process.This study investigates how to optimize correlated parameters to maximize the SKG rate(SKGR)in the time-division duplex(TDD)mode.First,we build a probing model which includes the effects of transmitting power,the probing period,and the dimension of sample vectors.Based on the model,the analytical expression of the SKGR is given.Next,we formulate an optimization problem for maximizing the SKGR and give an algorithm to solve it.We conclude the SKGR monotonically increases as the transmitting power increases.Relevant mathematical proofs are given in this study.From the simulation results,increasing appropriately the probing period and the dimension of the sample vector could increase the SKGR dramatically compared to a yardstick,which indicates the importance of optimizing the parameters related to the channel probing phase.
基金Supported by Natural Science Foundation of Jilin Province(No.200705327)Project of Science and Technology of Changchun City(2007GH25)
文摘To evaluate the ^(125)I radioactive probing re-canalizing stenostic nasolacrimal duct,the nasolacrimal duct stenosis models in epithelium and connective tissues are experimentally structured by inbred white rabbits(New Zealand),including the nasolacrimal duct stenosis,the mechanical probing with outer layer of thermoplastic tube,and the ^(125)I radioactive probing with the ^(125)I seeds sealing into the thermoplastic tube.After re-canalized for four weeks, tissue specimens from bilateral nasolacrimal ducts are obtained,and the Bcl-2 and Bax protein expression levels are evaluated by immunohistochemical staining analysis.Comparing with the blank control,the expression levels of the Bcl-2 and Bax in the nasolacrimal duct stenosis and the mechanical probing are significantly up-/down-regulated(p<0.05),but in the ^(125)I radioactive probing are down-/up-regulated(p<0.05) and can be used to re-canalize the stenostic lacrimal passage.The results show that the ^(125)I radioactive probing is a therapeutical mechanism for radioactive probing strategy for treating nasolacrimal duct stenosis to induce cell apoptosis.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922404the National Natural Science Foundation of China under Grant Nos 11474040 11274053,11474039 and 61178022the Project under Grant No 14KP007
文摘We report the direct imaging of plasmon on the tips pulses and probing of ultrafast plasmon dynamics by of nano-prisms in a bowtie structure excited by 7 fs laser combining the pump-probe technology with three-photon photoemission electron microscopy. Different photoemission patterns induced by the plasmon effect are observed when the bowties are excited by s- and p-polarized femtosecond laser pulses. A series of images of the evolution of local surface plasmon modes on different tips of the bowtie are obtained by the time-resolved three-photon photoemission electron microscopy, and the result discloses that plasmon excitation is dominated by the interfer- ence of the pump and probe pulses within the first 13 fs of the delay time, and thereafter the individual plasmon starts to oscillate on its own characteristic resonant frequencies.
基金supported by the National Natural Science Foun-dation of China(NSFC,Grant No.22378372).
文摘Quantum dots/two-dimensional(0D/2D)semiconductor photocatalysts demonstrate wide solar light absorption region and high charge transfer efficiency.However,the relation between the interfacial electric field and the charge transfer during the photocatalytic hydrogen production process is still unclear.Here,we construct NiCo_(2)O_(4)quantum dots(QDs)and NiCo_(2)O_(4)nanoparticles(NPs)anchored with 2D g-C_(3)N_(4)(CN)to form NiCo_(2)O_(4)-QDs/CN and NiCo_(2)O_(4)-NPs/CN heterojunctions.The hydrogen production rate of CN loaded with NiCo_(2)O_(4)QDs is about 3 times higher than that of CN loaded with NiCo_(2)O_(4)NPs.The electric field intensity at the NiCo_(2)O_(4)-QDs/CN interface is calculated to be about 15,600 V cm^(−2),about 9 times higher than that of NiCo_(2)O_(4)-NPs/CN,which could effectively drive the electrons of CN to flow toward NiCo_(2)O_(4)QDs,promoting photocarriers separation and hence greatly improving the photocatalytic performance.This work provides a method to understand the relationship between interfacial electric field strength and photogenerated charges of heterostructure photocatalysts.
文摘Spatial distribution of acoustic and elastic waves generated by an elementary vibration source at seismic profiling frequencies in an infinite medium close to a layer inclusion, i.e., an extended layer, is numerically simulated. Point dipole radiation in a homogeneous infinite medium separated by a liquid layer of different medium density or acoustic wave velocity is considered. Transverse elastic SH-waves excited by an oscillating power source in a solid medium also located close to the layer of different propagation velocity than the velocity of the vicinity are analyzed. Formulae for the spatial distribution of the wave field amplitude are derived and computer graphics of field distribution images is presented. Wave reflection, penetration deep into the layer inclusion, and transmittance through it are examined. Results of the analysis can be applied to seismoacoustic probing of geologic environment by the near field of a harmonic vibration source.
基金supported by the National Natural Science Foundation of China(Nos.22025503,21790361 and 21871084)Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX03)+3 种基金the Fundamental Research Funds for the Central Universitiesthe Program of Introducing Talents of Discipline to Universities(No.B16017)the Shanghai Science and Technology Committee(No.17520750100)funding from China Postdoctoral Science Foundation funded project(No.J100–5R-20130)。
文摘A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion of the functionalized rotaxane system.The UV-vis,^(1) H NMR and PL spectroscopic data clearly demonstrated that the DPAC ring was interlocked onto the thread and the fluorescence intensity of the DPAC unit in the macrocycle was effectively regulated by the location change of the macrocycle along the thread under acid/base stimulation,which was attributed to the modulation of the intramolecular photo-induced electron transfer between the DPAC unit and the methyltriazole(MTA)unit.This bistable rotaxane system containing a conformation-adaptive fluorophore unit in the macrocycle moiety opens an alternative way to design functional bistable mechanically interlocked molecules.
基金the Shenzhen Science and Technology Research and Development Funds(No.JCYJ20190806155409104)National Natural Science Foundation of China(Nos.52150222,21672130 and 52073163)+1 种基金Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110356)the Qilu Young Scholars Program of Shandong University.
文摘Mitochondrial damage is closely related to the occurrence of many diseases.However,accurate monitoring and reporting of mitochondrial damage are not easy.Here,we developed a small molecule fluorescent probe named CB-Cl,which has splendid spectral properties(large Stokes shift,strong affinity for RNA,etc.)and excellent targeting ability to intracellular mitochondria.After mitochondria were damaged by external stimuli,CB-Cl would light up the nucleolus as a signal reporter.The cascade imaging of mitochondria and nucleolus using CB-Cl can monitor and visualize the mitochondrial status in living cells in real-time.Based on the above advantages,the probe CB-Cl has reference significance for the related research of mitochondrial damage and the prevention and treatment of related diseases.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675157,51475131)State Key Laboratory of Precision Measuring Technology and Instruments of China(Grant No.PIL1401)
文摘To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometrical features high precisely because the parameters of the ball tips are not appropriate. The ball tips with a diameter of less than 100 μm, a sphericity and eccentricity of far less than 1 μm are required urgently. A review on the state-of-the-art of ball tips of micro/nano probing systems is presented. The material characteristics and geometric parameters of now available ball tips are introduced sepa- rately. The existing fabrication methods for the ball tips are demonstrated and summarized. The ball tips' future trends, which are smaller diameter, better sphericity and smaller eccentricity, are proposed in view of the practical requirements of high-precision measurement for micro geometrical features. Some challenges have to be faced in future, such as the promotion and high-precision measurement for the small ball tip's sphericity and eccentricity. Fusion method without the gravity effect when the molten ball tip solidifying is a more suitable way to fabricate a small diameter ball tip together with a shaft.