期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
李超代数与Frobenius代数
1
作者 徐晓宁 陈良云 《数学年刊(A辑)》 CSCD 北大核心 2007年第2期289-296,共8页
利用限制李超代数的新定义,给出了李超代数的p-包络的一些相关结果,并将李代数中表示理论的一些结果推广到李超代数上,进而研究了限制李超代数与Frobenius代数的关系.
关键词 限制李超代数 S-约化泛包络代数 probenius代数
在线阅读 下载PDF
CHARACTERIZATION OF MODULAR FROBENIUS GROUPS OF SPECIAL TYPE
2
作者 范娟娟 杜妮 曾吉文 《Acta Mathematica Scientia》 SCIE CSCD 2013年第2期525-531,共7页
In this article, we first investigate the properties of modular Frobenius groups. Then, we consider the case that G' is a minimal normal subgroup of a modular Frobenius group G. We give the complete classification of... In this article, we first investigate the properties of modular Frobenius groups. Then, we consider the case that G' is a minimal normal subgroup of a modular Frobenius group G. We give the complete classification of G when G' as a modular Frobenius kernel has no more than four conjugacy classes in G. 展开更多
关键词 Modular probenius group minimal normal subgroup Frobenius group conju-gacy classes
在线阅读 下载PDF
Semistability of Frobenius Direct Image of Representations of Cotangent Bundles
3
作者 Ling Guang LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第11期1677-1691,共15页
Let k be an algebraically closed field of characteristic p 〉 0, X a smooth projective variety over k with a fixed ample divisor H, FX:X → X the absolute Frobenius morphism on X. Let E be a rational GLn(k)-bundle ... Let k be an algebraically closed field of characteristic p 〉 0, X a smooth projective variety over k with a fixed ample divisor H, FX:X → X the absolute Frobenius morphism on X. Let E be a rational GLn(k)-bundle on X, and ρ:GLn(k) → GLm(k) a rational GLn(k)-representation of degree at most d such that ρ maps the radical R(GLn(k)) of GLn(k) into the radical R(GLm(k)) of GLm(k). We show that if FXN*(E) is semistable for some integer N ≥ max0 〈 r 〈 m (rm) · logp(dr), then the induced rational GLm(k)-bundle E(GLm(k)) is semistable. As an application, if dim X=n, we get a sufficient condition for the semistability of Frobenius direct image FX*(ρ*(ΩX1)), where ρ*(ΩX1) is the vector bundle obtained from ΩX1 via the rational representation ρ. 展开更多
关键词 SEMISTABILITY principal bundle probenius morphism cotangent bundle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部