Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether ...Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.展开更多
Gallstones are a common disease worldwide,often leading to obstruction and inflammatory complications,which seriously affect the quality of life of patients.Research has shown that gallstone disease is associated with...Gallstones are a common disease worldwide,often leading to obstruction and inflammatory complications,which seriously affect the quality of life of patients.Research has shown that gallstone disease is associated with ferroptosis,lipid droplets(LDs),and abnormal levels of nitric oxide(NO).Fluorescent probes provide a sensitive and convenient method for detecting important substances in life systems and diseases.However,so far,no fluorescent probes for NO and LDs in gallstone disease have been reported.In this work,an effective ratiometric fluorescent probe LR-NH was designed for the detection of NO in LDs.With an anthracimide fluorophore and a secondary amine as a response site for NO,LR-NH exhibits high selectivity,sensitivity,and attractive ratiometric capability in detecting NO.Importantly,it can target LDs and shows excellent imaging ability for NO in cells and ferroptosis.Moreover,LR-NH can target the gallbladder and image NO in gallstone disease models,providing a unique and unprecedented tool for studying NO in LDs and gallbladder.展开更多
Ferroptosis is a new regulated cell death process executed by lipid peroxidation(LPO)of polyunsaturated fatty acids.Lipid droplets(LDs),as an important organelle for lipid storage and metabolism,are probably a major s...Ferroptosis is a new regulated cell death process executed by lipid peroxidation(LPO)of polyunsaturated fatty acids.Lipid droplets(LDs),as an important organelle for lipid storage and metabolism,are probably a major site of LPO and play critical roles in the regulation of ferroptosis.However,the detailed study on LPO in LDs has not been carried out because of the lack of LD-targeting tools for the in situ monitoring of LPO.Herein,the first LD-targeting LPO fluorescence probe(LD-LPO)has been developed.LD-LPO exhibits a rapid and selective fluorescence enhancement at 518 nm,which is unaffected by highly destructive reactive oxygen species(e.g.,hydroxyl radical)and environmental factor changes(e.g.,polarity and viscosity).LD-LPO is capable of targeting LDs and visualizing LPO within LDs in situ during erastin-or(1S,3R)-RSL3(RSL3)-induced ferroptosis.Moreover,LD-LPO has also been used to image LPO in the ferroptosis-associated non-alcoholic fatty liver disease(NAFLD),and to evaluate the medicine treatment of NAFLD with saroglitazar,demonstrating its utility for monitoring LPO levels in biosystems.The favorable analytical and imaging performance of LD-LPO may allow its application in more ferroptosisassociated physiological and pathological processes.展开更多
Fluorescent probes have wide applications in biological and environmental analysis due to their advantages of simple operation, convenient flexibility, high sensitivity and efficiency. They are considered to be promis...Fluorescent probes have wide applications in biological and environmental analysis due to their advantages of simple operation, convenient flexibility, high sensitivity and efficiency. They are considered to be promising tools for accurate analysis of agriculture- and food-related hazardous substances. In this review, the types and characteristics of the near-infrared fluorescence probes (NIFPs) are briefly described. The recent advances of NIFPs for precisely detecting various hazardous substances including heavy metals, sulfite and related sulfiting agents and hydrogen peroxide are summarized. Finally, the present challenges and future perspectives faced by NIFPs in food safety analysis are discussed.展开更多
A simply synthesized 4-aminonaphthalimide derivative 1 expresses both polarity and viscosity sensitive fluorescence spectra,indicating its potential usage as an environmentally sensitive fluorescence probe. By compari...A simply synthesized 4-aminonaphthalimide derivative 1 expresses both polarity and viscosity sensitive fluorescence spectra,indicating its potential usage as an environmentally sensitive fluorescence probe. By comparing the fluorescence behavior of 1 with that of a known 4-aminonaphthalimide derivative 2,it was found that the substitution of the 4-amino group has profound influence on the environmentally sensitive fluorescence properties of 4-aminonaphthalimide.展开更多
Compared with other transition metal Mxene derived quantum dots(MQD_(S)),Ta-based Mxene quantum dots have good functionality,but Ta-based Mxene quantum dots and their applications have not been studied so far.In this ...Compared with other transition metal Mxene derived quantum dots(MQD_(S)),Ta-based Mxene quantum dots have good functionality,but Ta-based Mxene quantum dots and their applications have not been studied so far.In this paper,we report for the first time the synthesis of high fluorescence quantum yield(QY) N-doped Ta_(4)C_(3) quantum dots(N-MQDs) using Ta_(4)C_(3) quantum dots in acid reflux damaged Ta_(4)C_(3) nanosheets as precursors and ethylenediamine as nitrogen source.The prepared N-MQDs have excellent blue photoluminescence(PL) properties,particle size is only 2.60 nm,QY is up to 23.4%,and good stability.In addition,it has been reported that N-MQDs can be used as fluorescent probe for detection of Fe;and remote force sensing analysis In liquid ion sensing,N-MQDS shows a unique selective quenching of Fe;with a detection limit as low as 2 μmol/L,and has great potential as a fast and super-sensitive fluorescent probe for the detection of heavy ion.More importantly,in solid mechanics sensing,the introduction of N-MQDs into self-healing hydrogels can be developed into a fluorescent hydrogel that can be used for accurate remote force measurement and applied in the field of mechanical sensing analysis.Therefore,Ta-based N-MQDs show excellent potential in the field of fluorescence sensing,which provides a door for multi-dimensional sensing of new materials in the future.展开更多
A ratiometric probe(HBT-HBZ)bearing 2-hydrazino benzothiazole and 3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methylbenzaldehyde for sensing hypochlorous acid(HClO)with high selectivity and sensitivity is reported in this ar...A ratiometric probe(HBT-HBZ)bearing 2-hydrazino benzothiazole and 3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methylbenzaldehyde for sensing hypochlorous acid(HClO)with high selectivity and sensitivity is reported in this article.The fluorescence intensity ratios(I470nm/I572nm)of the probe with different concentrations of analyte showed excellent selectivity and a linear response to minor changes in HClO.The detection limit of 24 nmol/L suggests that the sensor is very sensitive to HClO.According to the series of performed experiments,HBT-HBZ has practical applications,such as the detection of HClO residues in tap water,which has been rarely reported.In addition,confocal laser microscopy experiments confirmed that HBT-HBZ can selectively recognize HClO in HeLa cells.A ratiometric probe(HBT-HBZ)for sensing HClO with high selectivity and sensitivity is reported in this article.The probe exhibited high selectivity for HClO among other ROS,RNS and anions.In addition,HBTHBZ has some practical applications such as the analysis of the HClO content in tap water.Furthermore,confocal fluorescence microscopy imaging showed that HBT-HBZ can be applied for detecting HClO in living cells.展开更多
Imaging hypoxia using fluorescence probes for nitroreductase(NTR) have attracted much attention in last decade. At least three different linkers have been commonly used to connect the recognition unit and reporting ...Imaging hypoxia using fluorescence probes for nitroreductase(NTR) have attracted much attention in last decade. At least three different linkers have been commonly used to connect the recognition unit and reporting unit in reported probes for NTR. Meanwhile, the linker is known to be a key factor for achieving best sensing performance. In this work, three near-infrared fluorescence probes CyNP-1, CyNP-2 and CyNP-3 were designed and synthesized from an aminocyanine dye CyNP. The three probes have the same recognition unit and same fluorescence reporting unit, but different linkers. CyNP-1 was found to have the best sensing performance for NTR with 40-fold of fluorescence enhancement. It is well investigated how the difference of the linkers brings out the different sensing performance by HPLC, MS and docking calculations. In the end, CyNP-1 was found to have good selectivity for NTR and used to imaging hypoxia in Hela cells.展开更多
A new fluorescent probe(Rhod-Sec) for selenol detection with ultralow background fluorescence have been developed in this paper, which showed a 380-fold off-on fluorescence response, and the nontoxic Rhod-Sec is wel...A new fluorescent probe(Rhod-Sec) for selenol detection with ultralow background fluorescence have been developed in this paper, which showed a 380-fold off-on fluorescence response, and the nontoxic Rhod-Sec is well suitable for detecting and imaging both exogenous and endogenous selenol in living cells. It also can be applied to visualize the fluctuation of selenol in HepG2 cells through LPS-induced cells oxidation resistance.展开更多
Selective detection of multiple analytes in a compact design with dual-modality and theranostic features presents great challenges. Herein, we wish to report a coumarin-thiazolidine masked D-penicillamine based dual-m...Selective detection of multiple analytes in a compact design with dual-modality and theranostic features presents great challenges. Herein, we wish to report a coumarin-thiazolidine masked D-penicillamine based dual-modality fluorescent probe COU-DPA-1 for selective detection, differentiation, and detoxification of multiple heavy metal ions(Ag^(+), Hg^(2+), Cu^(2+)). The probe shows divergent fluorescence(FL)/circular dichroism(CD) responses via divergent bond-cleavage cascade reactions(metal ion promoted C-S cleavage and hydrolysis at two distinctive cleavage sites): FL “turn-off” and CD “turn-on” for Ag+(no hydrolysis), FL “turn-on” and CD “turn-off” for Hg^(+)(imine hydrolysis), and FL “self-threshold ratiometric” and CD “turn-off” for excess Cu^(2+)(lactone and imine hydrolysis), providing the first example of a fluorescence/CD dual-modality probe for multiple species with complimentary responses. Moreover, the bond-cleavage cascade reactions also lead to the formation of D-penicillamine heavy metal ion complexes for potential detoxification treatments.展开更多
A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition...A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.展开更多
Despite the rapid development of fluorescence detection modalities for disease diagnosis,novel fluorescent molecules and probes still face with tremendous pressure to transform before employing such fluorescent tools ...Despite the rapid development of fluorescence detection modalities for disease diagnosis,novel fluorescent molecules and probes still face with tremendous pressure to transform before employing such fluorescent tools in the clinic.Impressively,the fluorescent probes based on the traditional fluorescent dye are expected to accelerate the transformation process.Herein,methylene blue is requisitioned to design the GSH responsive probe MB-SS-CPT elaborately.The as-synthesized MB-SS-CPT provides a dramatic optical advantage for GSH detection in vitro,cell fluorescence imaging,in vivo imaging,and antitumor therapy.展开更多
The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make u...The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make use of the full resolution of the MINFLUX microscope,it is important to select appropriate fluorescence probes and labeling strategies,especially in living-cell imaging.This paper mainly focuses on recent applications and developments of fluorescence probes and the relevant labeling strategy for MINFLUX microscopy.Moreover,we discuss the deficiencies that need to be addressed in the future and a plan for the possible progression of MINFLUX to help investigators who have been involved in or are just starting in the field of super-resolution imaging microscopy with theoretical support.展开更多
Curcumin and its derivatives have good electrical and optical properties due to the highly symmetric structure of delocalized π electrons. Apart from that, curcumin and its derivatives can interact with numerous mole...Curcumin and its derivatives have good electrical and optical properties due to the highly symmetric structure of delocalized π electrons. Apart from that, curcumin and its derivatives can interact with numerous molecular targets, thereby exerting less side effects on human body. The fluorescence emission wavelength and fluorescence intensity of curcumin can be enhanced by modifying its π-conjugated system and β-diketone structure. Some curcumin-based fluorescent probes have been utilized to detect soluble/insoluble amyloid-β protein, intracranial reactive oxygen species, cysteine, cancer cells, etc. Based on the binding characteristics of curcumin-based fluorescent probes with various target molecules, the factors affecting the fluorescence intensity and emission wavelength of the probes are analyzed, in order to obtain a curcumin probe with higher sensitivity and selectivity. Such an approach will be greatly applicable to in vivo fluorescence imaging.展开更多
A novel ZnII-based metal-organic framework with the formula of{[Zn_(2)(BBIP)_(2)(NDC)_(2)]·H_(2)O}n(JXUST-5)derived from 3,5-bis(benzimidazol-1-yl)pyridine(BBIP)and 1,4-naphthalenedicarboxylic acid(H_(2)NDC)has b...A novel ZnII-based metal-organic framework with the formula of{[Zn_(2)(BBIP)_(2)(NDC)_(2)]·H_(2)O}n(JXUST-5)derived from 3,5-bis(benzimidazol-1-yl)pyridine(BBIP)and 1,4-naphthalenedicarboxylic acid(H_(2)NDC)has been synthesized.The adjacent Zn^(II)ions are linked through two BBIP ligands to form a[Zn_(2)(BBIP)_(2)]secondary building unit(SBU).The neighbouring SBUs are further connected by NDC^(2-)withμ2-η^(1):η^(1)andμ2-η^(1):η^(1):η^(1)bridging modes to form a two-dimensional(2D)framework.Topological analysis shows that JXUST-5 could be simplified as an uninodal fes topology with a point symbol of{4.8^(2)}.Furthermore,the 2D framework net could be extended through C-H···πinteraction to form the three-dimensional supramolecular structure.Luminescent experiments suggest that JXUST-5 could selectively and sensitively recognize Al^(3+)and Ga^(3+)through fluorescence enhancement effect along with a relatively large red shift.The detection limits for Al^(3+)and Ga^(3+)are 0.17 and 0.69 ppm,respectively.Interestingly,the sensing process for both Al^(3+)and Ga^(3+)could be directly observed with naked eyes under 365 nm UV lamp.Notably,JXUST-5 could be recycled at least five times as a fluorescent sensor toward Al^(3+)and Ga^(3+),which is the second example of turn-on MOF based fluorescent sensor toward Ga^(3+).展开更多
Nonalcoholic fatty liver disease(NAFLD)can cause serious liver damage.Early diagnosis and effective treatment of NAFLD can greatly improve treatment rates.The initiation and development of NAFLD has been closely linke...Nonalcoholic fatty liver disease(NAFLD)can cause serious liver damage.Early diagnosis and effective treatment of NAFLD can greatly improve treatment rates.The initiation and development of NAFLD has been closely linked to endoplasmic reticulum(ER)stress,which might cause ER viscosity variations.Therefore,if the internal relationship between ER viscosity and NAFLD is clarified,an effective approach for early diagnosis may result.Herein,we fabricated a novel near-infrared(NIR)fluorescence imaging probe,Er-V,for monitoring ER viscosity through a molecular rotor strategy.Er-V exhibited a strong NIR fluorescence signal(at 626 nm)when the environmental viscosity hindered the rotation of the malononitrile group.Using Er-V,we successfully observed a significant enhancement in viscosity in the liver of mice with NAFLD.Therefore,this imaging method based on Er-V is expected to provide a new approach for early detection and diagnosis of NAFLD.展开更多
Humanβ-galactosidase(β-gal)is recognized as a crucial biomarker for evaluating senescence at the cellular and tissue levels in humans.However,tools to precisely track the endogenousβ-gal are still limited.Herein,we...Humanβ-galactosidase(β-gal)is recognized as a crucial biomarker for evaluating senescence at the cellular and tissue levels in humans.However,tools to precisely track the endogenousβ-gal are still limited.Herein,we present two novel self-calibratingβ-gal probes 7a and 7b which were constructed on a unique green/red dual-emissive fluorescence platform.The two probes inherently exhibited a stable green fluorescence signal impervious toβ-gal activity,serving as a reliable internal reference.They also displayed a progressively diminishing red fluorescence signal with the increasing ofβ-gal expression levels.The dual behavior endows them with self-calibration capacity and then renders excellently selective and sensitive for precisely monitoringβ-gal activity.Notably,compared with E.coliβ-gal,the two probes are more effectively response to A.oryzaeβ-gal homologous to humanβ-gal,indicating their unique species-selectivity.Furthermore,7a was validated for its effectiveness in determining senescenceassociatedβ-galactosidase(SA-β-gal)expression in senescent NRK-52E and HepG2 cells,underscoring its practical applicability in senescence research.展开更多
Sulfur dioxide and its derivative sulfite widely existed in air,water as the environment pollutant.Sulfite is also commonly used as preservative and additive in fresh fruits,vegetables,wines and pharmaceutical materia...Sulfur dioxide and its derivative sulfite widely existed in air,water as the environment pollutant.Sulfite is also commonly used as preservative and additive in fresh fruits,vegetables,wines and pharmaceutical materials.Due to sulfite is closely related with human diseases,it is very urgent for the sensitive and rapid quantification of sulfite in various samples.In our study,a turn-on near infrared(NIR)fluorescent probe(MDQ)was developed for sulfite detection based on a Michael addition reaction,with high sensitivity(LOD 4.16 nmol/L),selectivity and fast response time(400 s).Using MDQ,a quantify method for sulfite in traditional Chinese medicines(TCMs)was developed with the advantages of high precision,accuracy and convenient operation.Furthermore,according to the photophysical property of MDQ,a portable fluorescence detector is designed to quantify sulfite for TCMs and surface water in Dalian city of China.Therefore,the developed fluorescent probe MDQ and portable fluorescent detector as a rapid inspection instrument were successfully used to real-time monitor the sulfite in various complex samples.展开更多
Cysteine is well-known to be an important biothiol and related to many diseases. However, the in vivo detection of endogenous cysteine still suffers from lacking small-molecule fluorophores with both excitation and em...Cysteine is well-known to be an important biothiol and related to many diseases. However, the in vivo detection of endogenous cysteine still suffers from lacking small-molecule fluorophores with both excitation and emission in the near-infrared(650-900 nm)/shortwave-infrared region. Herein, we report a molecular engineering strategy for shortwave infrared(SWIR, 900-1700 nm) sensing of cysteine, which integrated an excited-state intermolecular proton transfer(ESIPT) building block into the intramolecular charge transfer(ICT) scaffold. The obtained novel fluorophore SH-OH displays a maximum absorption at the NIR region, and emission at the SWIR region. We introduce the cysteine-recognition moiety to SH-OH structure, and demonstrate sensing of endogenous cysteine in living animals, using the SWIR emission as a reliable off-on fluorescence signal. This fluorophore design strategy of cooperation of ICT and ESIPT processes expands the in vivo sensing toolbox for accurate analysis in clinical applications.展开更多
Direct measurement of dipole potential in biological membranes has been impossible and 3-hydroxyflavones(3HFs) have allowed detection of changes in dipole potential in biological systems.In the present study,sixteen d...Direct measurement of dipole potential in biological membranes has been impossible and 3-hydroxyflavones(3HFs) have allowed detection of changes in dipole potential in biological systems.In the present study,sixteen derivatives of 3HF with aliphatic hydrocarbon chains of different lengths at 4′-position and 6-position were synthesized.The basic fluorescence properties of 3HFs are maintained in all the probes in terms of strong blue shift in maximum fluorescence emission wavelength and>100 fold increase in quantum yield in organic solvents and in dioleoylphosphatidylcholine(DOPC) small unilamellar vesicles(SUV) in comparison to in aqueous Hepes buffer(15 mmol/L,pH 7.4).More importantly,the ability of the new compounds to report dipole potential changes in biological systems are also maintained,since all the new probes showed spectrum properties that are similar to yet different from that of F4N1,which potentially may allow more sensitive measurement of the dipole potential change in membranes.展开更多
基金financially supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20241181)the State Key Laboratory of AnalyticalChemistry for Life Science,School of Chemistry and Chemical Engineering,Nanjing University(Grant No.SKLACLS2419)。
文摘Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.
基金supported by the National Natural Science Foundation of China(No.22077044)the Natural Science Foundation of Hubei Province(No.2022CFA033).
文摘Gallstones are a common disease worldwide,often leading to obstruction and inflammatory complications,which seriously affect the quality of life of patients.Research has shown that gallstone disease is associated with ferroptosis,lipid droplets(LDs),and abnormal levels of nitric oxide(NO).Fluorescent probes provide a sensitive and convenient method for detecting important substances in life systems and diseases.However,so far,no fluorescent probes for NO and LDs in gallstone disease have been reported.In this work,an effective ratiometric fluorescent probe LR-NH was designed for the detection of NO in LDs.With an anthracimide fluorophore and a secondary amine as a response site for NO,LR-NH exhibits high selectivity,sensitivity,and attractive ratiometric capability in detecting NO.Importantly,it can target LDs and shows excellent imaging ability for NO in cells and ferroptosis.Moreover,LR-NH can target the gallbladder and image NO in gallstone disease models,providing a unique and unprecedented tool for studying NO in LDs and gallbladder.
基金the financial support from the National Natural Science Foundation of China(Nos.82060626,22004137,22164022,22174147,22074151,22374153,22174148)Excellent Youth scientific and technological talents of Guizhou Province(No.Qiankehe platform talents[2021]5638)+3 种基金Talents of Guizhou Science and Technology Cooperation Platform(No.[2020]4104)Science and Technology Innovation Team of Higher Education of Guizhou Provincial Education Department(No.Qianjiaoji[2023]073)Future Science and Technology Elite Talent Cultivation Project of Zunyi Medical University(No.ZYSE-2021-01)Zunyi Science and Technology Plan Project(No.Zunshi Keren Platform[2023]2)。
文摘Ferroptosis is a new regulated cell death process executed by lipid peroxidation(LPO)of polyunsaturated fatty acids.Lipid droplets(LDs),as an important organelle for lipid storage and metabolism,are probably a major site of LPO and play critical roles in the regulation of ferroptosis.However,the detailed study on LPO in LDs has not been carried out because of the lack of LD-targeting tools for the in situ monitoring of LPO.Herein,the first LD-targeting LPO fluorescence probe(LD-LPO)has been developed.LD-LPO exhibits a rapid and selective fluorescence enhancement at 518 nm,which is unaffected by highly destructive reactive oxygen species(e.g.,hydroxyl radical)and environmental factor changes(e.g.,polarity and viscosity).LD-LPO is capable of targeting LDs and visualizing LPO within LDs in situ during erastin-or(1S,3R)-RSL3(RSL3)-induced ferroptosis.Moreover,LD-LPO has also been used to image LPO in the ferroptosis-associated non-alcoholic fatty liver disease(NAFLD),and to evaluate the medicine treatment of NAFLD with saroglitazar,demonstrating its utility for monitoring LPO levels in biosystems.The favorable analytical and imaging performance of LD-LPO may allow its application in more ferroptosisassociated physiological and pathological processes.
基金supported by the National Natural Science Foundation of China (Nos. 81925019, 81801817 and U22A20333)the National Key Research and Development Program of China (Nos. 2023YFB3810000 and 2023YFB3810003)+1 种基金the Fundamental Research Funds for the Central Universities and the Fujian Basic Research Foundation (Nos. 2022J011403, 2023XAKJ0101009, B2302014 and 2020Y4003)the Program for New Century Excellent Talents in University, China (No. NCET-13-0502).
文摘Fluorescent probes have wide applications in biological and environmental analysis due to their advantages of simple operation, convenient flexibility, high sensitivity and efficiency. They are considered to be promising tools for accurate analysis of agriculture- and food-related hazardous substances. In this review, the types and characteristics of the near-infrared fluorescence probes (NIFPs) are briefly described. The recent advances of NIFPs for precisely detecting various hazardous substances including heavy metals, sulfite and related sulfiting agents and hydrogen peroxide are summarized. Finally, the present challenges and future perspectives faced by NIFPs in food safety analysis are discussed.
基金the National Science & Technology Pillar Program of China(No.2011BAE31B01)
文摘A simply synthesized 4-aminonaphthalimide derivative 1 expresses both polarity and viscosity sensitive fluorescence spectra,indicating its potential usage as an environmentally sensitive fluorescence probe. By comparing the fluorescence behavior of 1 with that of a known 4-aminonaphthalimide derivative 2,it was found that the substitution of the 4-amino group has profound influence on the environmentally sensitive fluorescence properties of 4-aminonaphthalimide.
基金supported by the National Natural Science Foundation of China (No. 81972901)the Key R&D Plan of Chenzhou (No. ZDYF202008)+1 种基金the Discipline Leader Startup Fund of Huazhong University of Science and Technology Union Shenzhen Hospital (No. YN2021002)Science Foundation of China University of Petroleum,Beijing (Nos. 2462019QNXZ02, 2462019BJRC007)。
文摘Compared with other transition metal Mxene derived quantum dots(MQD_(S)),Ta-based Mxene quantum dots have good functionality,but Ta-based Mxene quantum dots and their applications have not been studied so far.In this paper,we report for the first time the synthesis of high fluorescence quantum yield(QY) N-doped Ta_(4)C_(3) quantum dots(N-MQDs) using Ta_(4)C_(3) quantum dots in acid reflux damaged Ta_(4)C_(3) nanosheets as precursors and ethylenediamine as nitrogen source.The prepared N-MQDs have excellent blue photoluminescence(PL) properties,particle size is only 2.60 nm,QY is up to 23.4%,and good stability.In addition,it has been reported that N-MQDs can be used as fluorescent probe for detection of Fe;and remote force sensing analysis In liquid ion sensing,N-MQDS shows a unique selective quenching of Fe;with a detection limit as low as 2 μmol/L,and has great potential as a fast and super-sensitive fluorescent probe for the detection of heavy ion.More importantly,in solid mechanics sensing,the introduction of N-MQDs into self-healing hydrogels can be developed into a fluorescent hydrogel that can be used for accurate remote force measurement and applied in the field of mechanical sensing analysis.Therefore,Ta-based N-MQDs show excellent potential in the field of fluorescence sensing,which provides a door for multi-dimensional sensing of new materials in the future.
基金the National Key Research and Development Program of China(No.2018YFA0902200)the National Natural Science Foundation of China(Nos.21722605,21978131 and 21878156)+1 种基金the Six Talent Peaks Project in Jiangsu Province(No.XCL-034)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘A ratiometric probe(HBT-HBZ)bearing 2-hydrazino benzothiazole and 3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methylbenzaldehyde for sensing hypochlorous acid(HClO)with high selectivity and sensitivity is reported in this article.The fluorescence intensity ratios(I470nm/I572nm)of the probe with different concentrations of analyte showed excellent selectivity and a linear response to minor changes in HClO.The detection limit of 24 nmol/L suggests that the sensor is very sensitive to HClO.According to the series of performed experiments,HBT-HBZ has practical applications,such as the detection of HClO residues in tap water,which has been rarely reported.In addition,confocal laser microscopy experiments confirmed that HBT-HBZ can selectively recognize HClO in HeLa cells.A ratiometric probe(HBT-HBZ)for sensing HClO with high selectivity and sensitivity is reported in this article.The probe exhibited high selectivity for HClO among other ROS,RNS and anions.In addition,HBTHBZ has some practical applications such as the analysis of the HClO content in tap water.Furthermore,confocal fluorescence microscopy imaging showed that HBT-HBZ can be applied for detecting HClO in living cells.
基金supported financially by the National Natural Science Foundation of China (Nos. 21421005, 21576038)the Fundamental Research Funds for the Central Universities of China (No. DUT16TD21)Science Program of Dalian City (Nos. 2014J11JH133, 2015J12JH207)
文摘Imaging hypoxia using fluorescence probes for nitroreductase(NTR) have attracted much attention in last decade. At least three different linkers have been commonly used to connect the recognition unit and reporting unit in reported probes for NTR. Meanwhile, the linker is known to be a key factor for achieving best sensing performance. In this work, three near-infrared fluorescence probes CyNP-1, CyNP-2 and CyNP-3 were designed and synthesized from an aminocyanine dye CyNP. The three probes have the same recognition unit and same fluorescence reporting unit, but different linkers. CyNP-1 was found to have the best sensing performance for NTR with 40-fold of fluorescence enhancement. It is well investigated how the difference of the linkers brings out the different sensing performance by HPLC, MS and docking calculations. In the end, CyNP-1 was found to have good selectivity for NTR and used to imaging hypoxia in Hela cells.
基金supported by the National Natural Science Foundation of China (Nos. 21622504, 21302050)the Hunan Provincial Natural Science Foundation of China (Nos. 14JJ2047)+1 种基金the Hunan University Fund for Multidisciplinary Developing (Nos. 2015JCA04)Open Funding Project of the State Key Laboratory of Bioreactor Engineering
文摘A new fluorescent probe(Rhod-Sec) for selenol detection with ultralow background fluorescence have been developed in this paper, which showed a 380-fold off-on fluorescence response, and the nontoxic Rhod-Sec is well suitable for detecting and imaging both exogenous and endogenous selenol in living cells. It also can be applied to visualize the fluctuation of selenol in HepG2 cells through LPS-induced cells oxidation resistance.
基金supported by the National Natural Science Foundation of China (Nos. 21577037 and 21738002)the State Key Laboratory of Bioreactor Engineering, Shanghai Natural Science Fund (No. 20ZR1414700)+2 种基金Shanghai Sailing Program (No. 19YF1412500)Natural Science Basic Research Program of Shaanxi (No. 2019JQ-924)Key Breeding Program by Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province (No. 2019XT-1-03)。
文摘Selective detection of multiple analytes in a compact design with dual-modality and theranostic features presents great challenges. Herein, we wish to report a coumarin-thiazolidine masked D-penicillamine based dual-modality fluorescent probe COU-DPA-1 for selective detection, differentiation, and detoxification of multiple heavy metal ions(Ag^(+), Hg^(2+), Cu^(2+)). The probe shows divergent fluorescence(FL)/circular dichroism(CD) responses via divergent bond-cleavage cascade reactions(metal ion promoted C-S cleavage and hydrolysis at two distinctive cleavage sites): FL “turn-off” and CD “turn-on” for Ag+(no hydrolysis), FL “turn-on” and CD “turn-off” for Hg^(+)(imine hydrolysis), and FL “self-threshold ratiometric” and CD “turn-off” for excess Cu^(2+)(lactone and imine hydrolysis), providing the first example of a fluorescence/CD dual-modality probe for multiple species with complimentary responses. Moreover, the bond-cleavage cascade reactions also lead to the formation of D-penicillamine heavy metal ion complexes for potential detoxification treatments.
基金supported by the National Natural Science Foundation of China(21804050)the National Key R and D Program of China(2018YFD0901003)+2 种基金the Science and Technology Planning Project of Xiamen,China(3502Z20183031)the Fujian Provincial Fund Project(2018J01432)the Xiamen Science and Technology Planning Project,China(3502Z20183031)。
文摘A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.
基金supported by the National Natural Science Foundation of China(Nos.32025021,31971292 and 51873225)National Key R&D Program of China(Nos.2018YFC0910601 and 2019YFA0405603)+2 种基金the Key R&D project of Zhejiang Province(No.2020C03110)the Key Scientific and Technological Special Project of Ningbo City(Nos.2017C110022 and 2020Z094)National Synchrotron Radiation Laboratory in Hefei for High End User Cultivation Fund(No.2020HSC-UE006)。
文摘Despite the rapid development of fluorescence detection modalities for disease diagnosis,novel fluorescent molecules and probes still face with tremendous pressure to transform before employing such fluorescent tools in the clinic.Impressively,the fluorescent probes based on the traditional fluorescent dye are expected to accelerate the transformation process.Herein,methylene blue is requisitioned to design the GSH responsive probe MB-SS-CPT elaborately.The as-synthesized MB-SS-CPT provides a dramatic optical advantage for GSH detection in vitro,cell fluorescence imaging,in vivo imaging,and antitumor therapy.
基金supported by the Science and Technology Commission of Shanghai Municipality (21DZ1100500)the Shanghai Municipal Science and Technology Major Project+1 种基金the Shanghai Frontiers Science Center Program (2021-2025 No.20)Shanghai Hong Kong,Macao,and Taiwan Cooperation Project (No.19490760900).
文摘The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make use of the full resolution of the MINFLUX microscope,it is important to select appropriate fluorescence probes and labeling strategies,especially in living-cell imaging.This paper mainly focuses on recent applications and developments of fluorescence probes and the relevant labeling strategy for MINFLUX microscopy.Moreover,we discuss the deficiencies that need to be addressed in the future and a plan for the possible progression of MINFLUX to help investigators who have been involved in or are just starting in the field of super-resolution imaging microscopy with theoretical support.
基金financially supported by the Scientific Research Fund of Liaoning Provincial Education Department of China (No. LJC201908)the Natural Science Foundation of Liaoning Province (No.20180510016,2019-MS-153)。
文摘Curcumin and its derivatives have good electrical and optical properties due to the highly symmetric structure of delocalized π electrons. Apart from that, curcumin and its derivatives can interact with numerous molecular targets, thereby exerting less side effects on human body. The fluorescence emission wavelength and fluorescence intensity of curcumin can be enhanced by modifying its π-conjugated system and β-diketone structure. Some curcumin-based fluorescent probes have been utilized to detect soluble/insoluble amyloid-β protein, intracranial reactive oxygen species, cysteine, cancer cells, etc. Based on the binding characteristics of curcumin-based fluorescent probes with various target molecules, the factors affecting the fluorescence intensity and emission wavelength of the probes are analyzed, in order to obtain a curcumin probe with higher sensitivity and selectivity. Such an approach will be greatly applicable to in vivo fluorescence imaging.
基金supported from the National Natural Science Foundation of China(Nos.22061019,21761012 and 21861018)the Natural Science Foundation of Jiangxi Province(Nos.20192BAB203001,20202ACBL213001,20192ACBL20013 and 20182BCB22010)+1 种基金the Youth Jinggang Scholars Program in Jiangxi Province(No.QNJG2019053)the Two Thousand Talents Program in Jiangxi Province(No.jxsq2019201068)。
文摘A novel ZnII-based metal-organic framework with the formula of{[Zn_(2)(BBIP)_(2)(NDC)_(2)]·H_(2)O}n(JXUST-5)derived from 3,5-bis(benzimidazol-1-yl)pyridine(BBIP)and 1,4-naphthalenedicarboxylic acid(H_(2)NDC)has been synthesized.The adjacent Zn^(II)ions are linked through two BBIP ligands to form a[Zn_(2)(BBIP)_(2)]secondary building unit(SBU).The neighbouring SBUs are further connected by NDC^(2-)withμ2-η^(1):η^(1)andμ2-η^(1):η^(1):η^(1)bridging modes to form a two-dimensional(2D)framework.Topological analysis shows that JXUST-5 could be simplified as an uninodal fes topology with a point symbol of{4.8^(2)}.Furthermore,the 2D framework net could be extended through C-H···πinteraction to form the three-dimensional supramolecular structure.Luminescent experiments suggest that JXUST-5 could selectively and sensitively recognize Al^(3+)and Ga^(3+)through fluorescence enhancement effect along with a relatively large red shift.The detection limits for Al^(3+)and Ga^(3+)are 0.17 and 0.69 ppm,respectively.Interestingly,the sensing process for both Al^(3+)and Ga^(3+)could be directly observed with naked eyes under 365 nm UV lamp.Notably,JXUST-5 could be recycled at least five times as a fluorescent sensor toward Al^(3+)and Ga^(3+),which is the second example of turn-on MOF based fluorescent sensor toward Ga^(3+).
基金supported by the National Natural Science Foundation of China(Nos.21927811,91753111,22074083,21907061)the Key Research and Development Program of Shandong Province(No.2018YFJH0502)the National Major Scientific and Technological Special Project for"Significant New Drugs Development"(No.2017ZX09301030004).
文摘Nonalcoholic fatty liver disease(NAFLD)can cause serious liver damage.Early diagnosis and effective treatment of NAFLD can greatly improve treatment rates.The initiation and development of NAFLD has been closely linked to endoplasmic reticulum(ER)stress,which might cause ER viscosity variations.Therefore,if the internal relationship between ER viscosity and NAFLD is clarified,an effective approach for early diagnosis may result.Herein,we fabricated a novel near-infrared(NIR)fluorescence imaging probe,Er-V,for monitoring ER viscosity through a molecular rotor strategy.Er-V exhibited a strong NIR fluorescence signal(at 626 nm)when the environmental viscosity hindered the rotation of the malononitrile group.Using Er-V,we successfully observed a significant enhancement in viscosity in the liver of mice with NAFLD.Therefore,this imaging method based on Er-V is expected to provide a new approach for early detection and diagnosis of NAFLD.
基金the financial support from the National Natural Science Foundation of China(Nos.21977082,22037002and 21472148)the Natural Science Basic Research Program of Shaanxi(No.2020JC-38)。
文摘Humanβ-galactosidase(β-gal)is recognized as a crucial biomarker for evaluating senescence at the cellular and tissue levels in humans.However,tools to precisely track the endogenousβ-gal are still limited.Herein,we present two novel self-calibratingβ-gal probes 7a and 7b which were constructed on a unique green/red dual-emissive fluorescence platform.The two probes inherently exhibited a stable green fluorescence signal impervious toβ-gal activity,serving as a reliable internal reference.They also displayed a progressively diminishing red fluorescence signal with the increasing ofβ-gal expression levels.The dual behavior endows them with self-calibration capacity and then renders excellently selective and sensitive for precisely monitoringβ-gal activity.Notably,compared with E.coliβ-gal,the two probes are more effectively response to A.oryzaeβ-gal homologous to humanβ-gal,indicating their unique species-selectivity.Furthermore,7a was validated for its effectiveness in determining senescenceassociatedβ-galactosidase(SA-β-gal)expression in senescent NRK-52E and HepG2 cells,underscoring its practical applicability in senescence research.
基金supported financially by Distinguished Professor Program of Liaoning Province(No.XLYC2002008)Dalian Science and Technology Leading Talents Project(Nos.2019RD15,2020RJ09 and 2020RQ076)+2 种基金Liaoning Provincial Natural Science Foundation(No.20180550761)Liaoning Revitalization Talents Program(No.XLYC1907017)the Open Research Fund of the School of Chemistry and Chemical Engineering,Henan Normal University(No.2021YB07).
文摘Sulfur dioxide and its derivative sulfite widely existed in air,water as the environment pollutant.Sulfite is also commonly used as preservative and additive in fresh fruits,vegetables,wines and pharmaceutical materials.Due to sulfite is closely related with human diseases,it is very urgent for the sensitive and rapid quantification of sulfite in various samples.In our study,a turn-on near infrared(NIR)fluorescent probe(MDQ)was developed for sulfite detection based on a Michael addition reaction,with high sensitivity(LOD 4.16 nmol/L),selectivity and fast response time(400 s).Using MDQ,a quantify method for sulfite in traditional Chinese medicines(TCMs)was developed with the advantages of high precision,accuracy and convenient operation.Furthermore,according to the photophysical property of MDQ,a portable fluorescence detector is designed to quantify sulfite for TCMs and surface water in Dalian city of China.Therefore,the developed fluorescent probe MDQ and portable fluorescent detector as a rapid inspection instrument were successfully used to real-time monitor the sulfite in various complex samples.
基金supported by the National Natural Science Foundation of China (Nos.21878087,21908060)the Innovation Program of Shanghai Municipal Education Commission,Shuguang Program (No.18SG27)+1 种基金the NIH guidelines for the care and use of laboratory animals (NIH Publication No.85-23,Rev.1985)approved by the Institutional Animal Care and Use Committee of National Tissue Engineering Center (Shanghai,China)。
文摘Cysteine is well-known to be an important biothiol and related to many diseases. However, the in vivo detection of endogenous cysteine still suffers from lacking small-molecule fluorophores with both excitation and emission in the near-infrared(650-900 nm)/shortwave-infrared region. Herein, we report a molecular engineering strategy for shortwave infrared(SWIR, 900-1700 nm) sensing of cysteine, which integrated an excited-state intermolecular proton transfer(ESIPT) building block into the intramolecular charge transfer(ICT) scaffold. The obtained novel fluorophore SH-OH displays a maximum absorption at the NIR region, and emission at the SWIR region. We introduce the cysteine-recognition moiety to SH-OH structure, and demonstrate sensing of endogenous cysteine in living animals, using the SWIR emission as a reliable off-on fluorescence signal. This fluorophore design strategy of cooperation of ICT and ESIPT processes expands the in vivo sensing toolbox for accurate analysis in clinical applications.
文摘Direct measurement of dipole potential in biological membranes has been impossible and 3-hydroxyflavones(3HFs) have allowed detection of changes in dipole potential in biological systems.In the present study,sixteen derivatives of 3HF with aliphatic hydrocarbon chains of different lengths at 4′-position and 6-position were synthesized.The basic fluorescence properties of 3HFs are maintained in all the probes in terms of strong blue shift in maximum fluorescence emission wavelength and>100 fold increase in quantum yield in organic solvents and in dioleoylphosphatidylcholine(DOPC) small unilamellar vesicles(SUV) in comparison to in aqueous Hepes buffer(15 mmol/L,pH 7.4).More importantly,the ability of the new compounds to report dipole potential changes in biological systems are also maintained,since all the new probes showed spectrum properties that are similar to yet different from that of F4N1,which potentially may allow more sensitive measurement of the dipole potential change in membranes.