Laser powder bed fusion(LPBF)has revolutionized modern manufacturing by enabling high design freedom,rapid prototyping,and tailored mechanical properties.However,optimizing process parameters remains challenging due t...Laser powder bed fusion(LPBF)has revolutionized modern manufacturing by enabling high design freedom,rapid prototyping,and tailored mechanical properties.However,optimizing process parameters remains challenging due to the trial-and-error approaches required to capture subtle parameter-microstructure relationships.This study employed a multi-physics computational framework to investigate the melting and solidification dynamics of magnesium alloy.By integrating the discrete element method for powder bed generation,finite volume method with volume of fluid for melt pool behavior,and phase-field method for microstructural evolution,the critical physical phenomena,including powder melting,molten pool flow,and directional solidification were simulated.The effects of laser power and scanning speed on temperature distribution,melt pool geometry,and dendritic morphology were systematically analyzed.It was revealed that increasing laser power expanded melt pool dimensions and promoted columnar dendritic growth,while high scanning speeds reduced melt pool stability and refined dendritic structures.Furthermore,Marangoni convection and thermal gradients governed solute redistribution,with excessive energy input risking defects such as porosity and elemental evaporation.These insights establish quantitative correlations between process parameters,thermal history,and microstructural characteristics,providing a validated roadmap for LPBF-processed magnesium alloy with tailored performance.展开更多
The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechani...The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechanism of the nucleation, the growth kinetics of dendrites and the columnar-to-equiaxed transition (CET) are considered.Capitalizing on these simulating schemes, the comprehensive influence of key process variables on the scale and uniformity of grains has been involved quantitatively. The validity of the modeling is confirmed by selection of the optimum process variables.展开更多
To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and p...To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure.展开更多
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2025YFE0110100)Xjenza Malta through SINOMALTA-2024-11(Science and Technology Cooperation)+8 种基金National Natural Science Foundation of China(52165043)Jiang Xi Provincial Natural Science Foundation of China(20224ACB214008,20232BAB214007)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)Excellent Research and Innovation Team in Anhui Province(2024AH010031)The University Synergy Innovation Program of Anhui Province(GXXT-2023-025,GXXT-2023-026)Anhui Province Science and Technology Innovation Tackle Plan Project of Anhui Province(202423i08050011)Anhui Provincial Natural Science Foundation of China(2308085ME171)The Project for Cultivating Academic(or Disciplinary)Leaders of Anhui University(DTR2024044)Talent research start-up fund project(2024tlxyrc056).
文摘Laser powder bed fusion(LPBF)has revolutionized modern manufacturing by enabling high design freedom,rapid prototyping,and tailored mechanical properties.However,optimizing process parameters remains challenging due to the trial-and-error approaches required to capture subtle parameter-microstructure relationships.This study employed a multi-physics computational framework to investigate the melting and solidification dynamics of magnesium alloy.By integrating the discrete element method for powder bed generation,finite volume method with volume of fluid for melt pool behavior,and phase-field method for microstructural evolution,the critical physical phenomena,including powder melting,molten pool flow,and directional solidification were simulated.The effects of laser power and scanning speed on temperature distribution,melt pool geometry,and dendritic morphology were systematically analyzed.It was revealed that increasing laser power expanded melt pool dimensions and promoted columnar dendritic growth,while high scanning speeds reduced melt pool stability and refined dendritic structures.Furthermore,Marangoni convection and thermal gradients governed solute redistribution,with excessive energy input risking defects such as porosity and elemental evaporation.These insights establish quantitative correlations between process parameters,thermal history,and microstructural characteristics,providing a validated roadmap for LPBF-processed magnesium alloy with tailored performance.
文摘The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechanism of the nucleation, the growth kinetics of dendrites and the columnar-to-equiaxed transition (CET) are considered.Capitalizing on these simulating schemes, the comprehensive influence of key process variables on the scale and uniformity of grains has been involved quantitatively. The validity of the modeling is confirmed by selection of the optimum process variables.
基金financially supported by the National Natural Science Foundation of China(Grant No.51774307,52074331,42002182)partially supported by Major Special Projects of CNPC,China(ZD2019-184)。
文摘To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure.