A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, ...A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, it uses straight lines as long as possible to construct a path graph, so the final path obtained from the graph is relatively shorter and straighter. Experimental results show the efficiency of the algorithm in finding shorter paths in sparse environment.展开更多
This paper presents a 3D path planning algorithm for an unmanned aerial vehicle (UAV) in complex environments. In this algorithm, the environments are divided into voxels by octree algorithm. In order to satisfy the...This paper presents a 3D path planning algorithm for an unmanned aerial vehicle (UAV) in complex environments. In this algorithm, the environments are divided into voxels by octree algorithm. In order to satisfy the safety requirement of the UAV, free space is represented by free voxels, which have enough space margin for the UAV to pass through. A bounding box array is created in the whole 3D space to evaluate the free voxel connectivity. The probabilistic roadmap method (PRM) is improved by random sampling in the bounding box array to ensure a more efficient distribution of roadmap nodes in 3D space. According to the connectivity evaluation, the roadmap is used to plan a feasible path by using A* algorithm. Experimental results indicate that the proposed algorithm is valid in complex 3D environments.展开更多
We present a method to improve the execution time used to build the roadmap in probabilistic roadmap planners. Our method intelligently deactivates some of the configurations during the learning phase and allows the p...We present a method to improve the execution time used to build the roadmap in probabilistic roadmap planners. Our method intelligently deactivates some of the configurations during the learning phase and allows the planner to concentrate on those configurations that axe most likely going to be useful when building the roadmap. The method can be used with many of the existing sampling algorithms. We ran tests with four simulated robot problems typical in robotics literature. The sampling methods applied were purely random, using Halton numbers, Gaussian distribution, and bridge test technique. In our tests, the deactivation method clearly improved the execution times. Compared with pure random selections, the deactivation method also significantly decreased the size of the roadmap, which is a useful property to simplify roadmap planning tasks.展开更多
This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration spa...This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration space surrounding existing nodes in the roadmap and uses a combination of random and deterministic search methods that emulate the behaviour of octopus limbs. The strategy consists of randomly mutating the states of the links near the end-effector, and mutating the states of the links near the base of the robot toward the states of the goal configuration. When combined with the small tree probabilistic roadmap planner, the method was successfully used to solve the narrow passage motion planning problem of a 17 degree-of-freedom manipulator.展开更多
Current studies on cable harness layouts have mainly focused on cable harness route planning.However,the topological structure of a cable harness is also extremely complex,and the branch structure of the cable harness...Current studies on cable harness layouts have mainly focused on cable harness route planning.However,the topological structure of a cable harness is also extremely complex,and the branch structure of the cable harness can affect the route of the cable harness layout.The topological structure design of the cable harness is a key to such a layout.In this paper,a novel multi-branch cable harness layout design method is presented,which unites the probabilistic roadmap method(PRM)and the genetic algorithm.First,the engineering constraints of the cable harness layout are presented.An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described.In addition,a new genetic algorithm is proposed,and the algorithm structure of which is redesigned.In addition,the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness.A prototype system of a cable harness layout design was developed based on the method described in this study,and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method.In summary,the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness.展开更多
In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environme...In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environments. This proposed approach can be divided into three stages. First stage involves constructing a random roadmap depending on the environment complexity using probabilistic roadmap algorithm. Roadmap can be constructed by distributing N nodes randomly in complex and very complex static environments then pairing these nodes together according to some criteria or conditions. The constructed roadmap contains a huge number of possible random paths that may lead to connecting?the start and the goal points together. Second stage includes finding path within the pre-constructed roadmap. Modified ant colony optimization has been proposed to find or to search the best path between start and goal points, where in addition to the proposed combination, ACO has been modified to increase its ability to find shorter path. Finally, the third stage uses B-spline curve?to smooth and reduce the total length of the found path in the previous stage. The results of the proposed approach ensure?the?feasible?path between start and goal points in complex and very complex environments. Also, the path is guaranteed to be short, smooth, continuous?and safe.展开更多
文摘A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, it uses straight lines as long as possible to construct a path graph, so the final path obtained from the graph is relatively shorter and straighter. Experimental results show the efficiency of the algorithm in finding shorter paths in sparse environment.
基金supported by National Natural Science Foundation of China(No.61305128)Fundamental Research Funds for the Central Universities,and U.S.Army Research Ofce(No.W911NF-091-0565)
文摘This paper presents a 3D path planning algorithm for an unmanned aerial vehicle (UAV) in complex environments. In this algorithm, the environments are divided into voxels by octree algorithm. In order to satisfy the safety requirement of the UAV, free space is represented by free voxels, which have enough space margin for the UAV to pass through. A bounding box array is created in the whole 3D space to evaluate the free voxel connectivity. The probabilistic roadmap method (PRM) is improved by random sampling in the bounding box array to ensure a more efficient distribution of roadmap nodes in 3D space. According to the connectivity evaluation, the roadmap is used to plan a feasible path by using A* algorithm. Experimental results indicate that the proposed algorithm is valid in complex 3D environments.
文摘We present a method to improve the execution time used to build the roadmap in probabilistic roadmap planners. Our method intelligently deactivates some of the configurations during the learning phase and allows the planner to concentrate on those configurations that axe most likely going to be useful when building the roadmap. The method can be used with many of the existing sampling algorithms. We ran tests with four simulated robot problems typical in robotics literature. The sampling methods applied were purely random, using Halton numbers, Gaussian distribution, and bridge test technique. In our tests, the deactivation method clearly improved the execution times. Compared with pure random selections, the deactivation method also significantly decreased the size of the roadmap, which is a useful property to simplify roadmap planning tasks.
文摘This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration space surrounding existing nodes in the roadmap and uses a combination of random and deterministic search methods that emulate the behaviour of octopus limbs. The strategy consists of randomly mutating the states of the links near the end-effector, and mutating the states of the links near the base of the robot toward the states of the goal configuration. When combined with the small tree probabilistic roadmap planner, the method was successfully used to solve the narrow passage motion planning problem of a 17 degree-of-freedom manipulator.
基金Supported by National Natural Science Foundation of China(Grant No.51675050).
文摘Current studies on cable harness layouts have mainly focused on cable harness route planning.However,the topological structure of a cable harness is also extremely complex,and the branch structure of the cable harness can affect the route of the cable harness layout.The topological structure design of the cable harness is a key to such a layout.In this paper,a novel multi-branch cable harness layout design method is presented,which unites the probabilistic roadmap method(PRM)and the genetic algorithm.First,the engineering constraints of the cable harness layout are presented.An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described.In addition,a new genetic algorithm is proposed,and the algorithm structure of which is redesigned.In addition,the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness.A prototype system of a cable harness layout design was developed based on the method described in this study,and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method.In summary,the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness.
文摘In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environments. This proposed approach can be divided into three stages. First stage involves constructing a random roadmap depending on the environment complexity using probabilistic roadmap algorithm. Roadmap can be constructed by distributing N nodes randomly in complex and very complex static environments then pairing these nodes together according to some criteria or conditions. The constructed roadmap contains a huge number of possible random paths that may lead to connecting?the start and the goal points together. Second stage includes finding path within the pre-constructed roadmap. Modified ant colony optimization has been proposed to find or to search the best path between start and goal points, where in addition to the proposed combination, ACO has been modified to increase its ability to find shorter path. Finally, the third stage uses B-spline curve?to smooth and reduce the total length of the found path in the previous stage. The results of the proposed approach ensure?the?feasible?path between start and goal points in complex and very complex environments. Also, the path is guaranteed to be short, smooth, continuous?and safe.