AIM: To investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS: Mouse DC were cultured alone or together with mouse...AIM: To investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS: Mouse DC were cultured alone or together with mouse epithelial cell monolayers in normal or in- verted systems and were stimulated with heat-killed probiotic bacteria, Bifidobacterium lactis ADO 11 (BL), Bifidobacterium bilfidum BGN4 (BB), Lactobacillus casei IBS041 (LC), and Lactobacillus acidophilus AD031 (LA), for 12 h. Cytokine levels in the culture supernatants were determined by enzyme-linked immunosorbent as say and phenotypic analysis of DC was investigated by flow cytometry.RESULTS: BB and LC in singlecultured DC increased the expression of I-Ad, CD86 and CD40 (I-Ad, 18.51 vs 30.88, 46.11, CD86, 62.74 vs 92.7, 104.12; CD40, 0.67 vs 6.39, 3.37, P 〈 0.05). All of the experimental probiot-ics increased the production of inflammatory cytokines, interleukin (IL)-6 and tumor necrosis factor (TNF)-α. However, in the normal coculture systems, LC and LA decreased the expression of I-A^α (39.46 vs 30.32, 33.26, P 〈 0.05), and none of the experimental probiotics increased the levels of IL-6 or TNF-α. In the inverted coculture systems, LC decreased the expression of CD40 (1.36 vs -2.27, P 〈 0.05), and all of the experimental probiotics decreased the levels of IL-6. In addition, BL increased the production of IL-10 (103.8 vs 166.0, P 〈 0.05) and LC and LA increased transforming growth factor-13 secretion (235.9 vs 618.9, 607.6, P 〈 0.05).CONCLUSION: These results suggest that specific pro- biotic strains exert differential immune modulation mediated by the interaction of dendritic cells and epithelial cells in the homeostasis of gastrointestinal tract.展开更多
<span><span>Greek yogurt has become much more popular within the last 15 to 20 years. The by-product of Greek yogurt manufacture is acid whey. Although acid whey has been considered a waste product, resear...<span><span>Greek yogurt has become much more popular within the last 15 to 20 years. The by-product of Greek yogurt manufacture is acid whey. Although acid whey has been considered a waste product, researchers are exploring various uses of this whey. Since the health benefits of consuming probiotics are widely known, one may propose adding probiotics to acid whey to form a probiotic beverage. Typically, probiotic bacteria do not thrive in acidic conditions. It would be beneficial to determine if the probiotic </span><i><span>Lactobacillus acidophilus </span></i><span>can survive in these acidic conditions. The objectives were to determine the growth of </span><i><span>L. acidophilus </span></i><span>in acid whey resulting from manufacturing Greek yogurt and to study any changes in apparent viscosity, pH, and titratable acidity over 4 weeks of refrigerated storage. Plain yogurt was manufactured, and whey was separated from plain yogurt to yield Greek yogurt and acid whey. Acid whey was batch pasteurized, cooled, sweetened, flavored with pineapple flavoring, inoculated with </span><i><span>L. acidophilus</span></i><span>, and stored at 4°C for 4 weeks. The log </span><i><span>L. acidophilus </span></i><span>counts progressively decreased from 7.84 immediately after manufacture to 2.06 at week 4. There were no significant changes in pH and titratable acidity of the pineapple-flavored probiotic acid whey over 4 weeks of storage, indicating product stability over shelf life. Viscosity changed over the storage time with minimum values at week 2 and maximum values at week 4. Although the counts declined over 4 weeks of storage, some </span><i><span>L. acidophilus </span></i><span>survived in the pineapple-flavored acid whey.</span></span>展开更多
因应高龄社会的趋势,肌少症(Sarcopenia)是长者应注意的潜在健康危机。肌肉的减少除了在运动表现及行动能力下降外,骨骼肌持续随着时间的流失造就了基础代谢全面性的降低,许多文献证实肌少症影响着个体在临床上愈后的表现,因此提早进行...因应高龄社会的趋势,肌少症(Sarcopenia)是长者应注意的潜在健康危机。肌肉的减少除了在运动表现及行动能力下降外,骨骼肌持续随着时间的流失造就了基础代谢全面性的降低,许多文献证实肌少症影响着个体在临床上愈后的表现,因此提早进行肌少症的预防与诊断,是可以降低残疾,住院以及死亡的发生率。由于至今没有一种万灵丹能有效的治疗老化,因此要如何减少肌力退化及肌肉量流失为目前治疗肌少症的核心策略。近期研究指出益生菌可以调节肠道菌群,也有部分的研究证实益生菌所改善的肠道菌丛能有效的增加蛋白质的吸收,但尚未有研究提出哪些益生菌能具有增加肌肉量与质之功效。故本研究先利用小鼠纤维母细胞(C2C12)建立地塞米松(dexamethasone)诱导肌肉萎缩之细胞平台,发现益生菌Lactobacillus plantarum GKM3具有预防肌肉萎缩之潜力,接着,我们在动物模式上,藉由禁锢(Cast immobilization)七日方式来诱导小鼠肌肉萎缩,在禁锢的第一天就将GKM3冻干粉(500 mg/kg)喂食小鼠并连续喂食两周。展开更多
基金Supported by The Small and Medium Business Administration,No. S1072365the Next-Generation BioGreen 21 Program,No. PJ008005,Rural Development Administration,South Korea
文摘AIM: To investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS: Mouse DC were cultured alone or together with mouse epithelial cell monolayers in normal or in- verted systems and were stimulated with heat-killed probiotic bacteria, Bifidobacterium lactis ADO 11 (BL), Bifidobacterium bilfidum BGN4 (BB), Lactobacillus casei IBS041 (LC), and Lactobacillus acidophilus AD031 (LA), for 12 h. Cytokine levels in the culture supernatants were determined by enzyme-linked immunosorbent as say and phenotypic analysis of DC was investigated by flow cytometry.RESULTS: BB and LC in singlecultured DC increased the expression of I-Ad, CD86 and CD40 (I-Ad, 18.51 vs 30.88, 46.11, CD86, 62.74 vs 92.7, 104.12; CD40, 0.67 vs 6.39, 3.37, P 〈 0.05). All of the experimental probiot-ics increased the production of inflammatory cytokines, interleukin (IL)-6 and tumor necrosis factor (TNF)-α. However, in the normal coculture systems, LC and LA decreased the expression of I-A^α (39.46 vs 30.32, 33.26, P 〈 0.05), and none of the experimental probiotics increased the levels of IL-6 or TNF-α. In the inverted coculture systems, LC decreased the expression of CD40 (1.36 vs -2.27, P 〈 0.05), and all of the experimental probiotics decreased the levels of IL-6. In addition, BL increased the production of IL-10 (103.8 vs 166.0, P 〈 0.05) and LC and LA increased transforming growth factor-13 secretion (235.9 vs 618.9, 607.6, P 〈 0.05).CONCLUSION: These results suggest that specific pro- biotic strains exert differential immune modulation mediated by the interaction of dendritic cells and epithelial cells in the homeostasis of gastrointestinal tract.
文摘<span><span>Greek yogurt has become much more popular within the last 15 to 20 years. The by-product of Greek yogurt manufacture is acid whey. Although acid whey has been considered a waste product, researchers are exploring various uses of this whey. Since the health benefits of consuming probiotics are widely known, one may propose adding probiotics to acid whey to form a probiotic beverage. Typically, probiotic bacteria do not thrive in acidic conditions. It would be beneficial to determine if the probiotic </span><i><span>Lactobacillus acidophilus </span></i><span>can survive in these acidic conditions. The objectives were to determine the growth of </span><i><span>L. acidophilus </span></i><span>in acid whey resulting from manufacturing Greek yogurt and to study any changes in apparent viscosity, pH, and titratable acidity over 4 weeks of refrigerated storage. Plain yogurt was manufactured, and whey was separated from plain yogurt to yield Greek yogurt and acid whey. Acid whey was batch pasteurized, cooled, sweetened, flavored with pineapple flavoring, inoculated with </span><i><span>L. acidophilus</span></i><span>, and stored at 4°C for 4 weeks. The log </span><i><span>L. acidophilus </span></i><span>counts progressively decreased from 7.84 immediately after manufacture to 2.06 at week 4. There were no significant changes in pH and titratable acidity of the pineapple-flavored probiotic acid whey over 4 weeks of storage, indicating product stability over shelf life. Viscosity changed over the storage time with minimum values at week 2 and maximum values at week 4. Although the counts declined over 4 weeks of storage, some </span><i><span>L. acidophilus </span></i><span>survived in the pineapple-flavored acid whey.</span></span>
文摘因应高龄社会的趋势,肌少症(Sarcopenia)是长者应注意的潜在健康危机。肌肉的减少除了在运动表现及行动能力下降外,骨骼肌持续随着时间的流失造就了基础代谢全面性的降低,许多文献证实肌少症影响着个体在临床上愈后的表现,因此提早进行肌少症的预防与诊断,是可以降低残疾,住院以及死亡的发生率。由于至今没有一种万灵丹能有效的治疗老化,因此要如何减少肌力退化及肌肉量流失为目前治疗肌少症的核心策略。近期研究指出益生菌可以调节肠道菌群,也有部分的研究证实益生菌所改善的肠道菌丛能有效的增加蛋白质的吸收,但尚未有研究提出哪些益生菌能具有增加肌肉量与质之功效。故本研究先利用小鼠纤维母细胞(C2C12)建立地塞米松(dexamethasone)诱导肌肉萎缩之细胞平台,发现益生菌Lactobacillus plantarum GKM3具有预防肌肉萎缩之潜力,接着,我们在动物模式上,藉由禁锢(Cast immobilization)七日方式来诱导小鼠肌肉萎缩,在禁锢的第一天就将GKM3冻干粉(500 mg/kg)喂食小鼠并连续喂食两周。