Distributed data fusion is essential for numerous applications,yet faces significant privacy security challenges.Federated learning(FL),as a distributed machine learning paradigm,offers enhanced data privacy protectio...Distributed data fusion is essential for numerous applications,yet faces significant privacy security challenges.Federated learning(FL),as a distributed machine learning paradigm,offers enhanced data privacy protection and has attracted widespread attention.Consequently,research increasingly focuses on developing more secure FL techniques.However,in real-world scenarios involving malicious entities,the accuracy of FL results is often compromised,particularly due to the threat of collusion between two servers.To address this challenge,this paper proposes an efficient and verifiable data aggregation protocol with enhanced privacy protection.After analyzing attack methods against prior schemes,we implement key improvements.Specifically,by incorporating cascaded random numbers and perturbation terms into gradients,we strengthen the privacy protection afforded by polynomial masking,effectively preventing information leakage.Furthermore,our protocol features an enhanced verification mechanism capable of detecting collusive behaviors between two servers.Accuracy testing on the MNIST and CIFAR-10 datasets demonstrates that our protocol maintains accuracy comparable to the Federated Averaging Algorithm.In scheme efficiency comparisons,while incurring only a marginal increase in verification overhead relative to the baseline scheme,our protocol achieves an average improvement of 93.13% in privacy protection and verification overhead compared to the state-of-the-art scheme.This result highlights its optimal balance between overall overhead and functionality.A current limitation is that the verificationmechanismcannot precisely pinpoint the source of anomalies within aggregated results when server-side malicious behavior occurs.Addressing this limitation will be a focus of future research.展开更多
To realize dynamic statistical publishing and protection of location-based data privacy,this paper proposes a differential privacy publishing algorithm based on adaptive sampling and grid clustering and adjustment.The...To realize dynamic statistical publishing and protection of location-based data privacy,this paper proposes a differential privacy publishing algorithm based on adaptive sampling and grid clustering and adjustment.The PID control strategy is combined with the difference in data variation to realize the dynamic adjustment of the data publishing intervals.The spatial-temporal correlations of the adjacent snapshots are utilized to design the grid clustering and adjustment algorithm,which facilitates saving the execution time of the publishing process.The budget distribution and budget absorption strategies are improved to form the sliding window-based differential privacy statistical publishing algorithm,which realizes continuous statistical publishing and privacy protection and improves the accuracy of published data.Experiments and analysis on large datasets of actual locations show that the privacy protection algorithm proposed in this paper is superior to other existing algorithms in terms of the accuracy of adaptive sampling time,the availability of published data,and the execution efficiency of data publishing methods.展开更多
With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the...With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the existing data sharing schemes have been difficult to meet the growing demand for data sharing,this paper aims at exploring a secure,efficient and privacy-protecting data sharing scheme under web3.0 applications.Specifically,this paper adopts interplanetary file system(IPFS)technology to realize the storage of large data files to solve the problem of blockchain storage capacity limitation,and utilizes ciphertext policy attribute-based encryption(CP-ABE)and proxy re-encryption(PRE)technology to realize secure multi-party sharing and finegrained access control of data.This paper provides the detailed algorithm design and implementation of data sharing phases and processes,and analyzes the algorithms from the perspectives of security,privacy protection,and performance.展开更多
With the widespread adoption of encrypted Domain Name System(DNS)technologies such as DNS over Hyper Text Transfer Protocol Secure(HTTPS),traditional port and protocol-based traffic analysis methods have become ineffe...With the widespread adoption of encrypted Domain Name System(DNS)technologies such as DNS over Hyper Text Transfer Protocol Secure(HTTPS),traditional port and protocol-based traffic analysis methods have become ineffective.Although encrypted DNS enhances user privacy protection,it also provides concealed communication channels for malicious software,compelling detection technologies to shift towards statistical featurebased and machine learning approaches.However,these methods still face challenges in real-time performance and privacy protection.This paper proposes a real-time identification technology for encrypted DNS traffic with privacy protection.Firstly,a hierarchical architecture of cloud-edge-end collaboration is designed,incorporating task offloading strategies to balance privacy protection and identification efficiency.Secondly,a privacy-preserving federated learning mechanismbased on Federated Robust Aggregation(FedRA)is proposed,utilizingMedoid aggregation and differential privacy techniques to ensure data privacy and enhance identification accuracy.Finally,an edge offloading strategy based on a dynamic priority scheduling algorithm(DPSA)is designed to alleviate terminal burden and reduce latency.Simulation results demonstrate that the proposed technology significantly improves the accuracy and realtime performance of encrypted DNS traffic identification while protecting privacy,making it suitable for various network environments.展开更多
The widespread application of artificial intelligence(AI)technology in exams has significantly improved the efficiency and fairness of exams;it has also brought challenges of ethics and privacy protection.The article ...The widespread application of artificial intelligence(AI)technology in exams has significantly improved the efficiency and fairness of exams;it has also brought challenges of ethics and privacy protection.The article analyzes the fairness,transparency,and privacy protection issues caused by AI in exams and proposes strategic solutions.This article aims to provide guidance for the rational application of AI technology in exams,ensuring a balance between technological progress and ethical protection by strengthening laws and regulations,enhancing technological transparency,strengthening candidates’privacy rights,and improving the management measures of educational examination institutions.展开更多
With the rapid development of artificial intelligence and the Internet of Things,along with the growing demand for privacy-preserving transmission,the need for efficient and secure communication systems has become inc...With the rapid development of artificial intelligence and the Internet of Things,along with the growing demand for privacy-preserving transmission,the need for efficient and secure communication systems has become increasingly urgent.Traditional communication methods transmit data at the bit level without considering its semantic significance,leading to redundant transmission overhead and reduced efficiency.Semantic communication addresses this issue by extracting and transmitting only the mostmeaningful semantic information,thereby improving bandwidth efficiency.However,despite reducing the volume of data,it remains vulnerable to privacy risks,as semantic features may still expose sensitive information.To address this,we propose an entropy-bottleneck-based privacy protection mechanism for semantic communication.Our approach uses semantic segmentation to partition images into regions of interest(ROI)and regions of non-interest(RONI)based on the receiver’s needs,enabling differentiated semantic transmission.By focusing transmission on ROIs,bandwidth usage is optimized,and non-essential data is minimized.The entropy bottleneck model probabilistically encodes the semantic information into a compact bit stream,reducing correlation between the transmitted content and the original data,thus enhancing privacy protection.The proposed framework is systematically evaluated in terms of compression efficiency,semantic fidelity,and privacy preservation.Through comparative experiments with traditional and state-of-the-art methods,we demonstrate that the approach significantly reduces data transmission,maintains the quality of semantically important regions,and ensures robust privacy protection.展开更多
The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more ...The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.展开更多
With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for clou...With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis.展开更多
User location trajectory refers to the sequence of geographic location information that records the user’s movement or stay within a period of time and is usually used in mobile crowd sensing networks,in which the us...User location trajectory refers to the sequence of geographic location information that records the user’s movement or stay within a period of time and is usually used in mobile crowd sensing networks,in which the user participates in the sensing task,the process of sensing data collection faces the problem of privacy leakage.To address the privacy leakage issue of trajectory data during uploading,publishing,and sharing when users use location services on mobile smart group sensing terminal devices,this paper proposes a privacy protection method based on generative adversarial networks and attention mechanisms(BiLS-A-GAN).The method designs a generator attention model,GAttention,and a discriminator attention model,DAttention.In the generator,GAttention,combined with a bidirectional long short-term memory network,more effectively senses contextual information and captures dependencies within sequences.The discriminator uses DAttention and the long short-term memory network to distinguish the authenticity of data.Through continuous interaction between these two models,trajectory data with the statistical characteristics of the original data is generated.This non-original trajectory data can effectively reduce the probability of an attacker’s identification,thereby enhancing the privacy protection of user information.Reliability assessment of the Trajectory-User Linking(TUL)task performed on the real-world semantic trajectory dataset Foursquare NYC,compared with traditional privacy-preserving algorithms that focus only on the privacy enhancement of the data,this approach,while achieving a high level of privacy protection,retains more temporal,spatial,and thematic features from the original trajectory data,to not only guarantee the user’s personal privacy,but also retain the reliability of the information itself in the direction of geographic analysis and other directions,and to achieve the win-win purpose of both data utilization and privacy preservation.展开更多
The leakage of medical audio data in telemedicine seriously violates the privacy of patients.In order to avoid the leakage of patient information in telemedicine,a two-stage reversible robust audio watermarking algori...The leakage of medical audio data in telemedicine seriously violates the privacy of patients.In order to avoid the leakage of patient information in telemedicine,a two-stage reversible robust audio watermarking algorithm is proposed to protect medical audio data.The scheme decomposes the medical audio into two independent embedding domains,embeds the robust watermark and the reversible watermark into the two domains respectively.In order to ensure the audio quality,the Hurst exponent is used to find a suitable position for watermark embedding.Due to the independence of the two embedding domains,the embedding of the second-stage reversible watermark will not affect the first-stage watermark,so the robustness of the first-stage watermark can be well maintained.In the second stage,the correlation between the sampling points in the medical audio is used to modify the hidden bits of the histogram to reduce the modification of the medical audio and reduce the distortion caused by reversible embedding.Simulation experiments show that this scheme has strong robustness against signal processing operations such as MP3 compression of 48 db,additive white Gaussian noise(AWGN)of 20 db,low-pass filtering,resampling,re-quantization and other attacks,and has good imperceptibility.展开更多
With the rapid development of the Internet of Things(IoT),Location-Based Services(LBS)are becoming more and more popular.However,for the users being served,how to protect their location privacy has become a growing co...With the rapid development of the Internet of Things(IoT),Location-Based Services(LBS)are becoming more and more popular.However,for the users being served,how to protect their location privacy has become a growing concern.This has led to great difficulty in establishing trust between the users and the service providers,hindering the development of LBS for more comprehensive functions.In this paper,we first establish a strong identity verification mechanism to ensure the authentication security of the system and then design a new location privacy protection mechanism based on the privacy proximity test problem.This mechanism not only guarantees the confidentiality of the user s information during the subsequent information interaction and dynamic data transmission,but also meets the service provider's requirements for related data.展开更多
In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protectio...In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protection of the IoV has become the focus of the society.This paper analyzes the advantages and disadvantages of the existing location privacy protection system structure and algorithms,proposes a privacy protection system structure based on untrusted data collection server,and designs a vehicle location acquisition algorithm based on a local differential privacy and game model.The algorithm first meshes the road network space.Then,the dynamic game model is introduced into the game user location privacy protection model and the attacker location semantic inference model,thereby minimizing the possibility of exposing the regional semantic privacy of the k-location set while maximizing the availability of the service.On this basis,a statistical method is designed,which satisfies the local differential privacy of k-location sets and obtains unbiased estimation of traffic density in different regions.Finally,this paper verifies the algorithm based on the data set of mobile vehicles in Shanghai.The experimental results show that the algorithm can guarantee the user’s location privacy and location semantic privacy while satisfying the service quality requirements,and provide better privacy protection and service for the users of the IoV.展开更多
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin...Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.展开更多
With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issu...With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issue. In this paper, we present an access control system with privilege separation based on privacy protection(PS-ACS). In the PS-ACS scheme, we divide users into private domain(PRD) and public domain(PUD) logically. In PRD, to achieve read access permission and write access permission, we adopt the Key-Aggregate Encryption(KAE) and the Improved Attribute-based Signature(IABS) respectively. In PUD, we construct a new multi-authority ciphertext policy attribute-based encryption(CP-ABE) scheme with efficient decryption to avoid the issues of single point of failure and complicated key distribution, and design an efficient attribute revocation method for it. The analysis and simulation result show that our scheme is feasible and superior to protect users' privacy in cloud-based services.展开更多
Mobile Edge Computing(MEC)can support various high-reliability and low-delay applications in Maritime Networks(MNs).However,security risks in computing task offloading exist.In this study,the location privacy leakage ...Mobile Edge Computing(MEC)can support various high-reliability and low-delay applications in Maritime Networks(MNs).However,security risks in computing task offloading exist.In this study,the location privacy leakage risk of Maritime Mobile Terminals(MMTs)is quantified during task offloading and relevant Location Privacy Protection(LPP)schemes of MMT are considered under two kinds of task offloading scenarios.In single-MMT and single-time offloading scenario,a dynamic cache and spatial cloaking-based LPP(DS-CLP)algorithm is proposed;and under the multi-MMTs and multi-time offloading scenario,a pseudonym and alterable silent period-based LPP(PA-SLP)strategy is proposed.Simulation results show that the DS-CLP can save the response time and communication cost compared with traditional algorithms while protecting the MMT location privacy.Meanwhile,extending the alterable silent period,increasing the number of MMTs in the maritime area or improving the pseudonym update probability can enhance the LPP effect of MMTs in PA-SLP.Furthermore,the study results can be effectively applied to MNs with poor communication environments and relatively insufficient computing resources.展开更多
Personalized products and services in e-commerce bring consumers many new experiences, but also trigger a series of information security issues. Considering the bounded rationality of the game participants, in this pa...Personalized products and services in e-commerce bring consumers many new experiences, but also trigger a series of information security issues. Considering the bounded rationality of the game participants, in this paper, we propose an evolutionary game model of privacy protection between firms and consumers based on e-commerce personalization. Evolutionary stable strategies(ESSs) are obtained from the equilibrium points according to the model analysis, and then simulation experiments are launched to validate the decision-making results and the influencing mechanism of various factors. The results show that the model can eventually evolve toward a win-win situation by wisely varying its various factors, such as ratios of initial strategies, cost of privacy protection, commodity prices, and other related factors. Further, we find that reducing the possibility of the privacy breach under the premise of privacy protection can help promote the e-commerce personalization.展开更多
With the development of the internet of medical things(IoMT),the privacy protection problem has become more and more critical.In this paper,we propose a privacy protection scheme for medical images based on DenseNet a...With the development of the internet of medical things(IoMT),the privacy protection problem has become more and more critical.In this paper,we propose a privacy protection scheme for medical images based on DenseNet and coverless steganography.For a given group of medical images of one patient,DenseNet is used to regroup the images based on feature similarity comparison.Then the mapping indexes can be constructed based on LBP feature and hash generation.After mapping the privacy information with the hash sequences,the corresponding mapped indexes of secret information will be packed together with the medical images group and released to the authorized user.The user can extract the privacy information successfully with a similar method of feature analysis and index construction.The simulation results show good performance of robustness.And the hiding success rate also shows good feasibility and practicability for application.Since the medical images are kept original without embedding and modification,the performance of crack resistance is outstanding and can keep better quality for diagnosis compared with traditional schemes with data embedding.展开更多
With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal p...With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal privacy data,federated learning(FL)uses data stored on edge devices to realize training tasks by contributing training model parameters without revealing the original data.However,since FL can still leak the user’s original data by exchanging gradient information.The existing privacy protection strategy will increase the uplink time due to encryption measures.It is a huge challenge in terms of communication.When there are a large number of devices,the privacy protection cost of the system is higher.Based on these issues,we propose a privacy-preserving scheme of user-based group collaborative federated learning(GrCol-PPFL).Our scheme primarily divides participants into several groups and each group communicates in a chained transmission mechanism.All groups work in parallel at the same time.The server distributes a random parameter with the same dimension as the model parameter for each participant as a mask for the model parameter.We use the public datasets of modified national institute of standards and technology database(MNIST)to test the model accuracy.The experimental results show that GrCol-PPFL not only ensures the accuracy of themodel,but also ensures the security of the user’s original data when users collude with each other.Finally,through numerical experiments,we show that by changing the number of groups,we can find the optimal number of groups that reduces the uplink consumption time.展开更多
Nowadays,as lightweight mobile clients become more powerful and widely used,more and more information is stored on lightweight mobile clients,user sensitive data privacy protection has become an urgent concern and pro...Nowadays,as lightweight mobile clients become more powerful and widely used,more and more information is stored on lightweight mobile clients,user sensitive data privacy protection has become an urgent concern and problem to be solved.There has been a corresponding rise of security solutions proposed by researchers,however,the current security mechanisms on lightweight mobile clients are proven to be fragile.Due to the fact that this research field is immature and still unexplored in-depth,with this paper,we aim to provide a structured and comprehensive study on privacy protection using trusted execution environment(TEE)for lightweight mobile clients.This paper presents a highly effective and secure lightweight mobile client privacy protection system that utilizes TEE to provide a new method for privacy protection.In particular,the prototype of Lightweight Mobile Clients Privacy Protection Using Trusted Execution Environments(LMCPTEE)is built using Intel software guard extensions(SGX)because SGX can guarantee the integrity,confidentiality,and authenticity of private data.By putting lightweight mobile client critical data on SGX,the security and privacy of client data can be greatly improved.We design the authentication mechanism and privacy protection strategy based on SGX to achieve hardware-enhanced data protection and make a trusted connection with the lightweight mobile clients,thus build the distributed trusted system architecture.The experiment demonstrates that without relying on the performance of the blockchain,the LMCPTEE is practical,feasible,low-performance overhead.It can guarantee the privacy and security of lightweight mobile client private data.展开更多
In recent years,the issue of preserving the privacy of parties involved in blockchain transactions has garnered significant attention.To ensure privacy protection for both sides of the transaction,many researchers are...In recent years,the issue of preserving the privacy of parties involved in blockchain transactions has garnered significant attention.To ensure privacy protection for both sides of the transaction,many researchers are using ring signature technology instead of the original signature technology.However,in practice,identifying the signer of an illegal blockchain transaction once it has been placed on the chain necessitates a signature technique that offers conditional anonymity.Some illegals can conduct illegal transactions and evade the lawusing ring signatures,which offer perfect anonymity.This paper firstly constructs a conditionally anonymous linkable ring signature using the Diffie-Hellman key exchange protocol and the Elliptic Curve Discrete Logarithm,which offers a non-interactive process for finding the signer of a ring signature in a specific case.Secondly,this paper’s proposed scheme is proven correct and secure under Elliptic Curve Discrete Logarithm Assumptions.Lastly,compared to previous constructions,the scheme presented in this paper provides a non-interactive,efficient,and secure confirmation process.In addition,this paper presents the implementation of the proposed scheme on a personal computer,where the confirmation process takes only 2,16,and 24ms for ring sizes of 4,24 and 48,respectively,and the confirmation process can be combined with a smart contract on the blockchain with a tested millisecond level of running efficiency.In conclusion,the proposed scheme offers a solution to the challenge of identifying the signer of an illegal blockchain transaction,making it an essential contribution to the field.展开更多
基金supported by National Key R&D Program of China(2023YFB3106100)National Natural Science Foundation of China(62102452,62172436)Natural Science Foundation of Shaanxi Province(2023-JCYB-584).
文摘Distributed data fusion is essential for numerous applications,yet faces significant privacy security challenges.Federated learning(FL),as a distributed machine learning paradigm,offers enhanced data privacy protection and has attracted widespread attention.Consequently,research increasingly focuses on developing more secure FL techniques.However,in real-world scenarios involving malicious entities,the accuracy of FL results is often compromised,particularly due to the threat of collusion between two servers.To address this challenge,this paper proposes an efficient and verifiable data aggregation protocol with enhanced privacy protection.After analyzing attack methods against prior schemes,we implement key improvements.Specifically,by incorporating cascaded random numbers and perturbation terms into gradients,we strengthen the privacy protection afforded by polynomial masking,effectively preventing information leakage.Furthermore,our protocol features an enhanced verification mechanism capable of detecting collusive behaviors between two servers.Accuracy testing on the MNIST and CIFAR-10 datasets demonstrates that our protocol maintains accuracy comparable to the Federated Averaging Algorithm.In scheme efficiency comparisons,while incurring only a marginal increase in verification overhead relative to the baseline scheme,our protocol achieves an average improvement of 93.13% in privacy protection and verification overhead compared to the state-of-the-art scheme.This result highlights its optimal balance between overall overhead and functionality.A current limitation is that the verificationmechanismcannot precisely pinpoint the source of anomalies within aggregated results when server-side malicious behavior occurs.Addressing this limitation will be a focus of future research.
基金supported by National Nature Science Foundation of China(No.62361036)Nature Science Foundation of Gansu Province(No.22JR5RA279).
文摘To realize dynamic statistical publishing and protection of location-based data privacy,this paper proposes a differential privacy publishing algorithm based on adaptive sampling and grid clustering and adjustment.The PID control strategy is combined with the difference in data variation to realize the dynamic adjustment of the data publishing intervals.The spatial-temporal correlations of the adjacent snapshots are utilized to design the grid clustering and adjustment algorithm,which facilitates saving the execution time of the publishing process.The budget distribution and budget absorption strategies are improved to form the sliding window-based differential privacy statistical publishing algorithm,which realizes continuous statistical publishing and privacy protection and improves the accuracy of published data.Experiments and analysis on large datasets of actual locations show that the privacy protection algorithm proposed in this paper is superior to other existing algorithms in terms of the accuracy of adaptive sampling time,the availability of published data,and the execution efficiency of data publishing methods.
基金supported by the National Natural Science Foundation of China(Grant No.U24B20146)the National Key Research and Development Plan in China(Grant No.2020YFB1005500)Beijing Natural Science Foundation Project(No.M21034).
文摘With the rapid development of web3.0 applications,the volume of data sharing is increasing,the inefficiency of big data file sharing and the problem of data privacy leakage are becoming more and more prominent,and the existing data sharing schemes have been difficult to meet the growing demand for data sharing,this paper aims at exploring a secure,efficient and privacy-protecting data sharing scheme under web3.0 applications.Specifically,this paper adopts interplanetary file system(IPFS)technology to realize the storage of large data files to solve the problem of blockchain storage capacity limitation,and utilizes ciphertext policy attribute-based encryption(CP-ABE)and proxy re-encryption(PRE)technology to realize secure multi-party sharing and finegrained access control of data.This paper provides the detailed algorithm design and implementation of data sharing phases and processes,and analyzes the algorithms from the perspectives of security,privacy protection,and performance.
文摘With the widespread adoption of encrypted Domain Name System(DNS)technologies such as DNS over Hyper Text Transfer Protocol Secure(HTTPS),traditional port and protocol-based traffic analysis methods have become ineffective.Although encrypted DNS enhances user privacy protection,it also provides concealed communication channels for malicious software,compelling detection technologies to shift towards statistical featurebased and machine learning approaches.However,these methods still face challenges in real-time performance and privacy protection.This paper proposes a real-time identification technology for encrypted DNS traffic with privacy protection.Firstly,a hierarchical architecture of cloud-edge-end collaboration is designed,incorporating task offloading strategies to balance privacy protection and identification efficiency.Secondly,a privacy-preserving federated learning mechanismbased on Federated Robust Aggregation(FedRA)is proposed,utilizingMedoid aggregation and differential privacy techniques to ensure data privacy and enhance identification accuracy.Finally,an edge offloading strategy based on a dynamic priority scheduling algorithm(DPSA)is designed to alleviate terminal burden and reduce latency.Simulation results demonstrate that the proposed technology significantly improves the accuracy and realtime performance of encrypted DNS traffic identification while protecting privacy,making it suitable for various network environments.
文摘The widespread application of artificial intelligence(AI)technology in exams has significantly improved the efficiency and fairness of exams;it has also brought challenges of ethics and privacy protection.The article analyzes the fairness,transparency,and privacy protection issues caused by AI in exams and proposes strategic solutions.This article aims to provide guidance for the rational application of AI technology in exams,ensuring a balance between technological progress and ethical protection by strengthening laws and regulations,enhancing technological transparency,strengthening candidates’privacy rights,and improving the management measures of educational examination institutions.
基金supported in part by the Innovation and Entrepreneurship Training Program for Chinese College Students(No.202410128019)in part by JST ASPIRE Grant Number JPMJAP2325in part by Support Center for Advanced Telecommunications Technology Research(SCAT).
文摘With the rapid development of artificial intelligence and the Internet of Things,along with the growing demand for privacy-preserving transmission,the need for efficient and secure communication systems has become increasingly urgent.Traditional communication methods transmit data at the bit level without considering its semantic significance,leading to redundant transmission overhead and reduced efficiency.Semantic communication addresses this issue by extracting and transmitting only the mostmeaningful semantic information,thereby improving bandwidth efficiency.However,despite reducing the volume of data,it remains vulnerable to privacy risks,as semantic features may still expose sensitive information.To address this,we propose an entropy-bottleneck-based privacy protection mechanism for semantic communication.Our approach uses semantic segmentation to partition images into regions of interest(ROI)and regions of non-interest(RONI)based on the receiver’s needs,enabling differentiated semantic transmission.By focusing transmission on ROIs,bandwidth usage is optimized,and non-essential data is minimized.The entropy bottleneck model probabilistically encodes the semantic information into a compact bit stream,reducing correlation between the transmitted content and the original data,thus enhancing privacy protection.The proposed framework is systematically evaluated in terms of compression efficiency,semantic fidelity,and privacy preservation.Through comparative experiments with traditional and state-of-the-art methods,we demonstrate that the approach significantly reduces data transmission,maintains the quality of semantically important regions,and ensures robust privacy protection.
基金supported by National Natural Science Foundation of China under Grant No.61972360Shandong Provincial Natural Science Foundation of China under Grant Nos.ZR2020MF148,ZR2020QF108.
文摘The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.
基金sponsored by the National Natural Science Foundation of China under grant number No. 62172353, No. 62302114, No. U20B2046 and No. 62172115Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education No.1331007 and No. 1311022+1 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions Grant No. 17KJB520044Six Talent Peaks Project in Jiangsu Province No.XYDXX-108
文摘With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis.
基金supported by the Key Projects of Gansu University of Political Science and Law(GZF2023XZD18)Gansu Province 2020 Provincial Virtual Simulation First-Class Course(GZYL2020-18)+6 种基金2020 School Level Education Reform Project of Gansu University of Political Science and Law(GZJG2020-B06)the 2022 Provincial Industrial Support Project(2022CYZC-57)Soft Science Special Project of Gansu Basic Research Plan under Grant(22JR11RA106)Gansu Soft Science Project(20CX4ZA074)ScientificResearch Project of Colleges andUniversities of Gansu Provincial Department of Education(2015A-114)Key Research Project of Gansu University of Political Science and Law under Grant(GZF2022XZD08)Provincial Program of Innovation and Entrepreneurship Training for College Students in Gansu Province(S202311406024).
文摘User location trajectory refers to the sequence of geographic location information that records the user’s movement or stay within a period of time and is usually used in mobile crowd sensing networks,in which the user participates in the sensing task,the process of sensing data collection faces the problem of privacy leakage.To address the privacy leakage issue of trajectory data during uploading,publishing,and sharing when users use location services on mobile smart group sensing terminal devices,this paper proposes a privacy protection method based on generative adversarial networks and attention mechanisms(BiLS-A-GAN).The method designs a generator attention model,GAttention,and a discriminator attention model,DAttention.In the generator,GAttention,combined with a bidirectional long short-term memory network,more effectively senses contextual information and captures dependencies within sequences.The discriminator uses DAttention and the long short-term memory network to distinguish the authenticity of data.Through continuous interaction between these two models,trajectory data with the statistical characteristics of the original data is generated.This non-original trajectory data can effectively reduce the probability of an attacker’s identification,thereby enhancing the privacy protection of user information.Reliability assessment of the Trajectory-User Linking(TUL)task performed on the real-world semantic trajectory dataset Foursquare NYC,compared with traditional privacy-preserving algorithms that focus only on the privacy enhancement of the data,this approach,while achieving a high level of privacy protection,retains more temporal,spatial,and thematic features from the original trajectory data,to not only guarantee the user’s personal privacy,but also retain the reliability of the information itself in the direction of geographic analysis and other directions,and to achieve the win-win purpose of both data utilization and privacy preservation.
基金This work was supported,in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.Conflicts of Interest:The aut。
文摘The leakage of medical audio data in telemedicine seriously violates the privacy of patients.In order to avoid the leakage of patient information in telemedicine,a two-stage reversible robust audio watermarking algorithm is proposed to protect medical audio data.The scheme decomposes the medical audio into two independent embedding domains,embeds the robust watermark and the reversible watermark into the two domains respectively.In order to ensure the audio quality,the Hurst exponent is used to find a suitable position for watermark embedding.Due to the independence of the two embedding domains,the embedding of the second-stage reversible watermark will not affect the first-stage watermark,so the robustness of the first-stage watermark can be well maintained.In the second stage,the correlation between the sampling points in the medical audio is used to modify the hidden bits of the histogram to reduce the modification of the medical audio and reduce the distortion caused by reversible embedding.Simulation experiments show that this scheme has strong robustness against signal processing operations such as MP3 compression of 48 db,additive white Gaussian noise(AWGN)of 20 db,low-pass filtering,resampling,re-quantization and other attacks,and has good imperceptibility.
基金This work has been partly supported by the National Natural Science Foundation of China under Grant No.61702212the Fundamental Research Funds for the Central Universities under Grand NO.CCNU19TS017.
文摘With the rapid development of the Internet of Things(IoT),Location-Based Services(LBS)are becoming more and more popular.However,for the users being served,how to protect their location privacy has become a growing concern.This has led to great difficulty in establishing trust between the users and the service providers,hindering the development of LBS for more comprehensive functions.In this paper,we first establish a strong identity verification mechanism to ensure the authentication security of the system and then design a new location privacy protection mechanism based on the privacy proximity test problem.This mechanism not only guarantees the confidentiality of the user s information during the subsequent information interaction and dynamic data transmission,but also meets the service provider's requirements for related data.
基金This work is supported by Major Scientific and Technological Special Project of Guizhou Province(20183001)Research on the education mode for complicate skill students in new media with cross specialty integration(22150117092)+2 种基金Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ014)Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ019)Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ022).
文摘In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protection of the IoV has become the focus of the society.This paper analyzes the advantages and disadvantages of the existing location privacy protection system structure and algorithms,proposes a privacy protection system structure based on untrusted data collection server,and designs a vehicle location acquisition algorithm based on a local differential privacy and game model.The algorithm first meshes the road network space.Then,the dynamic game model is introduced into the game user location privacy protection model and the attacker location semantic inference model,thereby minimizing the possibility of exposing the regional semantic privacy of the k-location set while maximizing the availability of the service.On this basis,a statistical method is designed,which satisfies the local differential privacy of k-location sets and obtains unbiased estimation of traffic density in different regions.Finally,this paper verifies the algorithm based on the data set of mobile vehicles in Shanghai.The experimental results show that the algorithm can guarantee the user’s location privacy and location semantic privacy while satisfying the service quality requirements,and provide better privacy protection and service for the users of the IoV.
基金funded by the High-Quality and Cutting-Edge Discipline Construction Project for Universities in Beijing (Internet Information,Communication University of China).
文摘Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.
基金financially supported by the National Natural Science Foundation of China(No.61303216,No.61272457,No.U1401251,and No.61373172)the National High Technology Research and Development Program of China(863 Program)(No.2012AA013102)National 111 Program of China B16037 and B08038
文摘With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issue. In this paper, we present an access control system with privilege separation based on privacy protection(PS-ACS). In the PS-ACS scheme, we divide users into private domain(PRD) and public domain(PUD) logically. In PRD, to achieve read access permission and write access permission, we adopt the Key-Aggregate Encryption(KAE) and the Improved Attribute-based Signature(IABS) respectively. In PUD, we construct a new multi-authority ciphertext policy attribute-based encryption(CP-ABE) scheme with efficient decryption to avoid the issues of single point of failure and complicated key distribution, and design an efficient attribute revocation method for it. The analysis and simulation result show that our scheme is feasible and superior to protect users' privacy in cloud-based services.
基金supported by the National Key Research and Development Program of China (2021YFE0105500)the National Natural Science Foundation of China (61801166).
文摘Mobile Edge Computing(MEC)can support various high-reliability and low-delay applications in Maritime Networks(MNs).However,security risks in computing task offloading exist.In this study,the location privacy leakage risk of Maritime Mobile Terminals(MMTs)is quantified during task offloading and relevant Location Privacy Protection(LPP)schemes of MMT are considered under two kinds of task offloading scenarios.In single-MMT and single-time offloading scenario,a dynamic cache and spatial cloaking-based LPP(DS-CLP)algorithm is proposed;and under the multi-MMTs and multi-time offloading scenario,a pseudonym and alterable silent period-based LPP(PA-SLP)strategy is proposed.Simulation results show that the DS-CLP can save the response time and communication cost compared with traditional algorithms while protecting the MMT location privacy.Meanwhile,extending the alterable silent period,increasing the number of MMTs in the maritime area or improving the pseudonym update probability can enhance the LPP effect of MMTs in PA-SLP.Furthermore,the study results can be effectively applied to MNs with poor communication environments and relatively insufficient computing resources.
基金Supported by the National Natural Science Foundation of China(71571082,71471073)the Fundamental Research Funds for the Central Universities(CCNU14Z02016,CCNU15A02046)
文摘Personalized products and services in e-commerce bring consumers many new experiences, but also trigger a series of information security issues. Considering the bounded rationality of the game participants, in this paper, we propose an evolutionary game model of privacy protection between firms and consumers based on e-commerce personalization. Evolutionary stable strategies(ESSs) are obtained from the equilibrium points according to the model analysis, and then simulation experiments are launched to validate the decision-making results and the influencing mechanism of various factors. The results show that the model can eventually evolve toward a win-win situation by wisely varying its various factors, such as ratios of initial strategies, cost of privacy protection, commodity prices, and other related factors. Further, we find that reducing the possibility of the privacy breach under the premise of privacy protection can help promote the e-commerce personalization.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2018NK2012,author J.Q,and 2019SK2022,author H.T,http://kjt.hunan.gov.cn/+4 种基金in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,and Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/in part by the National Natural Science Foundation of Hunan under Grant 2019JJ50866,author L.T,2020JJ4140,author Y.T,and 2020JJ4141,author X.X,http://kjt.hunan.gov.cn/in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/and in part by the Postgraduate Education and Teaching Reform Project of Central South University of Forestry&Technology under Grant 2019JG013,author X.X,http://jwc.csuft.edu.cn/.
文摘With the development of the internet of medical things(IoMT),the privacy protection problem has become more and more critical.In this paper,we propose a privacy protection scheme for medical images based on DenseNet and coverless steganography.For a given group of medical images of one patient,DenseNet is used to regroup the images based on feature similarity comparison.Then the mapping indexes can be constructed based on LBP feature and hash generation.After mapping the privacy information with the hash sequences,the corresponding mapped indexes of secret information will be packed together with the medical images group and released to the authorized user.The user can extract the privacy information successfully with a similar method of feature analysis and index construction.The simulation results show good performance of robustness.And the hiding success rate also shows good feasibility and practicability for application.Since the medical images are kept original without embedding and modification,the performance of crack resistance is outstanding and can keep better quality for diagnosis compared with traditional schemes with data embedding.
基金supported by the Major science and technology project of Hainan Province(Grant No.ZDKJ2020012)National Natural Science Foundation of China(Grant No.62162024 and 62162022)Key Projects in Hainan Province(Grant ZDYF2021GXJS003 and Grant ZDYF2020040).
文摘With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal privacy data,federated learning(FL)uses data stored on edge devices to realize training tasks by contributing training model parameters without revealing the original data.However,since FL can still leak the user’s original data by exchanging gradient information.The existing privacy protection strategy will increase the uplink time due to encryption measures.It is a huge challenge in terms of communication.When there are a large number of devices,the privacy protection cost of the system is higher.Based on these issues,we propose a privacy-preserving scheme of user-based group collaborative federated learning(GrCol-PPFL).Our scheme primarily divides participants into several groups and each group communicates in a chained transmission mechanism.All groups work in parallel at the same time.The server distributes a random parameter with the same dimension as the model parameter for each participant as a mask for the model parameter.We use the public datasets of modified national institute of standards and technology database(MNIST)to test the model accuracy.The experimental results show that GrCol-PPFL not only ensures the accuracy of themodel,but also ensures the security of the user’s original data when users collude with each other.Finally,through numerical experiments,we show that by changing the number of groups,we can find the optimal number of groups that reduces the uplink consumption time.
基金supported by the National Natural Science Foundation of China(Grant No.61762033)Hainan Provincial Natural Science Foundation of China(Grant Nos.2019RC041 and 2019RC098)+2 种基金Opening Project of Shanghai Trusted Industrial Control Platform(Grant No.TICPSH202003005-ZC)Ministry of Education Humanities and Social Sciences Research Program Fund Project(Grant No.19YJA710010)Zhejiang Public Welfare Technology Research(Grant No.LGF18F020019).
文摘Nowadays,as lightweight mobile clients become more powerful and widely used,more and more information is stored on lightweight mobile clients,user sensitive data privacy protection has become an urgent concern and problem to be solved.There has been a corresponding rise of security solutions proposed by researchers,however,the current security mechanisms on lightweight mobile clients are proven to be fragile.Due to the fact that this research field is immature and still unexplored in-depth,with this paper,we aim to provide a structured and comprehensive study on privacy protection using trusted execution environment(TEE)for lightweight mobile clients.This paper presents a highly effective and secure lightweight mobile client privacy protection system that utilizes TEE to provide a new method for privacy protection.In particular,the prototype of Lightweight Mobile Clients Privacy Protection Using Trusted Execution Environments(LMCPTEE)is built using Intel software guard extensions(SGX)because SGX can guarantee the integrity,confidentiality,and authenticity of private data.By putting lightweight mobile client critical data on SGX,the security and privacy of client data can be greatly improved.We design the authentication mechanism and privacy protection strategy based on SGX to achieve hardware-enhanced data protection and make a trusted connection with the lightweight mobile clients,thus build the distributed trusted system architecture.The experiment demonstrates that without relying on the performance of the blockchain,the LMCPTEE is practical,feasible,low-performance overhead.It can guarantee the privacy and security of lightweight mobile client private data.
基金funded by the National Natural Science Foundation of China (Grant Number 12171114)National Key R&D Program of China (Grant Number 2021YFA1000600).
文摘In recent years,the issue of preserving the privacy of parties involved in blockchain transactions has garnered significant attention.To ensure privacy protection for both sides of the transaction,many researchers are using ring signature technology instead of the original signature technology.However,in practice,identifying the signer of an illegal blockchain transaction once it has been placed on the chain necessitates a signature technique that offers conditional anonymity.Some illegals can conduct illegal transactions and evade the lawusing ring signatures,which offer perfect anonymity.This paper firstly constructs a conditionally anonymous linkable ring signature using the Diffie-Hellman key exchange protocol and the Elliptic Curve Discrete Logarithm,which offers a non-interactive process for finding the signer of a ring signature in a specific case.Secondly,this paper’s proposed scheme is proven correct and secure under Elliptic Curve Discrete Logarithm Assumptions.Lastly,compared to previous constructions,the scheme presented in this paper provides a non-interactive,efficient,and secure confirmation process.In addition,this paper presents the implementation of the proposed scheme on a personal computer,where the confirmation process takes only 2,16,and 24ms for ring sizes of 4,24 and 48,respectively,and the confirmation process can be combined with a smart contract on the blockchain with a tested millisecond level of running efficiency.In conclusion,the proposed scheme offers a solution to the challenge of identifying the signer of an illegal blockchain transaction,making it an essential contribution to the field.