In many practical applications of image segmentation problems,employing prior information can greatly improve segmentation results.This paper continues to study one kind of prior information,called prior distribution....In many practical applications of image segmentation problems,employing prior information can greatly improve segmentation results.This paper continues to study one kind of prior information,called prior distribution.Within this research,there is no exact template of the object;instead only several samples are given.The proposed method,called the parametric distribution prior model,extends our previous model by adding the training procedure to learn the prior distribution of the objects.Then this paper establishes the energy function of the active contour model(ACM)with consideration of this parametric form of prior distribution.Therefore,during the process of segmenting,the template can update itself while the contour evolves.Experiments are performed on the airplane data set.Experimental results demonstrate the potential of the proposed method that with the information of prior distribution,the segmentation effect and speed can be both improved efficaciously.展开更多
The objective of this paper is to present a Bayesian approach based on Kullback- Leibler divergence for assessing local influence in a growth curve model with general co- variance structure. Under certain prior distri...The objective of this paper is to present a Bayesian approach based on Kullback- Leibler divergence for assessing local influence in a growth curve model with general co- variance structure. Under certain prior distribution assumption, the Kullback-Leibler di- vergence is used to measure the influence of some minor perturbation on the posterior distribution of unknown parameter. This leads to the diagnostic statistic for detecting which response is locally influential. As an application, the common covariance-weighted perturbation scheme is thoroughly considered.展开更多
Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance mo...Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance model. By introducing a set of constraint constants to measure uncertainty degree of the estimated expected return,it built the max-min model of multi-prior portfolio,and utilized the Lagrange method to obtain the closed-form solution of the model,which was compared with the mean-variance model and the minimum-variance model; then,an empirical study was done based on the monthly returns over the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index. Results showed,the weight of multi-prior portfolio was a weighted average of the weight of mean-variance portfolio and that of minimumvariance portfolio; the steady of multi-prior portfolio was strengthened compared with the mean-variance portfolio; the performance of multi-prior portfolio was greater than that of minimum-variance portfolio. The study demonstrates that the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants.展开更多
When the event of interest never occurs for a proportion of subjects during the study period, survival models with a cure fraction are more appropriate in analyzing this type of data. Considering the non-linear relati...When the event of interest never occurs for a proportion of subjects during the study period, survival models with a cure fraction are more appropriate in analyzing this type of data. Considering the non-linear relationship between response variable and covariates, we propose a class of generalized transformation models motivated by Zeng et al. [1] transformed proportional time cure model, in which fractional polynomials are used instead of the simple linear combination of the covariates. Statistical properties of the proposed models are investigated, including identifiability of the parameters, asymptotic consistency, and asymptotic normality of the estimated regression coefficients. A simulation study is carried out to examine the performance of the power selection procedure. The generalized transformation cure rate models are applied to the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study (NHANES1) for the purpose of examining the relationship between survival time of patients and several risk factors.展开更多
Taking Deyang as an example of middle and small city, this paper analysesmain factors related to industry development, constructs an appropriateAnalytic Hierarchy Process (AHP) model, and finally obtains the priordeve...Taking Deyang as an example of middle and small city, this paper analysesmain factors related to industry development, constructs an appropriateAnalytic Hierarchy Process (AHP) model, and finally obtains the priordevelopment sequence of major industries of Deyang.展开更多
The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies...The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies. This is based on the solution of an inverse generalized evaluate problem. The stochastic nature of test data is considered and a normal distribution is used for the measurement frequencies. An additional feature is that the engineer's confidence in the measurement frequencies is quantified and incorporated into the identification procedure. A numerical example demonstrates the efficiency of the method.展开更多
The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because ...The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because it has a mean value function that reflects the delay in failure reporting: there is a delay between failure detection and reporting time. The model captures error detection, isolation, and removal processes, thus is appropriate for software reliability analysis. Predictive analysis in software testing is useful in modifying, debugging, and determining when to terminate software development testing processes. However, Bayesian predictive analyses on the delayed S-shaped model have not been extensively explored. This paper uses the delayed S-shaped SRGM to address four issues in one-sample prediction associated with the software development testing process. Bayesian approach based on non-informative priors was used to derive explicit solutions for the four issues, and the developed methodologies were illustrated using real data.展开更多
We consider the problem of population estimation using capture-recapture data, where capture probabilities can vary between sampling occasions and behavioural responses. The original model is not identifiable without ...We consider the problem of population estimation using capture-recapture data, where capture probabilities can vary between sampling occasions and behavioural responses. The original model is not identifiable without further restrictions. The novelty of this article is to expand the current research practice by developing a hierarchical Bayesian approach with the assumption that the odds of recapture bears a constant relationship to the odds of initial capture. A real-data example of deer mice population is given to illustrate the proposed method. Three simulation studies are developed to inspect the performance of the proposed Bayesian estimates. Compared with the maximum likelihood estimates discussed in Chao et al. (2000), the hierarchical Bayesian estimate provides reasonably better population estimation with less mean square error;moreover, it is sturdy to underline relationship between the initial and re-capture probabilities. The sensitivity study shows that the proposed Bayesian approach is robust to the choice of hyper-parameters. The third simulation study reveals that both relative bias and relative RMSE approach zero as population size increases. A R-package is developed and used in both data example and simulation.展开更多
AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a...AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a greedy best-first search over a space of Bayesian belief-networks(BN) to find the optimal BN to explain the input dataset, and then infers classification rules from this BN. BRL uses a Bayesian score to evaluate the quality of BNs. In this paper, we extended the Bayesian score to include informative structure priors, which encodes our prior domain knowledge about the dataset. We call this extension of BRL as BRL_p. The structure prior has a λ hyperparameter that allows the user to tune the degree of incorporation of the prior knowledge in the model learning process. We studied the effect of λ on model learning using a simulated dataset and a real-world lung cancer prognostic biomarker dataset, by measuring the degree of incorporation of our specified prior knowledge. We also monitored its effect on the model predictive performance. Finally, we compared BRL_p to other stateof-the-art classifiers commonly used in biomedicine.RESULTS We evaluated the degree of incorporation of prior knowledge into BRL_p, with simulated data by measuring the Graph Edit Distance between the true datagenerating model and the model learned by BRL_p. We specified the true model using informative structurepriors. We observed that by increasing the value of λ we were able to increase the influence of the specified structure priors on model learning. A large value of λ of BRL_p caused it to return the true model. This also led to a gain in predictive performance measured by area under the receiver operator characteristic curve(AUC). We then obtained a publicly available real-world lung cancer prognostic biomarker dataset and specified a known biomarker from literature [the epidermal growth factor receptor(EGFR) gene]. We again observed that larger values of λ led to an increased incorporation of EGFR into the final BRL_p model. This relevant background knowledge also led to a gain in AUC.CONCLUSION BRL_p enables tunable structure priors to be incorporated during Bayesian classification rule learning that integrates data and knowledge as demonstrated using lung cancer biomarker data.展开更多
In this paper, we consider a general expression for Ф(u, x, y), the joint density function of the surplus prior to ruin and the deficit at ruin when the initial surplus is u. In the renewal risk model, this density...In this paper, we consider a general expression for Ф(u, x, y), the joint density function of the surplus prior to ruin and the deficit at ruin when the initial surplus is u. In the renewal risk model, this density function is expressed in terms of the corresponding density function when the initial surplus is O. In the compound Poisson risk process with phase-type claim size, we derive an explicit expression for Ф(u, x, y). Finally, we give a numerical example to illustrate the application of these results.展开更多
基金supported by the National Key R&D Program of China(2018YFC0309400)the National Natural Science Foundation of China(61871188)
文摘In many practical applications of image segmentation problems,employing prior information can greatly improve segmentation results.This paper continues to study one kind of prior information,called prior distribution.Within this research,there is no exact template of the object;instead only several samples are given.The proposed method,called the parametric distribution prior model,extends our previous model by adding the training procedure to learn the prior distribution of the objects.Then this paper establishes the energy function of the active contour model(ACM)with consideration of this parametric form of prior distribution.Therefore,during the process of segmenting,the template can update itself while the contour evolves.Experiments are performed on the airplane data set.Experimental results demonstrate the potential of the proposed method that with the information of prior distribution,the segmentation effect and speed can be both improved efficaciously.
基金Supported by the fund of the Yunnan Education Committee!(NO.9941072)
文摘The objective of this paper is to present a Bayesian approach based on Kullback- Leibler divergence for assessing local influence in a growth curve model with general co- variance structure. Under certain prior distribution assumption, the Kullback-Leibler di- vergence is used to measure the influence of some minor perturbation on the posterior distribution of unknown parameter. This leads to the diagnostic statistic for detecting which response is locally influential. As an application, the common covariance-weighted perturbation scheme is thoroughly considered.
基金National Natural Science Foundations of China(Nos.71271003,71171003)Programming Fund Project of the Humanities and Social Sciences Research of the Ministry of Education of China(No.12YJA790041)
文摘Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance model. By introducing a set of constraint constants to measure uncertainty degree of the estimated expected return,it built the max-min model of multi-prior portfolio,and utilized the Lagrange method to obtain the closed-form solution of the model,which was compared with the mean-variance model and the minimum-variance model; then,an empirical study was done based on the monthly returns over the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index. Results showed,the weight of multi-prior portfolio was a weighted average of the weight of mean-variance portfolio and that of minimumvariance portfolio; the steady of multi-prior portfolio was strengthened compared with the mean-variance portfolio; the performance of multi-prior portfolio was greater than that of minimum-variance portfolio. The study demonstrates that the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants.
文摘When the event of interest never occurs for a proportion of subjects during the study period, survival models with a cure fraction are more appropriate in analyzing this type of data. Considering the non-linear relationship between response variable and covariates, we propose a class of generalized transformation models motivated by Zeng et al. [1] transformed proportional time cure model, in which fractional polynomials are used instead of the simple linear combination of the covariates. Statistical properties of the proposed models are investigated, including identifiability of the parameters, asymptotic consistency, and asymptotic normality of the estimated regression coefficients. A simulation study is carried out to examine the performance of the power selection procedure. The generalized transformation cure rate models are applied to the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study (NHANES1) for the purpose of examining the relationship between survival time of patients and several risk factors.
文摘Taking Deyang as an example of middle and small city, this paper analysesmain factors related to industry development, constructs an appropriateAnalytic Hierarchy Process (AHP) model, and finally obtains the priordevelopment sequence of major industries of Deyang.
文摘The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies. This is based on the solution of an inverse generalized evaluate problem. The stochastic nature of test data is considered and a normal distribution is used for the measurement frequencies. An additional feature is that the engineer's confidence in the measurement frequencies is quantified and incorporated into the identification procedure. A numerical example demonstrates the efficiency of the method.
文摘The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because it has a mean value function that reflects the delay in failure reporting: there is a delay between failure detection and reporting time. The model captures error detection, isolation, and removal processes, thus is appropriate for software reliability analysis. Predictive analysis in software testing is useful in modifying, debugging, and determining when to terminate software development testing processes. However, Bayesian predictive analyses on the delayed S-shaped model have not been extensively explored. This paper uses the delayed S-shaped SRGM to address four issues in one-sample prediction associated with the software development testing process. Bayesian approach based on non-informative priors was used to derive explicit solutions for the four issues, and the developed methodologies were illustrated using real data.
文摘We consider the problem of population estimation using capture-recapture data, where capture probabilities can vary between sampling occasions and behavioural responses. The original model is not identifiable without further restrictions. The novelty of this article is to expand the current research practice by developing a hierarchical Bayesian approach with the assumption that the odds of recapture bears a constant relationship to the odds of initial capture. A real-data example of deer mice population is given to illustrate the proposed method. Three simulation studies are developed to inspect the performance of the proposed Bayesian estimates. Compared with the maximum likelihood estimates discussed in Chao et al. (2000), the hierarchical Bayesian estimate provides reasonably better population estimation with less mean square error;moreover, it is sturdy to underline relationship between the initial and re-capture probabilities. The sensitivity study shows that the proposed Bayesian approach is robust to the choice of hyper-parameters. The third simulation study reveals that both relative bias and relative RMSE approach zero as population size increases. A R-package is developed and used in both data example and simulation.
基金Supported by National Institute of General Medical Sciences of the National Institutes of Health,No.R01GM100387
文摘AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a greedy best-first search over a space of Bayesian belief-networks(BN) to find the optimal BN to explain the input dataset, and then infers classification rules from this BN. BRL uses a Bayesian score to evaluate the quality of BNs. In this paper, we extended the Bayesian score to include informative structure priors, which encodes our prior domain knowledge about the dataset. We call this extension of BRL as BRL_p. The structure prior has a λ hyperparameter that allows the user to tune the degree of incorporation of the prior knowledge in the model learning process. We studied the effect of λ on model learning using a simulated dataset and a real-world lung cancer prognostic biomarker dataset, by measuring the degree of incorporation of our specified prior knowledge. We also monitored its effect on the model predictive performance. Finally, we compared BRL_p to other stateof-the-art classifiers commonly used in biomedicine.RESULTS We evaluated the degree of incorporation of prior knowledge into BRL_p, with simulated data by measuring the Graph Edit Distance between the true datagenerating model and the model learned by BRL_p. We specified the true model using informative structurepriors. We observed that by increasing the value of λ we were able to increase the influence of the specified structure priors on model learning. A large value of λ of BRL_p caused it to return the true model. This also led to a gain in predictive performance measured by area under the receiver operator characteristic curve(AUC). We then obtained a publicly available real-world lung cancer prognostic biomarker dataset and specified a known biomarker from literature [the epidermal growth factor receptor(EGFR) gene]. We again observed that larger values of λ led to an increased incorporation of EGFR into the final BRL_p model. This relevant background knowledge also led to a gain in AUC.CONCLUSION BRL_p enables tunable structure priors to be incorporated during Bayesian classification rule learning that integrates data and knowledge as demonstrated using lung cancer biomarker data.
文摘In this paper, we consider a general expression for Ф(u, x, y), the joint density function of the surplus prior to ruin and the deficit at ruin when the initial surplus is u. In the renewal risk model, this density function is expressed in terms of the corresponding density function when the initial surplus is O. In the compound Poisson risk process with phase-type claim size, we derive an explicit expression for Ф(u, x, y). Finally, we give a numerical example to illustrate the application of these results.