期刊文献+
共找到552篇文章
< 1 2 28 >
每页显示 20 50 100
A distribution prior model for airplane segmentation without exact template 被引量:1
1
作者 DAI Ming ZHOU Zhiheng GUO Yongfan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期56-63,共8页
In many practical applications of image segmentation problems,employing prior information can greatly improve segmentation results.This paper continues to study one kind of prior information,called prior distribution.... In many practical applications of image segmentation problems,employing prior information can greatly improve segmentation results.This paper continues to study one kind of prior information,called prior distribution.Within this research,there is no exact template of the object;instead only several samples are given.The proposed method,called the parametric distribution prior model,extends our previous model by adding the training procedure to learn the prior distribution of the objects.Then this paper establishes the energy function of the active contour model(ACM)with consideration of this parametric form of prior distribution.Therefore,during the process of segmenting,the template can update itself while the contour evolves.Experiments are performed on the airplane data set.Experimental results demonstrate the potential of the proposed method that with the information of prior distribution,the segmentation effect and speed can be both improved efficaciously. 展开更多
关键词 image segmentation active contour model(ACM) prior distribution level set method
在线阅读 下载PDF
BAYESIAN LOCAL INFLUENCE ASSESSMENTS IN A GROWTH CURVE MODEL WITH GENERAL COVARIANCE STRUCTURE 被引量:1
2
作者 白鹏 费宇 《Acta Mathematica Scientia》 SCIE CSCD 2000年第4期563-570,共8页
The objective of this paper is to present a Bayesian approach based on Kullback- Leibler divergence for assessing local influence in a growth curve model with general co- variance structure. Under certain prior distri... The objective of this paper is to present a Bayesian approach based on Kullback- Leibler divergence for assessing local influence in a growth curve model with general co- variance structure. Under certain prior distribution assumption, the Kullback-Leibler di- vergence is used to measure the influence of some minor perturbation on the posterior distribution of unknown parameter. This leads to the diagnostic statistic for detecting which response is locally influential. As an application, the common covariance-weighted perturbation scheme is thoroughly considered. 展开更多
关键词 Growth curve model prior and posterior distribution Kullback-Leibler di- vergence Bayesianω-model CURVATURE
在线阅读 下载PDF
Portfolio Choice under the Mean-Variance Model with Parameter Uncertainty 被引量:1
3
作者 何朝林 许倩 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期498-503,共6页
Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance mo... Assuming the investor is uncertainty-aversion,the multiprior approach is applied to studying the problem of portfolio choice under the uncertainty about the expected return of risky asset based on the mean-variance model. By introducing a set of constraint constants to measure uncertainty degree of the estimated expected return,it built the max-min model of multi-prior portfolio,and utilized the Lagrange method to obtain the closed-form solution of the model,which was compared with the mean-variance model and the minimum-variance model; then,an empirical study was done based on the monthly returns over the period June 2011 to May 2014 of eight kinds of stocks in Shanghai Exchange 50 Index. Results showed,the weight of multi-prior portfolio was a weighted average of the weight of mean-variance portfolio and that of minimumvariance portfolio; the steady of multi-prior portfolio was strengthened compared with the mean-variance portfolio; the performance of multi-prior portfolio was greater than that of minimum-variance portfolio. The study demonstrates that the investor can improve the steady of multi-prior portfolio as well as its performance for some appropriate constraint constants. 展开更多
关键词 portfolio choice mean-variance model parameter uncertainty multi-prior approach constraint constant
在线阅读 下载PDF
Transformation Models for Survival Data Analysis with Applications
4
作者 Yang Liu Qiusheng Chen Xufeng Niu 《Open Journal of Statistics》 2016年第1期133-155,共23页
When the event of interest never occurs for a proportion of subjects during the study period, survival models with a cure fraction are more appropriate in analyzing this type of data. Considering the non-linear relati... When the event of interest never occurs for a proportion of subjects during the study period, survival models with a cure fraction are more appropriate in analyzing this type of data. Considering the non-linear relationship between response variable and covariates, we propose a class of generalized transformation models motivated by Zeng et al. [1] transformed proportional time cure model, in which fractional polynomials are used instead of the simple linear combination of the covariates. Statistical properties of the proposed models are investigated, including identifiability of the parameters, asymptotic consistency, and asymptotic normality of the estimated regression coefficients. A simulation study is carried out to examine the performance of the power selection procedure. The generalized transformation cure rate models are applied to the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study (NHANES1) for the purpose of examining the relationship between survival time of patients and several risk factors. 展开更多
关键词 Link Functions Mixture Cure Rate models Noninformative Improper priors Proportional Hazards models Proportional Odds models
在线阅读 下载PDF
An Analytic Model of Industrial Structure
5
作者 Guo Yaohuang Qin LanwenSchool of Economic Management Aouthuoest Jiaotong Unitersity,Chengdu 610031 ,China 《Journal of Modern Transportation》 1994年第1期15-21,共7页
Taking Deyang as an example of middle and small city, this paper analysesmain factors related to industry development, constructs an appropriateAnalytic Hierarchy Process (AHP) model, and finally obtains the priordeve... Taking Deyang as an example of middle and small city, this paper analysesmain factors related to industry development, constructs an appropriateAnalytic Hierarchy Process (AHP) model, and finally obtains the priordevelopment sequence of major industries of Deyang. 展开更多
关键词 industrial structure AHP model prior development sequence
在线阅读 下载PDF
PARAMETER IDENTIFICATION OF DYNAMIC MODELS USING A BAYES APPROACH 被引量:1
6
作者 李书 卓家寿 任青文 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第4期447-454,共8页
The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies... The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies. This is based on the solution of an inverse generalized evaluate problem. The stochastic nature of test data is considered and a normal distribution is used for the measurement frequencies. An additional feature is that the engineer's confidence in the measurement frequencies is quantified and incorporated into the identification procedure. A numerical example demonstrates the efficiency of the method. 展开更多
关键词 parameter identification dynamic models Bayes estimators inverse eigenvalue problem prior distribution posterior distribution
在线阅读 下载PDF
One-Sample Bayesian Predictive Analyses for a Nonhomogeneous Poisson Process with Delayed S-Shaped Intensity Function Using Non-Informative Priors
7
作者 Otieno Collins Orawo Luke Akong’o Matiri George Munene 《Open Journal of Statistics》 2023年第5期717-733,共17页
The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because ... The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because it has a mean value function that reflects the delay in failure reporting: there is a delay between failure detection and reporting time. The model captures error detection, isolation, and removal processes, thus is appropriate for software reliability analysis. Predictive analysis in software testing is useful in modifying, debugging, and determining when to terminate software development testing processes. However, Bayesian predictive analyses on the delayed S-shaped model have not been extensively explored. This paper uses the delayed S-shaped SRGM to address four issues in one-sample prediction associated with the software development testing process. Bayesian approach based on non-informative priors was used to derive explicit solutions for the four issues, and the developed methodologies were illustrated using real data. 展开更多
关键词 Failure Intensity Non-Informative priors Software Reliability model Bayesian Approach Non-Homogeneous Poisson Process
在线阅读 下载PDF
基于射线追踪的矿山波速场实时反演与震源定位研究
8
作者 马举 吴子骏 侯娇兰 《矿冶工程》 北大核心 2025年第5期56-62,共7页
为提高地下采矿过程中震源定位精度,解决因开挖扰动和复杂结构导致的波速场时空变化问题,提出一种基于实时反演波速场为先验条件的震源再定位方法。该方法结合射线追踪与拟牛顿迭代算法,实现波速场的动态更新与震源的高精度定位。通过... 为提高地下采矿过程中震源定位精度,解决因开挖扰动和复杂结构导致的波速场时空变化问题,提出一种基于实时反演波速场为先验条件的震源再定位方法。该方法结合射线追踪与拟牛顿迭代算法,实现波速场的动态更新与震源的高精度定位。通过合成测试与现场实验验证该方法的有效性。合成测试结果显示,实时反演法平均定位精度较最小二乘法提升49.8%,波速反演正确率可达95%以上。现场实验中,以180 m×180 m待开采充填区域为定位成像目标,该方法所得定位误差比最小二乘法平均降低了7.074 m,各区域波速反演正确率均超过95%。该方法不仅适用于微震监测中的震源定位,还可作为采空区被动成像的地球物理探测手段。 展开更多
关键词 微震监测 震源定位 实时反演 射线追踪 波速场 先验模型
在线阅读 下载PDF
基于材料结构条件先验的高噪声STEM图像原子结构分割方法
9
作者 郭礼华 林延域 陈轲 《华南理工大学学报(自然科学版)》 北大核心 2025年第11期27-36,共10页
扫描透射电子显微镜(STEM)可以在原子皮米级别上对物体材质进行电子成像,并利用图像进行原子结构解读。但是,要获得高质量的原子尺度STEM图像需要高端的STEM设备以及熟练的操作者,各种环境因素都会在STEM的成像过程中引入难以预计的非... 扫描透射电子显微镜(STEM)可以在原子皮米级别上对物体材质进行电子成像,并利用图像进行原子结构解读。但是,要获得高质量的原子尺度STEM图像需要高端的STEM设备以及熟练的操作者,各种环境因素都会在STEM的成像过程中引入难以预计的非均匀噪声,从而严重影响图像质量,进而影响原子结构分析结果。基于深度神经网络的预测模型可以通过去噪或数据拟合来减少噪声的影响,但存在过拟合问题。该文将材料结构条件先验建模到深度神经网络模型中,设计了一种基于材料结构条件先验的高噪声STEM图像原子结构分割方法。该方法通过对比学习方式将材料结构条件先验建模成分割网络的注意力(包括自注意力和交叉注意力)并加以计算,不仅使得分割网络能够自适应地关注图像中的关键区域,还能自适应地关注来自结构坐标向量模态的控制信息。在仿真测试集中,该方法相比AtomAI Segmentor方法,在倒角距离、Jaccard分数和F1分数上分别提升175%、49.7%和42.7%;相比作者课题组早期提出的多尺度方法,在倒角距离、Jaccard分数和F1分数上分别提升167%、28%和23.9%。在实验室样本测试集中,该方法相比AtomAI Segmentor方法,在倒角距离、Jaccard分数和F1分数上分别提升63%、9.3%和7.4%;相比作者课题组早期提出的多尺度方法,在倒角距离上提升12.8%,在Jaccard分数和F1分数上性能持平。材料结构条件先验的引入,使得分割网络模型能更准确地分割高噪声STEM图像中的原子结构,并预测被噪声或顶层遮挡的次级结构信息。 展开更多
关键词 原子结构分割 扫描透射电子显微镜 高噪声图像 结构先验建模
在线阅读 下载PDF
突出结构联合L0先验的模糊图像盲复原方法
10
作者 高如新 朱新柳 +1 位作者 郭凤云 李雪颖 《计算机应用与软件》 北大核心 2025年第3期190-195,共6页
为了解决结构类模糊图像在边缘模糊核估计方法中复原效果较差这一问题,提出突出结构联合L0先验的模糊图像盲复原方法。利用模糊图像的突出结构估计图像边缘,根据模糊核估计的数学模型来恢复中间潜像并代替模糊图像作为新的输入,结合L0... 为了解决结构类模糊图像在边缘模糊核估计方法中复原效果较差这一问题,提出突出结构联合L0先验的模糊图像盲复原方法。利用模糊图像的突出结构估计图像边缘,根据模糊核估计的数学模型来恢复中间潜像并代替模糊图像作为新的输入,结合L0正则化先验约束模型求解得到模糊核和清晰图像。实验结果表明,提出的方法可较好地复原结构类模糊图像和大尺度模糊核运动模糊图像,抑制振铃效果显著,在复原效果上优于其他方法。 展开更多
关键词 盲复原方法 突出结构 L0先验 数学模型 模糊核
在线阅读 下载PDF
Bayesian Estimation of Population Size via Capture-Recapture Model with Time Variation and Behavioral Response
11
作者 Xiaoyin Wang Zhuoqiong He Dongchu Sun 《Open Journal of Ecology》 2015年第1期1-13,共13页
We consider the problem of population estimation using capture-recapture data, where capture probabilities can vary between sampling occasions and behavioural responses. The original model is not identifiable without ... We consider the problem of population estimation using capture-recapture data, where capture probabilities can vary between sampling occasions and behavioural responses. The original model is not identifiable without further restrictions. The novelty of this article is to expand the current research practice by developing a hierarchical Bayesian approach with the assumption that the odds of recapture bears a constant relationship to the odds of initial capture. A real-data example of deer mice population is given to illustrate the proposed method. Three simulation studies are developed to inspect the performance of the proposed Bayesian estimates. Compared with the maximum likelihood estimates discussed in Chao et al. (2000), the hierarchical Bayesian estimate provides reasonably better population estimation with less mean square error;moreover, it is sturdy to underline relationship between the initial and re-capture probabilities. The sensitivity study shows that the proposed Bayesian approach is robust to the choice of hyper-parameters. The third simulation study reveals that both relative bias and relative RMSE approach zero as population size increases. A R-package is developed and used in both data example and simulation. 展开更多
关键词 BAYES ESTIMATION BEHAVIOURAL Response CAPTURE-RECAPTURE model Gibbs Sampling Hierarchical prior POPULATION ESTIMATION Time Variation
暂未订购
Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery
12
作者 Jeya Balaji Balasubramanian Vanathi Gopalakrishnan 《World Journal of Clinical Oncology》 CAS 2018年第5期98-109,共12页
AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a... AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a greedy best-first search over a space of Bayesian belief-networks(BN) to find the optimal BN to explain the input dataset, and then infers classification rules from this BN. BRL uses a Bayesian score to evaluate the quality of BNs. In this paper, we extended the Bayesian score to include informative structure priors, which encodes our prior domain knowledge about the dataset. We call this extension of BRL as BRL_p. The structure prior has a λ hyperparameter that allows the user to tune the degree of incorporation of the prior knowledge in the model learning process. We studied the effect of λ on model learning using a simulated dataset and a real-world lung cancer prognostic biomarker dataset, by measuring the degree of incorporation of our specified prior knowledge. We also monitored its effect on the model predictive performance. Finally, we compared BRL_p to other stateof-the-art classifiers commonly used in biomedicine.RESULTS We evaluated the degree of incorporation of prior knowledge into BRL_p, with simulated data by measuring the Graph Edit Distance between the true datagenerating model and the model learned by BRL_p. We specified the true model using informative structurepriors. We observed that by increasing the value of λ we were able to increase the influence of the specified structure priors on model learning. A large value of λ of BRL_p caused it to return the true model. This also led to a gain in predictive performance measured by area under the receiver operator characteristic curve(AUC). We then obtained a publicly available real-world lung cancer prognostic biomarker dataset and specified a known biomarker from literature [the epidermal growth factor receptor(EGFR) gene]. We again observed that larger values of λ led to an increased incorporation of EGFR into the final BRL_p model. This relevant background knowledge also led to a gain in AUC.CONCLUSION BRL_p enables tunable structure priors to be incorporated during Bayesian classification rule learning that integrates data and knowledge as demonstrated using lung cancer biomarker data. 展开更多
关键词 Supervised machine learning RULE-BASED models BAYESIAN methods Background KNOWLEDGE INFORMATIVE priorS BIOMARKER discovery
暂未订购
A Joint Density Function in the Renewal Risk Model
13
作者 Xu Huai Tang Ling Wang De-hui 《Communications in Mathematical Research》 CSCD 2013年第1期88-96,共9页
In this paper, we consider a general expression for Ф(u, x, y), the joint density function of the surplus prior to ruin and the deficit at ruin when the initial surplus is u. In the renewal risk model, this density... In this paper, we consider a general expression for Ф(u, x, y), the joint density function of the surplus prior to ruin and the deficit at ruin when the initial surplus is u. In the renewal risk model, this density function is expressed in terms of the corresponding density function when the initial surplus is O. In the compound Poisson risk process with phase-type claim size, we derive an explicit expression for Ф(u, x, y). Finally, we give a numerical example to illustrate the application of these results. 展开更多
关键词 deficit at ruin surplus prior to ruin phase-type distribution renewal risk model maximal aggregate loss
在线阅读 下载PDF
基于多尺度边缘感知滤波的暗通道图像去雾方法
14
作者 陈昌川 代金尾 +2 位作者 郭中原 代少升 蒋大川 《半导体光电》 北大核心 2025年第3期567-574,共8页
雾霾天气常造成成像设备获取的图像质量下降、目标对比度降低及轮廓模糊等问题。传统暗通道去雾算法虽然具有一定效果,但在图像边缘及深度变化较大的区域易产生光晕伪影和过度平滑的问题。为此,提出一种基于多尺度边缘感知滤波的暗通道... 雾霾天气常造成成像设备获取的图像质量下降、目标对比度降低及轮廓模糊等问题。传统暗通道去雾算法虽然具有一定效果,但在图像边缘及深度变化较大的区域易产生光晕伪影和过度平滑的问题。为此,提出一种基于多尺度边缘感知滤波的暗通道图像去雾算法。该算法首先将边缘感知滤波权重引入引导滤波的代价函数,以解决引导滤波器无法动态调整平滑程度的问题;其次,通过多个不同尺度的边缘感知滤波器加权计算,细化透射率的估计;最后,将雾霾图像的大气光强值和通过所提算法获得的透射率代入大气散射模型,从而恢复无雾图像。实验结果表明,与传统暗通道去雾算法相比,所提算法处理后的图像在信息熵、平均梯度、标准差和色彩均衡性等指标上分别提高了7.60%,36.19%,54.25%和47.59%。总体而言,该算法在去雾效果上优于传统方法,能够有效恢复图像细节并提高视觉质量,具有较好的应用前景。 展开更多
关键词 图像去雾 暗通道先验 边缘感知滤波 大气散射模型
原文传递
文本语义引导的自动动态场景新视角渲染方法
15
作者 林玉萍 李胜鹏 田丰瑞 《华中科技大学学报(自然科学版)》 北大核心 2025年第3期8-13,共6页
提出一种基于文本先验引导的动态场景新视角渲染方法,以动态前景内容的文本信息作为语义先验引导分割模型自动生成高质量的前背景掩码,进而在无须人工标注情况下实现动态场景的新视角渲染.具体而言,模型首先利用Grounding DINO实现文本... 提出一种基于文本先验引导的动态场景新视角渲染方法,以动态前景内容的文本信息作为语义先验引导分割模型自动生成高质量的前背景掩码,进而在无须人工标注情况下实现动态场景的新视角渲染.具体而言,模型首先利用Grounding DINO实现文本提示到边界框提示的转换,然后用基于原图和边界框提示的分割一切模型(SAM)实现动态前景掩码的自动生成,最后构建基于动态前景掩码的动态神经辐射场实现动态场景下新视角的自动渲染.在Nvidia Dynamic Scene数据集上验证了本文方法的有效性.在主观对比实验中,本文方法在新视角下相较其他方法而言利用语义引导的先验知识成功渲染出了更为清晰的动态前景与静态背景.在客观对比实验中,本文方法在峰值信噪比(PSNR)、结构相似性(SSIM)、学习感知图像块相似度(LPIPS)三种衡量图像生成质量的指标上均优于其他最先进的方法. 展开更多
关键词 新视角渲染 动态场景 文本引导 分割一切模型 掩码自动生成
原文传递
基于文本先验的扩散模型图像超分辨率综述
16
作者 林玮 《电视技术》 2025年第9期174-177,共4页
近年来,基于文本先验的图像超分辨率方法借助扩散模型强大的生成潜力,受到越来越多的关注。通过结合文本先验,这类方法能够有效地理解图像的语义信息,从而在图像超分辨率任务中实现更加精确的重建和更好的生成质量。基于此,对现有基于... 近年来,基于文本先验的图像超分辨率方法借助扩散模型强大的生成潜力,受到越来越多的关注。通过结合文本先验,这类方法能够有效地理解图像的语义信息,从而在图像超分辨率任务中实现更加精确的重建和更好的生成质量。基于此,对现有基于文本先验的图像超分辨率方法进行介绍和总结,并分析未来的发展趋势。 展开更多
关键词 图像超分辨率 扩散模型 文本先验
在线阅读 下载PDF
顾及先验误差的加权时空滤波对GNSS坐标时序噪声特性及站速度估计的影响
17
作者 鲁铁定 杨厚明 +1 位作者 孙喜文 金振吴 《地球物理学报》 北大核心 2025年第6期2066-2078,共13页
空间滤波是从区域连续GNSS站位置时间序列中提取共模误差的有效手段,针对传统时空滤波方法(Principal Component Analysis,PCA)并未考虑站点坐标分量中先验误差影响的问题,本文构建了一种利用先验误差构造权重因子的加权PCA(Weighted Pr... 空间滤波是从区域连续GNSS站位置时间序列中提取共模误差的有效手段,针对传统时空滤波方法(Principal Component Analysis,PCA)并未考虑站点坐标分量中先验误差影响的问题,本文构建了一种利用先验误差构造权重因子的加权PCA(Weighted Principal Component Analysis,WPCA)方法.为验证该方法的有效性,选取北美地区10个测站2008—2022年共15年的坐标时间序列数据进行空间滤波,并分析了共模误差(Common Mode Error,CME)对GNSS站坐标时间序列参数估计和噪声特性的影响,实验结果表明:时空滤波能够有效提取坐标残差时间序列中的共模误差,经过WPCA滤波后,N、E、U分量上残差时间序列的拟合误差相比滤波前分别降低了23.84%、26.88%和23.90%;与传统PCA方法相比,WPCA在N、E、U分量上分别降低了3.68%、4.89%和3.54%;北美地区GNSS站坐标残差时间序列最优噪声模型以白噪声+闪烁噪声和白噪声+幂律噪声为主,个别站点N方向存在随机游走噪声;考虑先验误差的加权时空滤波能够更加有效地降低时间序列中的噪声量级和站速度不确定度,从而提高时间序列的建模精度和可靠性. 展开更多
关键词 GNSS时间序列 主成分分析 先验误差 共模误差 噪声模型
在线阅读 下载PDF
PottsVNet:一种基于体积先验与Potts模型的图像分割网络
18
作者 沈洁 黎祺 田玉铢 《辽宁师范大学学报(自然科学版)》 2025年第2期213-219,共7页
为提高图像分割准确率, 提出一种基于体积保持软阈值动力学技术(VP-STD)和Potts模型的图像分割算法.考虑被分割对象的体积信息, 使用VP-STD技术优化传统Potts模型, 给出基于复合能量函数的模型参数优化算法, 实现对复杂图像的高效分割,... 为提高图像分割准确率, 提出一种基于体积保持软阈值动力学技术(VP-STD)和Potts模型的图像分割算法.考虑被分割对象的体积信息, 使用VP-STD技术优化传统Potts模型, 给出基于复合能量函数的模型参数优化算法, 实现对复杂图像的高效分割, 提升多相分割的准确性. 最后使用V循环多网格技术和数值离散化算法优化模型输出. 实验结果表明了方法的有效性. 展开更多
关键词 神经网络 POTTS模型 体积先验 图像分割 算子分裂
在线阅读 下载PDF
Spike-and-slab先验弹性网络Cox模型在癌症中的应用
19
作者 苏月 温福东 +1 位作者 刘丹 王玉鹏 《中国卫生统计》 北大核心 2025年第5期689-693,共5页
目的建立一个高精度、强可解释性的预测模型,以应对高维组学数据在构建预测模型时遇到的挑战,如潜在预测因子众多、样本数量有限以及预测因子间高度相关性。方法将spike-and-slab先验与弹性网络惩罚统一至Cox模型中,提出spike-and-slab... 目的建立一个高精度、强可解释性的预测模型,以应对高维组学数据在构建预测模型时遇到的挑战,如潜在预测因子众多、样本数量有限以及预测因子间高度相关性。方法将spike-and-slab先验与弹性网络惩罚统一至Cox模型中,提出spike-and-slab先验弹性网络Cox模型。该模型能够根据不同变量的重要程度对各系数进行不同程度的收缩。使用期望最大化算法来拟合模型,该算法在贝叶斯框架下通过最大化后验概率来进行参数估计。结果与传统的统计模型相比,spike-and-slab先验弹性网络Cox模型在各种的模拟条件下均表现出更高的灵敏度、平衡准确度和一致性指数。并且在真实数据集验证分析中,该模型的一致性指数也高于传统模型。结论spike-and-slab先验弹性网络Cox模型是一种新的变量筛选和生存预测方法,能够处理癌症研究中的高维组学数据。 展开更多
关键词 贝叶斯统计 spike-and-slab先验 弹性网络 COX模型 癌症
暂未订购
CRAKUT:融合对比区域注意力机制与临床先验知识的U-Transformer用于放射学报告生成 被引量:1
20
作者 梁业东 朱雄峰 +3 位作者 黄美燕 张文聪 郭翰宇 冯前进 《南方医科大学学报》 北大核心 2025年第6期1343-1352,共10页
目的 提出一种对比区域注意力和先验知识融合的U型Transformer模型(CRAKUT),旨在解决文本分布不均衡、缺乏上下文临床知识以及跨模态信息转换等问题,提升生成报告的质量,辅助影像科医生诊断工作。方法 CRAKUT包括3个关键模块:对比注意... 目的 提出一种对比区域注意力和先验知识融合的U型Transformer模型(CRAKUT),旨在解决文本分布不均衡、缺乏上下文临床知识以及跨模态信息转换等问题,提升生成报告的质量,辅助影像科医生诊断工作。方法 CRAKUT包括3个关键模块:对比注意力图像编码器,利用数据集中常见的正常影像提取增强的视觉特征;外部知识注入模块,融合临床先验知识;U型Transformer,通过U型连接架构完成从视觉到语言的跨模态信息转换。在图像编码器中引入的对比区域注意力机制,通过强调正常与异常语义特征之间的差异,增强了异常区域的特征表示。此外,文本编码器中的临床先验知识注入模块结合了临床历史信息及由ChatGPT生成的知识图谱,从而提升了报告生成的上下文理解能力。U型Transformer在多模态编码器与报告解码器之间建立连接,融合多种类型的信息以生成最终的报告。结果 在2个公开的CXR数据集(IU-Xray和MIMIC-CXR)对CRAKUT模型进行评估,结果显示,CRAKUT在报告生成任务中实现了当前最先进的性能。在MIMIC-CXR数据集,CRAKUT取得了BLEU-4分数0.159、ROUGE-L分数0.353、CIDEr分数0.500;在IU-Xray数据集上,METEOR分数达到0.258,均优于以往模型的表现。结论 本文提出的方法在临床疾病诊断和报告生成中具有巨大的应用潜力。 展开更多
关键词 胸部X光 对比区域注意力 临床先验知识 跨模态交互 U-Transformer模型
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部