Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo...Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.展开更多
AlScN piezoelectric films prepared by AlSc alloy sputter targets are essential materials for 5G radio frequency filters.The thermophysical properties of AlSc alloy targets are closely related to their welding processe...AlScN piezoelectric films prepared by AlSc alloy sputter targets are essential materials for 5G radio frequency filters.The thermophysical properties of AlSc alloy targets are closely related to their welding processes and applications.Al-xSc alloys(x=5,10,15,20,25,at%)were prepared by vacuum induction melting,whose purity is mainly determined by the raw materials and the production process.The results reveal that as the Sc content increases from 5at%to 20at%,the volume fraction of the Al_(3)Sc phase in the alloy increases from 26.9%to 80.2%,and the average grain size of the Al_(3)Sc phase increases from 12.9μm to 67.7μm during this period.Additionally,both the coefficient of thermal expansion(CTE)and thermal conductivity(TC)of AlSc alloys exhibit a downward trend.Based on experimental data and first-principles calculations,the effective medium theory and the Turner model effectively predict the TC and CTE of Al-xSc alloys.The optimal characteristic parameter(k0)of the Turner model is determined to be 50.The model predictions align well with the experimental results.展开更多
Let(M,g)be a compact Riemann surface with unit area,h a smooth function on M.The Kazdan-Warner problem is that under what kind of conditions on h the equationΔu=8π-8πhe^(u) has a solution.In this survey article,we ...Let(M,g)be a compact Riemann surface with unit area,h a smooth function on M.The Kazdan-Warner problem is that under what kind of conditions on h the equationΔu=8π-8πhe^(u) has a solution.In this survey article,we shall review the development of this problem along the variational method.展开更多
With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixe...With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.展开更多
This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materi...This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.展开更多
Cancer screening is a strategy focused on highrisk populations rather than universal populationwide screening, based on a comprehensive evaluation of epidemiological principles and practical feasibility. The effective...Cancer screening is a strategy focused on highrisk populations rather than universal populationwide screening, based on a comprehensive evaluation of epidemiological principles and practical feasibility. The effectiveness of screening depends on factors such as disease prevalence, as well as the sensitivity and specificity of the screening technology employed.展开更多
We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atom...We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.Key words:C-lignin;adsorption;We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.展开更多
Over 70 years ago,China proposed the Five Principles of Peaceful Coexistence,which were first embraced by countries such as Myanmar and gradually gained traction across Asia.The Five Principles eventually became widel...Over 70 years ago,China proposed the Five Principles of Peaceful Coexistence,which were first embraced by countries such as Myanmar and gradually gained traction across Asia.The Five Principles eventually became widely recognized norms in international relations and foundational principles of international law,contributing significantly to the post-World War II international order.Decades on,the Five Principles have not faded into history.Rather,they have demonstrated renewed relevance in today’s complex global landscape.展开更多
Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This r...Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This review synthesizes the theoretical advancements,computational approaches,emerging challenges,and possible research directions in the field.Firstly,we briefly review the fundamental theory of continuous-time optimal control,including Pontryagin's maximum principle(PMP)and dynamic programming principle(DPP).Secondly,we present the foundational results in optimal impulse control,including necessary conditions and sufficient conditions.Thirdly,we systematize impulse game methodologies,from Nash equilibrium existence theory to the connection between Nash equilibrium and systems stability.Fourthly,we summarize the numerical algorithms including the intelligent computation approaches.Finally,we examine the new trends and challenges in theory and applications as well as computational considerations.展开更多
A heteronuclear dual transition metal atom catalyst is a promising strategy to solve and relieve the increasing energy and environment crisis.However,the role of each atom still does not efficiently differentiate due ...A heteronuclear dual transition metal atom catalyst is a promising strategy to solve and relieve the increasing energy and environment crisis.However,the role of each atom still does not efficiently differentiate due to the high activity but low detectability of each transition metal in the synergistic catalytic process when considering the influence of heteronuclear induced atomic difference for each transition metal atom,thus seriously hindering intrinsic mechanism finding.Herein,we proposed coordinate environment vary induced heterogenization of homonuclear dual-transition metal,which inherits the advantage of heteronuclear transition metal atom catalyst but also controls the variable of the two atoms to explore the underlying mechanism.Based on this proposal,employing density functional theory study and machine learning,23 kinds of homonuclear transition metals are doping in four asymmetric C_(3)N for heterogenization to evaluate the underlying catalytic mechanism.Our results demonstrate that five catalysts exhibit excellent catalytic performance with a low limiting potential of-0.28 to-0.48 V.In the meantime,a new mechanism,"capture-charge distribution-recapturecharge redistribution",is developed for both side-on and end-on configuration.More importantly,the pronate site of the first hydrogenation is identified based on this mechanism.Our work not only initially makes a deep understanding of the transition dual metal-based heteronuclear catalyst indirectly but also broadens the development of complicated homonuclear dual-atom catalysts in the future.展开更多
It’s a great honor for me to talk about ethics applied to artificial intelligence here.Most of the problems that we are facing today come from a strong misunderstanding of what ethics means.We tend to think ethics ar...It’s a great honor for me to talk about ethics applied to artificial intelligence here.Most of the problems that we are facing today come from a strong misunderstanding of what ethics means.We tend to think ethics are merely about establishing principles that would help us mitigate risks and secure benefits expected from AI systems.We are on the wrong path.Ethics are much more complex than that.Ethics are about philosophy,not about politics.Ethics are more about asking questions to enlighten decision-making processes,then to provide one-size-fit-all solutions.We are doing what I call cosmetics,which is a makeup using ethics-related vocabulary,notions and concepts to communicate and influence users and consumers,and to send messages to the market.展开更多
NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a nec...NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly.展开更多
Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglo...Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglotz type equations for nonholonomic systems are established.Then,the Noether symmetries are studied,and the conserved quantities are obtained.The results are extended to nonholonomic canonical systems,and the Herglotz type canonical equations and the Noether theorems are obtained.Two examples are provided to demonstrate the validity of the methods and results.展开更多
In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,...In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,turning motion,and turning motion with different radi by the voltage differential driving method.A prototype with a weight of 38 g and dimensions of 150×80×31 mm^(3) was fabricated.Firstly,the dynamics and kinematics of the piezoelectric robot were analyzed to obtain the trajectory of a point at the end of the piezoelectric robot leg.The motion principle of the piezo-electric robot was analyzed,and then the piezoelectric robot's modal analysis and harmonic response analysis were carried out using finite element analysis software.Finally,an experimental setup was built to verify the effectiveness and high efficiency of the robot's motion,and the effects of frequency,voltage,load,and height of the driving leg on the robot's motion performance were discussed.The performance test results show that the piezoelectric robot has a maximum veloc-ity of 66.79 mm/s at an excitation voltage of 320 V and a load capacity of 55 g.In addition,the H-BPR with unequal drive legs has better climbing performance,and the obtained conclusions are informative for selecting leg heights for piezoelectric robots.展开更多
In essence,the negotiation of license fees on standard essential patent(SEP)belongs to a kind of market be⁃havior,and the pricing right should be given to the market subjects under the requirements of patent law.In re...In essence,the negotiation of license fees on standard essential patent(SEP)belongs to a kind of market be⁃havior,and the pricing right should be given to the market subjects under the requirements of patent law.In recent years,the frequent disputes on SEP license fees witnessed in the industrial and academic worlds,together with the lack of systematic supporting functions like FRAND,make SEP pricing excessively reliant on judicial judgment in practice.Fortunately,a variety of pricing methods have been proposed by theoretical research and practiced in judicial cases,which provide possible solutions for the license fee pricing of SEP from the operational level.In this paper,by focusing on the characteristics of the existing SEP pricing methods in the academic fields and judicial system,the dispute caused by license fees of SEP is clarified firstly,then by combining and interpreting twelve existing pricing methods of license fee of SEP with academic literature and judicial cases,four categories of methods are composed based on the application stages and calculation logic.Thirdly,the application barriers and dilemmas caused by the inherent limita⁃tions of the four categories of methods are analyzed,and the possible ways to put these methods into practice are ex⁃plored.Lastly,suggestions are presented from the aspects of preconditions for application,pricing stages,dispute reso⁃lution mechanisms,and comprehensive applications.The purpose of this paper is to provide enlightenment for getting back on track with the pricing right and further optimization of the pricing mechanism of license fees of SEP.展开更多
To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-minin...To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-mining technology system with non-pillar in mines(ETSNM)in recent years.The petal warning criterion for the stability of the surrounding rock of the roadway at the end-mining stage was obtained by studying the inverse problem of the petal theorem.A conformal mathematical model of the end-mining stage was established using the conformal mapping method,and the limit theorem of the peak point of mine pressure(LTPPMP)in the end-mining stage was demonstrated.Based on the cross-fusion of the above basic mathematical theory and the LTPPMP,a new ETSNM model was proposed,which includes no coal pillar,no dedicated retracement roadways,and fast retracement equipment(NNF).The mathematical principles of engineering technology for height control,speed limit,and roof cutting in the end-mining stage with non-pillar were revealed.The scientific and application values of the ETSNM were confirmed through engineering applications.Based on this,a new non-pillar control technology for dynamic disasters in the end-mining stage was proposed.The above research will play an active role in promoting the engineering application of ETSNM driven by mathematical theory.展开更多
TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have desig...TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have designed two-dimensional semiconductor TiOS materials using swarm intelligence algorithms combined with first-principles calculations.Three stable low-energy structures with space groups of P2_(1)/m,P3m1 and P2_(1)/c are identified.Among these structures,the Janus P3m1 phase is a direct bandgap semiconductor,while the P2_(1)/m and P2_(1)/c phases are indirect bandgap semiconductors.Utilizing the accurate hybrid density functional HSE06 method,the band gaps of the three structures are calculated to be 2.34 eV(P2_(1)/m),2.24 eV(P3m1)and 3.22 eV(P2_(1)/c).Optical calculations reveal that TiOS materials exhibit a good light-harvesting capability in both visible and ultraviolet spectral ranges.Moreover,the photocatalytic calculations also indicate that both P2_(1)/m and P3m1 TiOS can provide a strong driving force for converting H_(2)O to H_(2)and O_(2)in an acidic environment with pH=0.The structural stabilities,mechanical properties,electronic structures and hydrogen evolution reaction activities are also discussed in detail.Our research suggests that two-dimensional TiOS materials have potential applications in both semiconductor devices and photocatalysis.展开更多
The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed ...The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed two low energy structures with P312 and P-31m phases,both of which the structures are hexagonal in shape and show non-centrosymmetry for the P312 phase and centrosymmetry for the P-31m phase.According to our results,two structural phases are found to be stable thermally and dynamically.The P312 phase of AsP_(2)X_(6)(X=S,Se)are indirect semiconductors with band gaps of 2.44 eV(AsP2S6)and 2.18 eV(AsP2Se6)at the HSE06 level,and their absorption coefficients are predicted to reach the order of 10^(5)cm^(-1)from visible light to ultraviolet region,but the main absorption is manly in the ultraviolet region.The P-31m phase of AsP_(2)X_(6)(X=S,Se)exhibits metal character with the Fermi surface mainly occupied by the p orbital of S/Se.Remarkably,estimated by first principles calculations,the P-31m AsP2S6 is found to be an intrinsic phonon-mediated superconductor with a relatively high critical superconducting temperature of about 13.4 K,and the P-31m AsP2Se6 only has a superconducting temperature of 1.4 K,which suggest that the P-31m AsP2S6 may be a good candidate for a nanoscale superconductor.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0609000)National Natural Science Foundation of China(Grant Nos.52171034 and 52101037)Postdoctoral Fellowship Program of CPSFara(No.GZB20230944).
文摘Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.
基金National Key Research and Development Program of China(2022YFB3504402,2023YFB3610101)。
文摘AlScN piezoelectric films prepared by AlSc alloy sputter targets are essential materials for 5G radio frequency filters.The thermophysical properties of AlSc alloy targets are closely related to their welding processes and applications.Al-xSc alloys(x=5,10,15,20,25,at%)were prepared by vacuum induction melting,whose purity is mainly determined by the raw materials and the production process.The results reveal that as the Sc content increases from 5at%to 20at%,the volume fraction of the Al_(3)Sc phase in the alloy increases from 26.9%to 80.2%,and the average grain size of the Al_(3)Sc phase increases from 12.9μm to 67.7μm during this period.Additionally,both the coefficient of thermal expansion(CTE)and thermal conductivity(TC)of AlSc alloys exhibit a downward trend.Based on experimental data and first-principles calculations,the effective medium theory and the Turner model effectively predict the TC and CTE of Al-xSc alloys.The optimal characteristic parameter(k0)of the Turner model is determined to be 50.The model predictions align well with the experimental results.
文摘Let(M,g)be a compact Riemann surface with unit area,h a smooth function on M.The Kazdan-Warner problem is that under what kind of conditions on h the equationΔu=8π-8πhe^(u) has a solution.In this survey article,we shall review the development of this problem along the variational method.
基金Supported by the National Natural Science Foundation of China(12201368,62376252)Key Project of Natural Science Foundation of Zhejiang Province(LZ22F030003)Zhejiang Province Leading Geese Plan(2024C02G1123882,2024C01SA100795).
文摘With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.
文摘This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.
文摘Cancer screening is a strategy focused on highrisk populations rather than universal populationwide screening, based on a comprehensive evaluation of epidemiological principles and practical feasibility. The effectiveness of screening depends on factors such as disease prevalence, as well as the sensitivity and specificity of the screening technology employed.
基金Funded by the Hubei Province Key Research Foundation for Water Resources,China(No.HBSLKY2023035)the National College Students’Innovation and Entrepreneurship Training Program,China(No.202310500012)the Wuhan Talents Outstanding Young Talents Program。
文摘We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.Key words:C-lignin;adsorption;We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.
基金phased achievement of the Yunnan Provincial Philosophy and Social Sciences Innovation Team project titled Research on Ethnic Issues and Their Impact in Northern Myanmar(No.2025CX09).
文摘Over 70 years ago,China proposed the Five Principles of Peaceful Coexistence,which were first embraced by countries such as Myanmar and gradually gained traction across Asia.The Five Principles eventually became widely recognized norms in international relations and foundational principles of international law,contributing significantly to the post-World War II international order.Decades on,the Five Principles have not faded into history.Rather,they have demonstrated renewed relevance in today’s complex global landscape.
文摘Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This review synthesizes the theoretical advancements,computational approaches,emerging challenges,and possible research directions in the field.Firstly,we briefly review the fundamental theory of continuous-time optimal control,including Pontryagin's maximum principle(PMP)and dynamic programming principle(DPP).Secondly,we present the foundational results in optimal impulse control,including necessary conditions and sufficient conditions.Thirdly,we systematize impulse game methodologies,from Nash equilibrium existence theory to the connection between Nash equilibrium and systems stability.Fourthly,we summarize the numerical algorithms including the intelligent computation approaches.Finally,we examine the new trends and challenges in theory and applications as well as computational considerations.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(Qiankehe Foundation-ZK[2022]General 308,the National Natural Science Foundation of China(Grant No.12164009,52262031,12304259,12005046),QKHJC-ZK[2023]YB284)top scientific and technological talents in Guizhou Province(Qian Jiaoji[2022]No.078)+4 种基金Functional Materials and Devices Technology Innovation Team of Guizhou Province University(Qian Jiaoji[2023]058)the Open Project Program of Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems(No.2023SZKF01)Key Research and Development Prejects of Shanxi Priovince(202102030201004,202201030201009)Guizhou Normal University Academic New Talent Fund(No.Guizhou Normal New Talent[2022]06)supported in part by the Construction of Key Technology Innovation Talent Team for Micro-Nano Infor。
文摘A heteronuclear dual transition metal atom catalyst is a promising strategy to solve and relieve the increasing energy and environment crisis.However,the role of each atom still does not efficiently differentiate due to the high activity but low detectability of each transition metal in the synergistic catalytic process when considering the influence of heteronuclear induced atomic difference for each transition metal atom,thus seriously hindering intrinsic mechanism finding.Herein,we proposed coordinate environment vary induced heterogenization of homonuclear dual-transition metal,which inherits the advantage of heteronuclear transition metal atom catalyst but also controls the variable of the two atoms to explore the underlying mechanism.Based on this proposal,employing density functional theory study and machine learning,23 kinds of homonuclear transition metals are doping in four asymmetric C_(3)N for heterogenization to evaluate the underlying catalytic mechanism.Our results demonstrate that five catalysts exhibit excellent catalytic performance with a low limiting potential of-0.28 to-0.48 V.In the meantime,a new mechanism,"capture-charge distribution-recapturecharge redistribution",is developed for both side-on and end-on configuration.More importantly,the pronate site of the first hydrogenation is identified based on this mechanism.Our work not only initially makes a deep understanding of the transition dual metal-based heteronuclear catalyst indirectly but also broadens the development of complicated homonuclear dual-atom catalysts in the future.
文摘It’s a great honor for me to talk about ethics applied to artificial intelligence here.Most of the problems that we are facing today come from a strong misunderstanding of what ethics means.We tend to think ethics are merely about establishing principles that would help us mitigate risks and secure benefits expected from AI systems.We are on the wrong path.Ethics are much more complex than that.Ethics are about philosophy,not about politics.Ethics are more about asking questions to enlighten decision-making processes,then to provide one-size-fit-all solutions.We are doing what I call cosmetics,which is a makeup using ethics-related vocabulary,notions and concepts to communicate and influence users and consumers,and to send messages to the market.
文摘NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly.
基金supported by the National Natural Science Foundation of China(Grant No.12272248)the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China(Grant No.KYCX23_3296).
文摘Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglotz type equations for nonholonomic systems are established.Then,the Noether symmetries are studied,and the conserved quantities are obtained.The results are extended to nonholonomic canonical systems,and the Herglotz type canonical equations and the Noether theorems are obtained.Two examples are provided to demonstrate the validity of the methods and results.
基金supported by the National Natural Science Foundation of China(No.12372005)the Aeronautical Science Foundation of China(No.ASFC-2024Z070050001)the Natural Science Foundation of Liaoning Province(2024-MSBA-32).
文摘In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,turning motion,and turning motion with different radi by the voltage differential driving method.A prototype with a weight of 38 g and dimensions of 150×80×31 mm^(3) was fabricated.Firstly,the dynamics and kinematics of the piezoelectric robot were analyzed to obtain the trajectory of a point at the end of the piezoelectric robot leg.The motion principle of the piezo-electric robot was analyzed,and then the piezoelectric robot's modal analysis and harmonic response analysis were carried out using finite element analysis software.Finally,an experimental setup was built to verify the effectiveness and high efficiency of the robot's motion,and the effects of frequency,voltage,load,and height of the driving leg on the robot's motion performance were discussed.The performance test results show that the piezoelectric robot has a maximum veloc-ity of 66.79 mm/s at an excitation voltage of 320 V and a load capacity of 55 g.In addition,the H-BPR with unequal drive legs has better climbing performance,and the obtained conclusions are informative for selecting leg heights for piezoelectric robots.
基金Hierarchical Identification and Cross-Layer Correlation of Key Core Technologies from the Perspective of Industrial Chain Structure (National Social Science Fund of China, 24BTQ067)Chongqing Education Commission (CEC) Funding:Research on the Co-governance Mechanism of Patent Quality Based on the Dual-Filter Perspective(24SKGH213)Chongqing Graduate Education and Teaching Funding:Research on the Interdisciplinary Law of Intellectual Property and Optimization of Graduate Talent Training Mode(yjg213122)。
文摘In essence,the negotiation of license fees on standard essential patent(SEP)belongs to a kind of market be⁃havior,and the pricing right should be given to the market subjects under the requirements of patent law.In recent years,the frequent disputes on SEP license fees witnessed in the industrial and academic worlds,together with the lack of systematic supporting functions like FRAND,make SEP pricing excessively reliant on judicial judgment in practice.Fortunately,a variety of pricing methods have been proposed by theoretical research and practiced in judicial cases,which provide possible solutions for the license fee pricing of SEP from the operational level.In this paper,by focusing on the characteristics of the existing SEP pricing methods in the academic fields and judicial system,the dispute caused by license fees of SEP is clarified firstly,then by combining and interpreting twelve existing pricing methods of license fee of SEP with academic literature and judicial cases,four categories of methods are composed based on the application stages and calculation logic.Thirdly,the application barriers and dilemmas caused by the inherent limita⁃tions of the four categories of methods are analyzed,and the possible ways to put these methods into practice are ex⁃plored.Lastly,suggestions are presented from the aspects of preconditions for application,pricing stages,dispute reso⁃lution mechanisms,and comprehensive applications.The purpose of this paper is to provide enlightenment for getting back on track with the pricing right and further optimization of the pricing mechanism of license fees of SEP.
基金supported by the National Natural Science Foundation of China(No.12071047,51774289,52074291).
文摘To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-mining technology system with non-pillar in mines(ETSNM)in recent years.The petal warning criterion for the stability of the surrounding rock of the roadway at the end-mining stage was obtained by studying the inverse problem of the petal theorem.A conformal mathematical model of the end-mining stage was established using the conformal mapping method,and the limit theorem of the peak point of mine pressure(LTPPMP)in the end-mining stage was demonstrated.Based on the cross-fusion of the above basic mathematical theory and the LTPPMP,a new ETSNM model was proposed,which includes no coal pillar,no dedicated retracement roadways,and fast retracement equipment(NNF).The mathematical principles of engineering technology for height control,speed limit,and roof cutting in the end-mining stage with non-pillar were revealed.The scientific and application values of the ETSNM were confirmed through engineering applications.Based on this,a new non-pillar control technology for dynamic disasters in the end-mining stage was proposed.The above research will play an active role in promoting the engineering application of ETSNM driven by mathematical theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272219 and U1904612)the Natural Science Foundation of Henan Province(Grant No.242300421191).
文摘TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have designed two-dimensional semiconductor TiOS materials using swarm intelligence algorithms combined with first-principles calculations.Three stable low-energy structures with space groups of P2_(1)/m,P3m1 and P2_(1)/c are identified.Among these structures,the Janus P3m1 phase is a direct bandgap semiconductor,while the P2_(1)/m and P2_(1)/c phases are indirect bandgap semiconductors.Utilizing the accurate hybrid density functional HSE06 method,the band gaps of the three structures are calculated to be 2.34 eV(P2_(1)/m),2.24 eV(P3m1)and 3.22 eV(P2_(1)/c).Optical calculations reveal that TiOS materials exhibit a good light-harvesting capability in both visible and ultraviolet spectral ranges.Moreover,the photocatalytic calculations also indicate that both P2_(1)/m and P3m1 TiOS can provide a strong driving force for converting H_(2)O to H_(2)and O_(2)in an acidic environment with pH=0.The structural stabilities,mechanical properties,electronic structures and hydrogen evolution reaction activities are also discussed in detail.Our research suggests that two-dimensional TiOS materials have potential applications in both semiconductor devices and photocatalysis.
基金Funded by the National Natural Science Foundation of China(No.U1904612)the Natural Science Foundation of Henan Province(No.222300420506)。
文摘The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed two low energy structures with P312 and P-31m phases,both of which the structures are hexagonal in shape and show non-centrosymmetry for the P312 phase and centrosymmetry for the P-31m phase.According to our results,two structural phases are found to be stable thermally and dynamically.The P312 phase of AsP_(2)X_(6)(X=S,Se)are indirect semiconductors with band gaps of 2.44 eV(AsP2S6)and 2.18 eV(AsP2Se6)at the HSE06 level,and their absorption coefficients are predicted to reach the order of 10^(5)cm^(-1)from visible light to ultraviolet region,but the main absorption is manly in the ultraviolet region.The P-31m phase of AsP_(2)X_(6)(X=S,Se)exhibits metal character with the Fermi surface mainly occupied by the p orbital of S/Se.Remarkably,estimated by first principles calculations,the P-31m AsP2S6 is found to be an intrinsic phonon-mediated superconductor with a relatively high critical superconducting temperature of about 13.4 K,and the P-31m AsP2Se6 only has a superconducting temperature of 1.4 K,which suggest that the P-31m AsP2S6 may be a good candidate for a nanoscale superconductor.