Over 70 years ago,China proposed the Five Principles of Peaceful Coexistence,which were first embraced by countries such as Myanmar and gradually gained traction across Asia.The Five Principles eventually became widel...Over 70 years ago,China proposed the Five Principles of Peaceful Coexistence,which were first embraced by countries such as Myanmar and gradually gained traction across Asia.The Five Principles eventually became widely recognized norms in international relations and foundational principles of international law,contributing significantly to the post-World War II international order.Decades on,the Five Principles have not faded into history.Rather,they have demonstrated renewed relevance in today’s complex global landscape.展开更多
We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atom...We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.Key words:C-lignin;adsorption;We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.展开更多
Gold-platinum(Au-Pt)alloy has aroused considerable attention due to its ultra-low magnetic susceptibility(MS)in testing mass(TM)on spacecraft.However,the effect of Au content on the properties of the alloy has not yet...Gold-platinum(Au-Pt)alloy has aroused considerable attention due to its ultra-low magnetic susceptibility(MS)in testing mass(TM)on spacecraft.However,the effect of Au content on the properties of the alloy has not yet been understood.In this study,the composition design of Au-Pt alloy with ultra-low MS was achieved through density functional theory(DFT)and experimental methods.The elastic,thermal properties and electronic structure were systematically investigated,the composition range was further optimized and Au75Pt25 was determined to be the most suitable alloy for TM material.The phase composition of this alloy after cold rolling and solid solution was characterized,indicating a single-phase FCC structure.In addition,there is a good validation between the experimental Vickers hardness and the DFT results.This work provides new insights into the compositional optimization of Au-Pt alloys and lays the foundation for alloy development.展开更多
Gene Engineering Principles is a fundamental professional course for majors such as bioengineering and biotechnology.It integrates theoretical knowledge with experimental practice and engineering applications.It is ch...Gene Engineering Principles is a fundamental professional course for majors such as bioengineering and biotechnology.It integrates theoretical knowledge with experimental practice and engineering applications.It is characterized by its comprehensive and highly practical nature.Aligning with the new-era higher education philosophy of‘competency-oriented,value-driven’teaching,this study presented a systematic exploration and practice based on undergraduate cohorts from 2018 to 2020 in Chengdu University.The reform focused on teaching methodology,formative assessment,and the integration of ideological and political education.Key strategies included the introduction of classical experimental cases,emphasis on pre-class preparation,enhancement of classroom interaction,focus on engineering-oriented applications,optimization of assessment mechanisms,and the incorporation of national strategic needs into the curriculum.These measures effectively stimulated students’learning motivation and research potential,thereby improving the overall teaching quality and educational effectiveness of the course.The results of the teaching reform demonstrate significant improvements in students’ability to apply theoretical knowledge to practical engineering problems,scientific thinking,experimental research skills,scientific reasoning,and professional identity.Reformed classes outperformed control groups across various instructional metrics,achieving notable educational outcomes.展开更多
This paper comprehensively explores the technical principles and application practice of Sainaoning absorbable dural sealant medical adhesive in dural closure.It elaborates on the research and development background o...This paper comprehensively explores the technical principles and application practice of Sainaoning absorbable dural sealant medical adhesive in dural closure.It elaborates on the research and development background of Sainaoning,analyzes its composition,action mechanism,and product characteristics in detail,and presents the results of pre-clinical and clinical studies.The application of Sainaoning in different craniotomy surgeries is discussed,and its effectiveness and safety are evaluated.The paper also analyzes the challenges in its application and proposes corresponding countermeasures,aiming to provide a comprehensive understanding and reference for the clinical use and further development of Sainaoning.展开更多
The all-vanadium redox flow battery(VRFB)plays an important role in the energy transition toward renewable technologies by providing grid-scale energy storage.Their deployment,however,is limited by the lack of membran...The all-vanadium redox flow battery(VRFB)plays an important role in the energy transition toward renewable technologies by providing grid-scale energy storage.Their deployment,however,is limited by the lack of membranes that provide both a high energy efficiency and capacity retention.Typically,the improvement of the battery’s energy efficiency comes at the cost of its capacity retention.Herein,novel N-alkylated and N-benzylated meta-polybenzimidazole(m-PBI)membranes are used to understand the molecular requirements of the polymer electrolyte in a vanadium redox flow battery,providing an important toolbox for future research toward next-generation membrane materials in energy storage devices.The addition of an ethyl side chain to the m-PBI backbone increases its affinity toward the acidic electrolyte,thereby increasing its ionic conductivity and the corresponding energy efficiency of the VRFB cell from 70%to 78%at a current density of 200 mA cm^(-2).In addition,cells equipped with ethylated m-PBI showed better capacity retention than their pristine counterpart,respectively 91%versus 87%,over 200 cycles at 200 mA cm^(-2).The outstanding VRFB cycling performance,together with the low-cost and fluorine-free chemistry of the N-alkylated m-PBI polymer,makes this material a promising membrane to be used in next-generation VRFB systems.展开更多
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib...Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.展开更多
TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have desig...TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have designed two-dimensional semiconductor TiOS materials using swarm intelligence algorithms combined with first-principles calculations.Three stable low-energy structures with space groups of P2_(1)/m,P3m1 and P2_(1)/c are identified.Among these structures,the Janus P3m1 phase is a direct bandgap semiconductor,while the P2_(1)/m and P2_(1)/c phases are indirect bandgap semiconductors.Utilizing the accurate hybrid density functional HSE06 method,the band gaps of the three structures are calculated to be 2.34 eV(P2_(1)/m),2.24 eV(P3m1)and 3.22 eV(P2_(1)/c).Optical calculations reveal that TiOS materials exhibit a good light-harvesting capability in both visible and ultraviolet spectral ranges.Moreover,the photocatalytic calculations also indicate that both P2_(1)/m and P3m1 TiOS can provide a strong driving force for converting H_(2)O to H_(2)and O_(2)in an acidic environment with pH=0.The structural stabilities,mechanical properties,electronic structures and hydrogen evolution reaction activities are also discussed in detail.Our research suggests that two-dimensional TiOS materials have potential applications in both semiconductor devices and photocatalysis.展开更多
The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed ...The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed two low energy structures with P312 and P-31m phases,both of which the structures are hexagonal in shape and show non-centrosymmetry for the P312 phase and centrosymmetry for the P-31m phase.According to our results,two structural phases are found to be stable thermally and dynamically.The P312 phase of AsP_(2)X_(6)(X=S,Se)are indirect semiconductors with band gaps of 2.44 eV(AsP2S6)and 2.18 eV(AsP2Se6)at the HSE06 level,and their absorption coefficients are predicted to reach the order of 10^(5)cm^(-1)from visible light to ultraviolet region,but the main absorption is manly in the ultraviolet region.The P-31m phase of AsP_(2)X_(6)(X=S,Se)exhibits metal character with the Fermi surface mainly occupied by the p orbital of S/Se.Remarkably,estimated by first principles calculations,the P-31m AsP2S6 is found to be an intrinsic phonon-mediated superconductor with a relatively high critical superconducting temperature of about 13.4 K,and the P-31m AsP2Se6 only has a superconducting temperature of 1.4 K,which suggest that the P-31m AsP2S6 may be a good candidate for a nanoscale superconductor.展开更多
The unbreakable doll performance at Tang Dynasty Night City has become extremely popular,sparking a wave of enthusiasm online.In the performance,actors dressed in elegant Tang Dynasty attire appear as if they have ste...The unbreakable doll performance at Tang Dynasty Night City has become extremely popular,sparking a wave of enthusiasm online.In the performance,actors dressed in elegant Tang Dynasty attire appear as if they have stepped out of a historical painting,gracefully dancing on the unbreakable doll apparatus.Every gesture and expression exudes the unparalleled elegance of the Tang Dynasty.This paper primarily analyzes the mechanical principles behind the Tang Dynasty Night City’s Unbreakable Doll Performance,starting with structural design to examine its mechanical principles and summarize its dynamic mechanical control mechanisms.展开更多
By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pr...By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.展开更多
Shenzhen Red Culture is the result of the organic combination of the basic principles of Marxism and Chinese reality,presented in the form of red stories and practical events during the socialist revolution and constr...Shenzhen Red Culture is the result of the organic combination of the basic principles of Marxism and Chinese reality,presented in the form of red stories and practical events during the socialist revolution and construction.Shenzhen Red Culture is intrinsically compatible with the knowledge points of the Basic Principles of Marxism(Principles)course.Shenzhen Red Culture is integrated into the teaching of the vocational undergraduate Principles course with Bay Area characteristics,guiding the value shaping of Bay Area youth and highlighting the school-based characteristics,vocationality,and professionalism of the vocational undergraduate Principles course.展开更多
Requirements for the ideological and political construction of university courses in the new era stipulate that professional courses should proceed in the same direction as ideological and political courses,forming an...Requirements for the ideological and political construction of university courses in the new era stipulate that professional courses should proceed in the same direction as ideological and political courses,forming an educational pattern that involves all personnel,covers the entire process,and integrates across all courses.Taking the course of Principles of Tourism as an example,this paper discusses the significance,content,and objectives of ideological and political construction in the Principles of Tourism course based on an analysis of its current status.Furthermore,practical strategies for ideological and political construction in the Principles of Tourism course are proposed from four aspects:teaching philosophy,teaching design,teaching methods,and teaching evaluation.The aim is to fully leverage the educational function of tourism-related professional courses and enhance the quality of teaching in the Principles of Tourism course through its ideological and political construction.展开更多
In 2024,China’s human rights research has assumed a distinct“autonomy-oriented shift,”with scholars beginning to refine and construct uniquely Chinese and locally identifiable human rights concepts,categories,and d...In 2024,China’s human rights research has assumed a distinct“autonomy-oriented shift,”with scholars beginning to refine and construct uniquely Chinese and locally identifiable human rights concepts,categories,and discourses.Building an independent human rights knowledge system has become a core academic focus in China’s human rights research field.Upholding fundamental principles and breaking new ground are the key methodological principles for the process.China’s human rights research should be rooted in the“cultural lineage”by preserving the essence of fine traditional Chinese culture,guided by the“moral lineage”by adhering to the Marxist view on human rights,and anchored in the“Four-sphere Confidence”by upholding a distinct human rights development path,so as to define the historical coordinates and value stance of China’s independent human rights knowledge system.Meanwhile,it should maintain a high degree of openness in knowledge,theory,and methodology to address emerging rights demands and contribute to building a new global human rights governance order,so as to underscore the mission of China’s independent human rights knowledge system in the contemporary era and China’s responsibility as a major global actor.China’s human rights research should uphold the dialectical unity between the fundamental principles and innovations,and advance the systemic and theoretical interpretation of its independent human rights knowledge.展开更多
This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materi...This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.展开更多
Thermal Protection System(TPS)with thick tiles,low thermal conductivity,and a short re-entry stage stands as a critical element within reusable aircraft,whose reliability is related to the function and changes with th...Thermal Protection System(TPS)with thick tiles,low thermal conductivity,and a short re-entry stage stands as a critical element within reusable aircraft,whose reliability is related to the function and changes with their physical properties,external conditions,and degradation.Meanwhile,due to the limitation of testing resources,epistemic uncertainties stemming from the small samples are present in TPS reliability modeling.However,current TPS reliability modeling methods face challenges in characterizing the relationships among reliability and physical properties,external conditions,degradation,and epistemic uncertainties.Therefore,under the framework of belief reliability theory,a TPS reliability model is constructed,which takes into account the physical principle,external conditions,performance degradation,and epistemic uncertainties.A reliability simulation algorithm is proposed to calculate TPS reliability.Through a case study and comparison analysis,the proposed method is validated as more effective than the existing method.Additionally,reliability sensitivity analysis is conducted to identify the sensitive factors of reliability under the condition of small samples,through which suggestions are provided for TPS functional design and improvement.展开更多
This paper offers a comprehensive overview of the operational principles of current therapeutic devices for diabetic foot management and further analyzes technological innovations and developmental trends,aiming to pr...This paper offers a comprehensive overview of the operational principles of current therapeutic devices for diabetic foot management and further analyzes technological innovations and developmental trends,aiming to promote research and development in the field of technological convergence.The ultimate goal is to enhance the cure rate for diabetic foot conditions and to decrease the incidence of amputations.The paper discusses the novel applications of ultrasound and optical therapeutic devices within the field of physiotherapy,the numerous advantages of chitosan dressings in biotechnology,the ongoing advancements and broader combined use of vacuum sealing drainage techniques,and the distinctive effects and innovations associated with micro-oxygen diffusion techniques.It thoroughly examines various technological mechanisms that facilitate wound healing,highlighting the clinical applications of ultrasonic atomized medicinal solutions,novel dressing graft copolymerization,continuous hypoxia diffusion,and the functions of vacuum drainage.These advancements facilitate the integration of drainage and dressing changes,with the potential to enhance the therapeutic effects of diabetic foot treatment and provide valuable insights for clinical application.展开更多
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching...Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching mechanism of 4H-SiC is limited misunderstood.In this letter,we reveal the anisotropic etching mechanism of the Si face and C face of 4H-SiC by combining molten-KOH etching,X-ray photoelectron spectroscopy(XPS)and first-principles investigations.The activation energies for the molten-KOH etching of the C face and Si face of 4H-SiC are calculated to be 25.09 and 35.75 kcal/mol,respectively.The molten-KOH etching rate of the C face is higher than the Si face.Combining XPS analysis and first-principles calculations,we find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and the removal of oxides by molten KOH.The faster etching rate of the C face is caused by the fact that the oxides on the C face are unstable,and easier to be removed with molten alkali,rather than the C face being easier to be oxidized.展开更多
The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more ...The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.展开更多
基金phased achievement of the Yunnan Provincial Philosophy and Social Sciences Innovation Team project titled Research on Ethnic Issues and Their Impact in Northern Myanmar(No.2025CX09).
文摘Over 70 years ago,China proposed the Five Principles of Peaceful Coexistence,which were first embraced by countries such as Myanmar and gradually gained traction across Asia.The Five Principles eventually became widely recognized norms in international relations and foundational principles of international law,contributing significantly to the post-World War II international order.Decades on,the Five Principles have not faded into history.Rather,they have demonstrated renewed relevance in today’s complex global landscape.
基金Funded by the Hubei Province Key Research Foundation for Water Resources,China(No.HBSLKY2023035)the National College Students’Innovation and Entrepreneurship Training Program,China(No.202310500012)the Wuhan Talents Outstanding Young Talents Program。
文摘We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.Key words:C-lignin;adsorption;We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.
基金financially supported by the National Key R&D Program of China(No.2021YFC2202300)the National Natural Science Foundation of China(NSFC)(No.51974258)the National College Students Innovation and Entrepreneurship Training Program(No.S202210699134).
文摘Gold-platinum(Au-Pt)alloy has aroused considerable attention due to its ultra-low magnetic susceptibility(MS)in testing mass(TM)on spacecraft.However,the effect of Au content on the properties of the alloy has not yet been understood.In this study,the composition design of Au-Pt alloy with ultra-low MS was achieved through density functional theory(DFT)and experimental methods.The elastic,thermal properties and electronic structure were systematically investigated,the composition range was further optimized and Au75Pt25 was determined to be the most suitable alloy for TM material.The phase composition of this alloy after cold rolling and solid solution was characterized,indicating a single-phase FCC structure.In addition,there is a good validation between the experimental Vickers hardness and the DFT results.This work provides new insights into the compositional optimization of Au-Pt alloys and lays the foundation for alloy development.
基金Supported by Sichuan Province Germplasm Resource Precision Identification Project(2025 Provincial Finance Agricultural High Quality Development Joint Financial Transfer Payment Fund Project)Longquanyi District Science and Technology Plan Project in 2025(2081923007)School Level Horizontal Project in 2025(2502180).
文摘Gene Engineering Principles is a fundamental professional course for majors such as bioengineering and biotechnology.It integrates theoretical knowledge with experimental practice and engineering applications.It is characterized by its comprehensive and highly practical nature.Aligning with the new-era higher education philosophy of‘competency-oriented,value-driven’teaching,this study presented a systematic exploration and practice based on undergraduate cohorts from 2018 to 2020 in Chengdu University.The reform focused on teaching methodology,formative assessment,and the integration of ideological and political education.Key strategies included the introduction of classical experimental cases,emphasis on pre-class preparation,enhancement of classroom interaction,focus on engineering-oriented applications,optimization of assessment mechanisms,and the incorporation of national strategic needs into the curriculum.These measures effectively stimulated students’learning motivation and research potential,thereby improving the overall teaching quality and educational effectiveness of the course.The results of the teaching reform demonstrate significant improvements in students’ability to apply theoretical knowledge to practical engineering problems,scientific thinking,experimental research skills,scientific reasoning,and professional identity.Reformed classes outperformed control groups across various instructional metrics,achieving notable educational outcomes.
文摘This paper comprehensively explores the technical principles and application practice of Sainaoning absorbable dural sealant medical adhesive in dural closure.It elaborates on the research and development background of Sainaoning,analyzes its composition,action mechanism,and product characteristics in detail,and presents the results of pre-clinical and clinical studies.The application of Sainaoning in different craniotomy surgeries is discussed,and its effectiveness and safety are evaluated.The paper also analyzes the challenges in its application and proposes corresponding countermeasures,aiming to provide a comprehensive understanding and reference for the clinical use and further development of Sainaoning.
基金supported by the Swiss National Science Foundation(grant number 188631).
文摘The all-vanadium redox flow battery(VRFB)plays an important role in the energy transition toward renewable technologies by providing grid-scale energy storage.Their deployment,however,is limited by the lack of membranes that provide both a high energy efficiency and capacity retention.Typically,the improvement of the battery’s energy efficiency comes at the cost of its capacity retention.Herein,novel N-alkylated and N-benzylated meta-polybenzimidazole(m-PBI)membranes are used to understand the molecular requirements of the polymer electrolyte in a vanadium redox flow battery,providing an important toolbox for future research toward next-generation membrane materials in energy storage devices.The addition of an ethyl side chain to the m-PBI backbone increases its affinity toward the acidic electrolyte,thereby increasing its ionic conductivity and the corresponding energy efficiency of the VRFB cell from 70%to 78%at a current density of 200 mA cm^(-2).In addition,cells equipped with ethylated m-PBI showed better capacity retention than their pristine counterpart,respectively 91%versus 87%,over 200 cycles at 200 mA cm^(-2).The outstanding VRFB cycling performance,together with the low-cost and fluorine-free chemistry of the N-alkylated m-PBI polymer,makes this material a promising membrane to be used in next-generation VRFB systems.
基金supported by the National Key Research and Development Program of China(2023YFB3809800)the National Natural Science Foundation of China(52172249,52525601)+2 种基金the Chinese Academy of Sciences Talents Program(E2290701)the Jiangsu Province Talents Program(JSSCRC2023545)the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province(BE2022011).
文摘Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272219 and U1904612)the Natural Science Foundation of Henan Province(Grant No.242300421191).
文摘TiO_(2)is a well-known photocatalyst with a band gap of 3.2 eV,yet its ability to absorb light is limited to the short wavelengths of ultraviolet light.To achieve a more effective photocatalytic material,we have designed two-dimensional semiconductor TiOS materials using swarm intelligence algorithms combined with first-principles calculations.Three stable low-energy structures with space groups of P2_(1)/m,P3m1 and P2_(1)/c are identified.Among these structures,the Janus P3m1 phase is a direct bandgap semiconductor,while the P2_(1)/m and P2_(1)/c phases are indirect bandgap semiconductors.Utilizing the accurate hybrid density functional HSE06 method,the band gaps of the three structures are calculated to be 2.34 eV(P2_(1)/m),2.24 eV(P3m1)and 3.22 eV(P2_(1)/c).Optical calculations reveal that TiOS materials exhibit a good light-harvesting capability in both visible and ultraviolet spectral ranges.Moreover,the photocatalytic calculations also indicate that both P2_(1)/m and P3m1 TiOS can provide a strong driving force for converting H_(2)O to H_(2)and O_(2)in an acidic environment with pH=0.The structural stabilities,mechanical properties,electronic structures and hydrogen evolution reaction activities are also discussed in detail.Our research suggests that two-dimensional TiOS materials have potential applications in both semiconductor devices and photocatalysis.
基金Funded by the National Natural Science Foundation of China(No.U1904612)the Natural Science Foundation of Henan Province(No.222300420506)。
文摘The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed two low energy structures with P312 and P-31m phases,both of which the structures are hexagonal in shape and show non-centrosymmetry for the P312 phase and centrosymmetry for the P-31m phase.According to our results,two structural phases are found to be stable thermally and dynamically.The P312 phase of AsP_(2)X_(6)(X=S,Se)are indirect semiconductors with band gaps of 2.44 eV(AsP2S6)and 2.18 eV(AsP2Se6)at the HSE06 level,and their absorption coefficients are predicted to reach the order of 10^(5)cm^(-1)from visible light to ultraviolet region,but the main absorption is manly in the ultraviolet region.The P-31m phase of AsP_(2)X_(6)(X=S,Se)exhibits metal character with the Fermi surface mainly occupied by the p orbital of S/Se.Remarkably,estimated by first principles calculations,the P-31m AsP2S6 is found to be an intrinsic phonon-mediated superconductor with a relatively high critical superconducting temperature of about 13.4 K,and the P-31m AsP2Se6 only has a superconducting temperature of 1.4 K,which suggest that the P-31m AsP2S6 may be a good candidate for a nanoscale superconductor.
文摘The unbreakable doll performance at Tang Dynasty Night City has become extremely popular,sparking a wave of enthusiasm online.In the performance,actors dressed in elegant Tang Dynasty attire appear as if they have stepped out of a historical painting,gracefully dancing on the unbreakable doll apparatus.Every gesture and expression exudes the unparalleled elegance of the Tang Dynasty.This paper primarily analyzes the mechanical principles behind the Tang Dynasty Night City’s Unbreakable Doll Performance,starting with structural design to examine its mechanical principles and summarize its dynamic mechanical control mechanisms.
基金supported by the National Key R&D Program of China under Grant No.2025YFB3003603the National Natural Science Foundation of China under Grant Nos.12135002 and 12105209.
文摘By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.
基金Shenzhen Polytechnic University General Project of Teaching Quality Project“Research on the Teaching Path of Basic Principles of Marxism in Vocational Undergraduate Programs with Special Characteristics in the Bay Area by Integrating Shenzhen Red Culture”(2025)Shenzhen Polytechnic University Quality Engineering Program Undergraduate Basic Principles of Marxism Course Joint Teaching and Research Room Construction Project(2025)。
文摘Shenzhen Red Culture is the result of the organic combination of the basic principles of Marxism and Chinese reality,presented in the form of red stories and practical events during the socialist revolution and construction.Shenzhen Red Culture is intrinsically compatible with the knowledge points of the Basic Principles of Marxism(Principles)course.Shenzhen Red Culture is integrated into the teaching of the vocational undergraduate Principles course with Bay Area characteristics,guiding the value shaping of Bay Area youth and highlighting the school-based characteristics,vocationality,and professionalism of the vocational undergraduate Principles course.
基金2023 Ideological and Political Demonstration Course Construction Project of Guangxi University“Principles of Tourism:An Ideological and Political Demonstration Course”(ZX02020034224005)。
文摘Requirements for the ideological and political construction of university courses in the new era stipulate that professional courses should proceed in the same direction as ideological and political courses,forming an educational pattern that involves all personnel,covers the entire process,and integrates across all courses.Taking the course of Principles of Tourism as an example,this paper discusses the significance,content,and objectives of ideological and political construction in the Principles of Tourism course based on an analysis of its current status.Furthermore,practical strategies for ideological and political construction in the Principles of Tourism course are proposed from four aspects:teaching philosophy,teaching design,teaching methods,and teaching evaluation.The aim is to fully leverage the educational function of tourism-related professional courses and enhance the quality of teaching in the Principles of Tourism course through its ideological and political construction.
基金a phased result funded by the Special Funds for Basic Scientific Research Expenses of Universities under the Central Government(24CXTD01).
文摘In 2024,China’s human rights research has assumed a distinct“autonomy-oriented shift,”with scholars beginning to refine and construct uniquely Chinese and locally identifiable human rights concepts,categories,and discourses.Building an independent human rights knowledge system has become a core academic focus in China’s human rights research field.Upholding fundamental principles and breaking new ground are the key methodological principles for the process.China’s human rights research should be rooted in the“cultural lineage”by preserving the essence of fine traditional Chinese culture,guided by the“moral lineage”by adhering to the Marxist view on human rights,and anchored in the“Four-sphere Confidence”by upholding a distinct human rights development path,so as to define the historical coordinates and value stance of China’s independent human rights knowledge system.Meanwhile,it should maintain a high degree of openness in knowledge,theory,and methodology to address emerging rights demands and contribute to building a new global human rights governance order,so as to underscore the mission of China’s independent human rights knowledge system in the contemporary era and China’s responsibility as a major global actor.China’s human rights research should uphold the dialectical unity between the fundamental principles and innovations,and advance the systemic and theoretical interpretation of its independent human rights knowledge.
文摘This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.
基金supported by the steady supports scientific research of Key Laboratory of Defense Science and Technology,China(No.WDZC20220105)the National Natural Science Foundation of China(Nos.51775020,62073009,U20B2002)the Science Challenge Project,China(No.TZ2018007)。
文摘Thermal Protection System(TPS)with thick tiles,low thermal conductivity,and a short re-entry stage stands as a critical element within reusable aircraft,whose reliability is related to the function and changes with their physical properties,external conditions,and degradation.Meanwhile,due to the limitation of testing resources,epistemic uncertainties stemming from the small samples are present in TPS reliability modeling.However,current TPS reliability modeling methods face challenges in characterizing the relationships among reliability and physical properties,external conditions,degradation,and epistemic uncertainties.Therefore,under the framework of belief reliability theory,a TPS reliability model is constructed,which takes into account the physical principle,external conditions,performance degradation,and epistemic uncertainties.A reliability simulation algorithm is proposed to calculate TPS reliability.Through a case study and comparison analysis,the proposed method is validated as more effective than the existing method.Additionally,reliability sensitivity analysis is conducted to identify the sensitive factors of reliability under the condition of small samples,through which suggestions are provided for TPS functional design and improvement.
基金Supported by Undergraduate Innovation and Entrepreneurship Training Program(S202410599085).
文摘This paper offers a comprehensive overview of the operational principles of current therapeutic devices for diabetic foot management and further analyzes technological innovations and developmental trends,aiming to promote research and development in the field of technological convergence.The ultimate goal is to enhance the cure rate for diabetic foot conditions and to decrease the incidence of amputations.The paper discusses the novel applications of ultrasound and optical therapeutic devices within the field of physiotherapy,the numerous advantages of chitosan dressings in biotechnology,the ongoing advancements and broader combined use of vacuum sealing drainage techniques,and the distinctive effects and innovations associated with micro-oxygen diffusion techniques.It thoroughly examines various technological mechanisms that facilitate wound healing,highlighting the clinical applications of ultrasonic atomized medicinal solutions,novel dressing graft copolymerization,continuous hypoxia diffusion,and the functions of vacuum drainage.These advancements facilitate the integration of drainage and dressing changes,with the potential to enhance the therapeutic effects of diabetic foot treatment and provide valuable insights for clinical application.
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金This work is supported by the Natural Science Foundation of China(Grant Nos.62274143&62204216)Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LHZSD24E020001)+4 种基金the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant Nos.2022C0102&2023C01010)Partial support was provided by the Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou(Grant No.TD2022012)Fundamental Research Funds for the Central Universities(Grant No.226-2022-00200)the Natural Science Foundation of China for Innovative Research Groups(Grant No.61721005)the Open Fund of Zhejiang Provincial Key Laboratory of Wide Bandgap Semiconductors,Hangzhou Global Scientific and Technological Innovation Center,Zhejiang University.
文摘Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching mechanism of 4H-SiC is limited misunderstood.In this letter,we reveal the anisotropic etching mechanism of the Si face and C face of 4H-SiC by combining molten-KOH etching,X-ray photoelectron spectroscopy(XPS)and first-principles investigations.The activation energies for the molten-KOH etching of the C face and Si face of 4H-SiC are calculated to be 25.09 and 35.75 kcal/mol,respectively.The molten-KOH etching rate of the C face is higher than the Si face.Combining XPS analysis and first-principles calculations,we find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and the removal of oxides by molten KOH.The faster etching rate of the C face is caused by the fact that the oxides on the C face are unstable,and easier to be removed with molten alkali,rather than the C face being easier to be oxidized.
基金the National Key Research and Development Programme of China(Grant No.2023YFC3804903).
文摘The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.