“Open community” has aroused widespread concern and research. This paper focuses on the system analysis research of the problem that based on statistics including the regression equation fitting function and mathema...“Open community” has aroused widespread concern and research. This paper focuses on the system analysis research of the problem that based on statistics including the regression equation fitting function and mathematical theory, combined with the actual effect of camera measurement method, Prim’s algorithm and neural network to “Open community” and the applicable conditions. Research results show that with the increasing number of roads within the district, the benefit time gradually increased, but each type of district capacity is different.展开更多
Based on the principle of “pre-disaster prevention outweighs rescue during disasters”, this study targets areas threatened by natural disasters, and develops an automatic algorithm based on the Prim algorithm to ser...Based on the principle of “pre-disaster prevention outweighs rescue during disasters”, this study targets areas threatened by natural disasters, and develops an automatic algorithm based on the Prim algorithm to serve as an automatic identification system. In the face of natural disasters that disable key facilities in the region and prevent settlements from contacting the outside world or outsiders from sending rescuers to the settlements, the proposed system helps to identify whether these regions will become isolated areas and conduct disaster mitigation and relief resource allocation before any natural disaster in order to reduce potential disaster losses. An automatic identification system, based on the threshold of channel blocking due to broken roads and bridges, determines through the decision tree model and relevant patterns whether such regions will become isolated areas by identifying areas based on the results of model analysis. The proposed system’s identification results are verified by actual case histories and comparisons;the results can be used to correctly identify isolated areas. Finally, Microsoft Visual Studio C # and Google Map are employed to apply the results and to produce an information mode for the determination and decision support of isolated areas affected by natural disasters.展开更多
The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stre...The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stress spectrum model is crucial for further fatigue reliability analysis.This study investigates the performance of the REBMIX algorithm in modeling both univariate(stress range)and multivariate(stress range and mean stress)distributions of the rain-flowmatrix for a steel arch bridge,usingAkaike’s Information Criterion(AIC)as a performance metric.Four types of finitemixture distributions—Normal,Lognormal,Weibull,and Gamma—are employed tomodel the stress range.Additionally,mixed distributions,including Normal-Normal,Lognormal-Normal,Weibull-Normal,and Gamma-Normal,are utilized to model the joint distribution of stress range and mean stress.The REBMIX algorithm estimates the number of components,component weights,and component parameters for each candidate finite mixture distribution.The results demonstrate that the REBMIX algorithm-based mixture parameter estimation approach effectively identifies the optimal distribution based on AIC values.Furthermore,the algorithm exhibits superior computational efficiency compared to traditional methods,making it highly suitable for practical applications.展开更多
Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be g...Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be greatly suppressed and all the models in population will tend to equal in a few iterations, so the optimal solution meeting requirement can not be obtained. In this paper, an indirect smooth constraint technique is introduced to genetic inversion. In this method, the new models produced in iteration are smoothed, then used as theoretical models in calculation of misfit function, but in process of iteration only the original models are used in order to keep the diversity of models. The technique is effective in inversion of surface wave and receiver function. Using this technique, we invert the phase velocity of Raleigh wave in the Tibetan Plateau, revealing the horizontal variation of S wave velocity structure near the center of the Tibetan Plateau. The results show that the S wave velocity in the north is relatively lower than that in the south. For most paths there is a lower velocity zone with 12-25 km thick at the depth of 15-40 km. The lower velocity zone in upper mantle is located below the depth of 100 km, and the thickness is usually 40-80 km, but for a few paths reach to 100 km thick. Among the area of Ando, Maqi and Ushu stations, there is an obvious lower velocity zone with the lowest velocity of 4.2-4.3 km/s at the depth of 90-230 km. Based on the S wave velocity structures of different paths and former data, we infer that the subduction of the Indian Plate is delimited nearby the Yarlung Zangbo suture zone.展开更多
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability...Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.展开更多
Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to impro...Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.展开更多
The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existi...The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.展开更多
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t...The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks.展开更多
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee...In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.展开更多
The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (1D FFT) and 2D FFT have time complexity O(N log N) and O(N^2 log N) respectively. Since 1965,...The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (1D FFT) and 2D FFT have time complexity O(N log N) and O(N^2 log N) respectively. Since 1965, there has been no more essential breakthrough for the design of fast DFT algorithm. DFT has two properties. One property is that DFT is energy conservation transform. The other property is that many DFT coefficients are close to zero. The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy. One-dimensional quantum DFT (1D QDFT) and two-dimensional quantum DFT (2D QDFT) are presented in this paper. The quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, 1D and 2D QDFT have time complexity O(v/N) and O(N) respectively. QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible.展开更多
In biology, signal transduction refers to a process by which a cell converts one kind of signal or stimulus into another. It involves ordered sequences of biochemical reactions inside the cell. These cascades of react...In biology, signal transduction refers to a process by which a cell converts one kind of signal or stimulus into another. It involves ordered sequences of biochemical reactions inside the cell. These cascades of reactions are carried out by enzymes and activated by second messengers. Signal transduction pathways are complex in nature. Each pathway is responsible for tuning one or more biological functions in the intracellular environment as well as more than one pathway interact among themselves to carry forward a single biological function. Such kind of behavior of these pathways makes understanding difficult. Hence, for the sake of simplicity, they need to be partitioned into smaller modules and then analyzed. We took VEGF signaling pathway, which is responsible for angiogenesis for this kind of modularized study. Modules were obtained by applying the algorithm of Nayak and De (Nayak and De, 2007) for different complexity values. These sets of modules were compared among themselves to get the best set of modules for an optimal complexity value. The best set of modules compared with four different partitioning algorithms namely, Farhat’s (Farhat, 1998), Greedy (Chartrand and Oellermann, 1993), Kernighan-Lin’s (Kernighan and Lin, 1970) and Newman’s community finding algorithm (Newman, 2006). These comparisons enabled us to decide which of the aforementioned algorithms was the best one to create partitions from human VEGF signaling pathway. The optimal complexity value, on which the best set of modules was obtained, was used to get modules from different species for comparative study. Comparison among these modules would shed light on the trend of development of VEGF signaling pathway over these species.展开更多
文摘“Open community” has aroused widespread concern and research. This paper focuses on the system analysis research of the problem that based on statistics including the regression equation fitting function and mathematical theory, combined with the actual effect of camera measurement method, Prim’s algorithm and neural network to “Open community” and the applicable conditions. Research results show that with the increasing number of roads within the district, the benefit time gradually increased, but each type of district capacity is different.
文摘Based on the principle of “pre-disaster prevention outweighs rescue during disasters”, this study targets areas threatened by natural disasters, and develops an automatic algorithm based on the Prim algorithm to serve as an automatic identification system. In the face of natural disasters that disable key facilities in the region and prevent settlements from contacting the outside world or outsiders from sending rescuers to the settlements, the proposed system helps to identify whether these regions will become isolated areas and conduct disaster mitigation and relief resource allocation before any natural disaster in order to reduce potential disaster losses. An automatic identification system, based on the threshold of channel blocking due to broken roads and bridges, determines through the decision tree model and relevant patterns whether such regions will become isolated areas by identifying areas based on the results of model analysis. The proposed system’s identification results are verified by actual case histories and comparisons;the results can be used to correctly identify isolated areas. Finally, Microsoft Visual Studio C # and Google Map are employed to apply the results and to produce an information mode for the determination and decision support of isolated areas affected by natural disasters.
基金jointly supported by the Fundamental Research Funds for the Central Universities(Grant No.xzy012023075)the Zhejiang Engineering Research Center of Intelligent Urban Infrastructure(Grant No.IUI2023-YB-12).
文摘The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stress spectrum model is crucial for further fatigue reliability analysis.This study investigates the performance of the REBMIX algorithm in modeling both univariate(stress range)and multivariate(stress range and mean stress)distributions of the rain-flowmatrix for a steel arch bridge,usingAkaike’s Information Criterion(AIC)as a performance metric.Four types of finitemixture distributions—Normal,Lognormal,Weibull,and Gamma—are employed tomodel the stress range.Additionally,mixed distributions,including Normal-Normal,Lognormal-Normal,Weibull-Normal,and Gamma-Normal,are utilized to model the joint distribution of stress range and mean stress.The REBMIX algorithm estimates the number of components,component weights,and component parameters for each candidate finite mixture distribution.The results demonstrate that the REBMIX algorithm-based mixture parameter estimation approach effectively identifies the optimal distribution based on AIC values.Furthermore,the algorithm exhibits superior computational efficiency compared to traditional methods,making it highly suitable for practical applications.
基金State Natural Science Foundation (49874021).Contribution No. 01FE2002, Institute of Geophysics, China Seismological Bureau.
文摘Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be greatly suppressed and all the models in population will tend to equal in a few iterations, so the optimal solution meeting requirement can not be obtained. In this paper, an indirect smooth constraint technique is introduced to genetic inversion. In this method, the new models produced in iteration are smoothed, then used as theoretical models in calculation of misfit function, but in process of iteration only the original models are used in order to keep the diversity of models. The technique is effective in inversion of surface wave and receiver function. Using this technique, we invert the phase velocity of Raleigh wave in the Tibetan Plateau, revealing the horizontal variation of S wave velocity structure near the center of the Tibetan Plateau. The results show that the S wave velocity in the north is relatively lower than that in the south. For most paths there is a lower velocity zone with 12-25 km thick at the depth of 15-40 km. The lower velocity zone in upper mantle is located below the depth of 100 km, and the thickness is usually 40-80 km, but for a few paths reach to 100 km thick. Among the area of Ando, Maqi and Ushu stations, there is an obvious lower velocity zone with the lowest velocity of 4.2-4.3 km/s at the depth of 90-230 km. Based on the S wave velocity structures of different paths and former data, we infer that the subduction of the Indian Plate is delimited nearby the Yarlung Zangbo suture zone.
文摘Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.
基金Supported by National Natural Science Foundation of China(Grant No.51109094)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.
基金Supported by the National Natural Science Foundation of China(61862033,61902162)Key Project of Science and Technology Research of Department of Education of Jiangxi Province(GJJ210307)Postgraduate Innovation Fund Project of Education Department of Jiangxi Province(YC2021-S306)。
文摘The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.
文摘The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks.
文摘In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.
基金supported by Sichuan Normal University,China (Grant No 06lk002)
文摘The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (1D FFT) and 2D FFT have time complexity O(N log N) and O(N^2 log N) respectively. Since 1965, there has been no more essential breakthrough for the design of fast DFT algorithm. DFT has two properties. One property is that DFT is energy conservation transform. The other property is that many DFT coefficients are close to zero. The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy. One-dimensional quantum DFT (1D QDFT) and two-dimensional quantum DFT (2D QDFT) are presented in this paper. The quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, 1D and 2D QDFT have time complexity O(v/N) and O(N) respectively. QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible.
文摘In biology, signal transduction refers to a process by which a cell converts one kind of signal or stimulus into another. It involves ordered sequences of biochemical reactions inside the cell. These cascades of reactions are carried out by enzymes and activated by second messengers. Signal transduction pathways are complex in nature. Each pathway is responsible for tuning one or more biological functions in the intracellular environment as well as more than one pathway interact among themselves to carry forward a single biological function. Such kind of behavior of these pathways makes understanding difficult. Hence, for the sake of simplicity, they need to be partitioned into smaller modules and then analyzed. We took VEGF signaling pathway, which is responsible for angiogenesis for this kind of modularized study. Modules were obtained by applying the algorithm of Nayak and De (Nayak and De, 2007) for different complexity values. These sets of modules were compared among themselves to get the best set of modules for an optimal complexity value. The best set of modules compared with four different partitioning algorithms namely, Farhat’s (Farhat, 1998), Greedy (Chartrand and Oellermann, 1993), Kernighan-Lin’s (Kernighan and Lin, 1970) and Newman’s community finding algorithm (Newman, 2006). These comparisons enabled us to decide which of the aforementioned algorithms was the best one to create partitions from human VEGF signaling pathway. The optimal complexity value, on which the best set of modules was obtained, was used to get modules from different species for comparative study. Comparison among these modules would shed light on the trend of development of VEGF signaling pathway over these species.