In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern....In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern.Thereby,electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability.Due to the massive amount of data,big data analytics for forecasting becomes a hot topic in the SG domain.In this paper,the changing and non-linearity of consumer consumption pattern complex data is taken as input.To minimize the computational cost and complexity of the data,the average of the feature engineering approaches includes:Recursive Feature Eliminator(RFE),Extreme Gradient Boosting(XGboost),Random Forest(RF),and are upgraded to extract the most relevant and significant features.To this end,we have proposed the DensetNet-121 network and Support Vector Machine(SVM)ensemble with Aquila Optimizer(AO)to ensure adaptability and handle the complexity of data in the classification.Further,the AO method helps to tune the parameters of DensNet(121 layers)and SVM,which achieves less training loss,computational time,minimized overfitting problems and more training/test accuracy.Performance evaluation metrics and statistical analysis validate the proposed model results are better than the benchmark schemes.Our proposed method has achieved a minimal value of the Mean Average Percentage Error(MAPE)rate i.e.,8%by DenseNet-AO and 6%by SVM-AO and the maximum accurateness rate of 92%and 95%,respectively.展开更多
The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications.This study combines data from the Baidu index(BDI),Google trends(GT),an...The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications.This study combines data from the Baidu index(BDI),Google trends(GT),and transfer entropy(TE)to forecast a wide range of futures prices with a focus on China.A forecasting model based on a hybrid gray wolf optimizer(GWO),convolutional neural network(CNN),and long short-term memory(LSTM)is developed.First,Baidu and Google dual-platform search data were selected and constructed as Internetbased consumer price index(ICPI)using principal component analysis.Second,TE is used to quantify the information between online behavior and futures markets.Finally,the effective Internet-based consumer price index(ICPI)and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn,soybean,polyvinyl chloride(PVC),egg,and rebar futures.The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices.Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data.Our proposed framework can provide predictive decision support for government leaders,market investors,and production activities.展开更多
A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristic...A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.展开更多
Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to ...Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to energy corporations’strategic decision-making systems over the last 15 years.Many strategies have been utilized for price forecasting in the past,however Artificial Intelligence Techniques(Fuzzy Logic and ANN)have proven to be more efficient than traditional techniques(Regression and Time Series).Fuzzy logic is an approach that uses membership functions(MF)and fuzzy inference model to forecast future electricity prices.Fuzzy c-means(FCM)is one of the popular clustering approach for generating fuzzy membership functions.However,the fuzzy c-means algorithm is limited to producing only one type of MFs,Gaussian MF.The generation of various fuzzy membership functions is critical since it allows for more efficient and optimal problem solutions.As a result,for the best and most improved results for electricity price forecasting,an approach to generate multiple type-1 fuzzy MFs using FCM algorithm is required.Therefore,the objective of this paper is to propose an approach for generating type-1 fuzzy triangular and trapezoidal MFs using FCM algorithm to overcome the limitations of the FCM algorithm.The approach is used to compute and improve forecasting accuracy for electricity prices,where Australian Energy Market Operator(AEMO)data is used.The results show that the proposed approach of using FCM to generate type-1 fuzzy MFs is effective and can be adopted.展开更多
Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the n...Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity.展开更多
Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. ...Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market.展开更多
This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock p...This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock price projection. Through bibliometric analysis and systematic literature review, it is observed that 333 authors wrote on the topic between 2018 and March 2022, and the journals Expert Systems with Applications, IEEE Access, Big Data Journal and Neural Computing and Applications, published the most relevant articles. Of the 99 articles published in this period, 43 are associated with Chinese institutions, the most cited being that of Kim and Won, who studies the volatility of returns and the market capitalization of South Korean stocks. The basis of 65% of the studies is the comparison between the RNN LSTM and other artificial neural networks. The daily closing price of shares is the most analyzed type of data, and the American (21%) and Chinese (20%) stock exchanges are the most studied. 57% of the studies include improvements to existing neural network models and 42% new projection models.展开更多
Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It ...Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, mis paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market展开更多
Garlic prices fluctuate dramatically in recent years and it is very difficult to predict garlic prices.The autoregressive integrated moving average(ARIMA)model is currently the most important method for predicting gar...Garlic prices fluctuate dramatically in recent years and it is very difficult to predict garlic prices.The autoregressive integrated moving average(ARIMA)model is currently the most important method for predicting garlic prices.However,the ARIMA model can only predict the linear part of the garlic prices,and cannot predict its nonlinear part.Therefore,it is urgent to adopt a method to analyze the nonlinear characteristics of garlic prices.After comparing the advantages and disadvantages of several major prediction models which used to forecast nonlinear time series,using support vector machine(SVM)model to predict the nonlinear part of garlic prices and establish ARIMA-SVM hybrid forecast model to predict garlic prices.The monthly average price data of garlic in 2010-2017 was used to test the effect of ARIMA model,SVM model and ARIMA-SVM model.The experimental results show that:(1)Garlic price is affected by many factors but the most is the supply and demand relationship;(2)The SVM model has a good effect in dealing with the nonlinear relationship of garlic prices;(3)The ARIMA-SVM hybrid model is better than the single ARIMA model and SVM model on the accuracy of garlic price prediction,it can be used as an effective method to predict the short-term price of garlic.展开更多
Electricity markets are highly complex,involving lots of interactions and complex dependencies that make it hard to understand the inner workings of the market and what is driving prices.Econometric methods have been ...Electricity markets are highly complex,involving lots of interactions and complex dependencies that make it hard to understand the inner workings of the market and what is driving prices.Econometric methods have been developed for this,white-box models,however,they are not as powerful as deep neural network models(DNN).In this paper,we use a DNN to forecast the price and then use XAI methods to understand the factors driving the price dynamics in the market.The objective is to increase our understanding of how different electricity markets work.To do that,we apply explainable methods such as SHAP and Gradient,combined with visual techniques like heatmaps(saliency maps)to analyse the behaviour and contributions of various features across five electricity markets.We introduce the novel concepts of SSHAP values and SSHAP lines to enhance the complex representation of high-dimensional tabular models.展开更多
The integration of renewable energy into electricity markets poses significant challenges to price stability and increases the complexity of market operations.Accurate and reliable electricity price forecasting is cru...The integration of renewable energy into electricity markets poses significant challenges to price stability and increases the complexity of market operations.Accurate and reliable electricity price forecasting is crucial for effective market participation,where price dynamics can be significantly more challenging to predict.Probabilistic forecasting,through prediction intervals,efficiently quantifies the inherent uncertainties in electricity prices,supporting better decision-making for market participants.This study explores the enhancement of probabilistic price prediction using Conformal Prediction(CP)techniques,specifically Ensemble Batch Prediction Intervals and Sequential Predictive Conformal Inference.These methods provide precise and reliable prediction intervals,outperforming traditional models in validity metrics.We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.This ensemble delivers both narrow prediction intervals and high coverage,leading to more reliable and accurate forecasts.We further evaluate the practical implications of CP techniques through a simulated trading algorithm applied to a battery storage system.The ensemble approach demonstrates improved financial returns in energy trading in both the Day-Ahead and Balancing Markets,highlighting its practical benefits for market participants.展开更多
Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies,hedge risk and plan generation schedules.By leveraging advanced data analytics and machine learning ...Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies,hedge risk and plan generation schedules.By leveraging advanced data analytics and machine learning methods,accurate and reliable price forecasts can be achieved.This study forecasts day-ahead prices in Türkiye’s electricity market using eXtreme Gradient Boosting(XGBoost).We benchmark XGBoost against four alternatives—Support Vector Machines(SVM),Long Short-Term Memory(LSTM),Random Forest(RF),and Gradient Boosting(GBM)—using 8760 hourly observations from 2023 provided by Energy Exchange Istanbul(EXIST).All models were trained on an identical chronological 80/20 train–test split,with hyperparameters tuned via 5-fold cross-validation on the training set.XGBoost achieved the best performance(Mean Absolute Error(MAE)=144.8 TRY/MWh,Root Mean Square Error(RMSE)=201.8 TRY/MWh,coefficient of determination(R^(2))=0.923)while training in 94 s.To enhance interpretability and identify key drivers,we employed Shapley Additive Explanations(SHAP),which highlighted a strong association between higher prices and increased natural-gas-based generation.The results provide a clear performance benchmark and practical guidance for selecting forecasting approaches in day-ahead electricity markets.展开更多
Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price predictio...Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price prediction is important for energy producers and consumers to develop bidding strategies.To improve the accuracy of prediction by using each algorithms’advantages,this paper proposes a hybrid model that uses the Empirical Mode Decomposition(EMD),Autoregressive Integrated Moving Average(ARIMA),and Temporal Convolutional Network(TCN).EMD is used to decompose the electricity prices into low and high frequency components.Low frequency components are forecasted by the ARIMA model and the high frequency series are predicted by the TCN model.Experimental results using the realistic electricity price data from Pennsylvania-New Jersey-Maryland(PJM)electricity markets show that the proposed method has a higher prediction accuracy than other single methods and hybrid methods.展开更多
In this paper,we propose STPLF,which stands for the short-term forecasting of locational marginal price components,including the forecasting of non-conforming hourly net loads.The volatility of transmission-level hour...In this paper,we propose STPLF,which stands for the short-term forecasting of locational marginal price components,including the forecasting of non-conforming hourly net loads.The volatility of transmission-level hourly locational marginal prices(LMPs)is caused by several factors,including weather data,hourly gas prices,historical hourly loads,and market prices.In addition,variations of non-conforming net loads,which are affected by behind-the-meter distributed energy resources(DERs)and retail customer loads,could have a major impact on the volatility of hourly LMPs,as bulk grid operators have limited visibility of such retail-level resources.We propose a fusion forecasting model for the STPLF,which uses machine learning and deep learning methods to forecast non-conforming loads and respective hourly prices.Additionally,data preprocessing and feature extraction are used to increase the accuracy of the STPLF.The proposed STPLF model also includes a post-processing stage for calculating the probability of hourly LMP spikes.We use a practical set of data to analyze the STPLF results and validate the proposed probabilistic method for calculating the LMP spikes.展开更多
Stock market is volatile and predicting stock prices is a challenging task.Stock prices are influenced by multiple factors,and prediction using only numerical or image features is ineffective.To solve this problem,we ...Stock market is volatile and predicting stock prices is a challenging task.Stock prices are influenced by multiple factors,and prediction using only numerical or image features is ineffective.To solve this problem,we propose a Hybrid Channel Stock model that incorporates multiple features of basic stock data,K-line charts and technical indicator factors for predicting the closing price of a stock on day n+1.The model combines multiple aspects of data and uses a multi-channel structure including improved CNN-TW,bidirectional LSTM and Transformer network.First,we construct the multi-channel branches of the multi-faceted feature fusion input network model;second,in this paper,we will use the concatenate method to stitch the output of each branch as the input of the rest of the network;the last layer in the network is the fully connected layer,which combines the linear activation function regression to output the predicted prices.Finally,we conducted extensive experiments on the Dow 30,SSH 50 and CSI100 indices.The experimental results show that the Hybrid Channel Stock method has the best performance with the smallest MSE,RMSE,MAE and MAPE compared with existing models.in addition,the experiments on different trading days validate the stability and effectiveness of the model,providing an important reference for investors to make stock investment decisions.展开更多
The difficulty in crude oil price forecasting, due to inherent complexity, has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forec...The difficulty in crude oil price forecasting, due to inherent complexity, has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forecasting crude oil prices. However, all of the existing models of prediction can not meet practical needs. Very recently, Wang and Yu proposed a new methodology for handling complex systems-TEI@I methodology by means of a systematic integration of text mining, econometrics and intelligent techniques.Within the framework of TEI@I methodology, econometrical models are used to model the linear components of crude oil price time series (i.e., main trends) while nonlinear components of crude oil price time series (i.e., error terms) are modelled by using artificial neural network (ANN) models. In addition, the impact of irregular and infrequent future events on crude oil price is explored using web-based text mining (WTM) and rule-based expert systems (RES) techniques. Thus, a fully novel nonlinear integrated forecasting approach with error correction and judgmental adjustment is formulated to improve prediction performance within the framework of the TEI@I methodology. The proposed methodology and the novel forecasting approach are illustrated via an example.展开更多
In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximi...In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximizing revenues.Hence,it is necessary for a power generation company to develop an accurate electricity price forecasting algorithm.Given this background,this paper proposes a two-step day-ahead electricity price forecasting algorithm based on the weighted Knearest neighborhood(WKNN)method and the Gaussian process regression(GPR)approach.In the first step,several predictors,i.e.,operation indicators,are presented and the WKNN method is employed to detect the day-ahead price spike based on these indicators.In the second step,the outputs of the first step are regarded as a new predictor,and it is utilized together with the operation indicators to accurately forecast the electricity price based on the GPR approach.The proposed algorithm is verified by actual market data in Pennsylvania-New JerseyMaryland Interconnection(PJM),and comparisons between this algorithm and existing ones are also made to demonstrate the effectiveness of the proposed algorithm.Simulation results show that the proposed algorithm can attain accurate price forecasting results even with several price spikes in historical electricity price data.展开更多
Accurately forecasting short-term electricity prices is of great significance to electricity market participants.Compared with the time series forecasting methods,machine learning forecasting methods can consider more...Accurately forecasting short-term electricity prices is of great significance to electricity market participants.Compared with the time series forecasting methods,machine learning forecasting methods can consider more external factors.The forecasting accuracy of machine learning models is greatly affected by the parameters,meanwhile,the manual selection of parameters usually cannot guarantee the accuracy and stability of the forecasting.Therefore,this paper proposes a random forest(RF)electricity price forecasting model based on the grey wolf optimizer(GWO)to improve the accuracy of forecasting.Among them,RF has a good ability to deal with the problem of non-linear and unstable electricity prices.The optimization of model parameters by GWO can overcome the instability of the forecasting accuracy of manually tune parameters.On this basis,the short-term electricity prices of the PJM power market in four seasons are separately predicted.Experimental results show that the RF algorithm can better predict the short-term electricity price,and the optimization of the RF forecasting model by GWO can effectively improve the accuracy of the RF forecasting model.展开更多
Advanced machine learning(ML)algorithms have outperformed traditional approaches in various forecasting applications,especially electricity price forecasting(EPF).However,the prediction accuracy of ML reduces substant...Advanced machine learning(ML)algorithms have outperformed traditional approaches in various forecasting applications,especially electricity price forecasting(EPF).However,the prediction accuracy of ML reduces substantially if the input data is not similar to the ones seen by the model during training.This is often observed in EPF problems when market dynamics change owing to a rise in fuel prices,an increase in renewable penetration,a change in operational policies,etc.While the dip in model accuracy for unseen data is a cause for concern,what is more,challenging is not knowing when the ML model would respond in such a manner.Such uncertainty makes the power market participants,like bidding agents and retailers,vulnerable to substantial financial loss caused by the prediction errors of EPF models.Therefore,it becomes essential to identify whether or not the model prediction at a given instance is trustworthy.In this light,this paper proposes a trust algorithm for EPF users based on explainable artificial intelligence techniques.The suggested algorithm generates trust scores that reflect the model’s prediction quality for each new input.These scores are formulated in two stages:in the first stage,the coarse version of the score is formed using correlations of local and global explanations,and in the second stage,the score is fine-tuned further by the Shapley additive explanations values of different features.Such score-based explanations are more straightforward than feature-based visual explanations for EPF users like asset managers and traders.A dataset from Italy’s and ERCOT’s electricity market validates the efficacy of the proposed algorithm.Results show that the algorithm has more than 85%accuracy in identifying good predictions when the data distribution is similar to the training dataset.In the case of distribution shift,the algorithm shows the same accuracy level in identifying bad predictions.展开更多
To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural ne...To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural network and Bayesian network in building a forecasting model. This research empirically shows that, in forecasting winning bid prices on online auction, data mining techniques have shown better performance than traditional statistical analysis, such as logistic regression and multivariate regression.展开更多
基金The authors acknowledge the support from the Ministry of Education and the Deanship of Scientific Research,Najran University,Saudi Arabia,under code number NU/-/SERC/10/616.
文摘In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern.Thereby,electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability.Due to the massive amount of data,big data analytics for forecasting becomes a hot topic in the SG domain.In this paper,the changing and non-linearity of consumer consumption pattern complex data is taken as input.To minimize the computational cost and complexity of the data,the average of the feature engineering approaches includes:Recursive Feature Eliminator(RFE),Extreme Gradient Boosting(XGboost),Random Forest(RF),and are upgraded to extract the most relevant and significant features.To this end,we have proposed the DensetNet-121 network and Support Vector Machine(SVM)ensemble with Aquila Optimizer(AO)to ensure adaptability and handle the complexity of data in the classification.Further,the AO method helps to tune the parameters of DensNet(121 layers)and SVM,which achieves less training loss,computational time,minimized overfitting problems and more training/test accuracy.Performance evaluation metrics and statistical analysis validate the proposed model results are better than the benchmark schemes.Our proposed method has achieved a minimal value of the Mean Average Percentage Error(MAPE)rate i.e.,8%by DenseNet-AO and 6%by SVM-AO and the maximum accurateness rate of 92%and 95%,respectively.
文摘The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications.This study combines data from the Baidu index(BDI),Google trends(GT),and transfer entropy(TE)to forecast a wide range of futures prices with a focus on China.A forecasting model based on a hybrid gray wolf optimizer(GWO),convolutional neural network(CNN),and long short-term memory(LSTM)is developed.First,Baidu and Google dual-platform search data were selected and constructed as Internetbased consumer price index(ICPI)using principal component analysis.Second,TE is used to quantify the information between online behavior and futures markets.Finally,the effective Internet-based consumer price index(ICPI)and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn,soybean,polyvinyl chloride(PVC),egg,and rebar futures.The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices.Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data.Our proposed framework can provide predictive decision support for government leaders,market investors,and production activities.
基金Sponsored by the National Outstanding Young Investigator Grant (Grant No6970025)the Key Project of National Natural Science Foundation (GrantNo59937150)+2 种基金863 High Tech Development Plan (Grant No2001AA413910)of China and the Key Project of National Natural Science Foundation(Grant No59937150)the Project of National Natural Science Foundation (Grant No60274054)
文摘A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.
基金This research is an ongoing research supported by Yayasan UTP Grant(015LC0-321&015LC0-311)Fundamental Research Grant Scheme(FRGS/1/2018/ICT02/UTP/02/1)a grant funded by the Ministry of Higher Education,Malaysia.
文摘Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to energy corporations’strategic decision-making systems over the last 15 years.Many strategies have been utilized for price forecasting in the past,however Artificial Intelligence Techniques(Fuzzy Logic and ANN)have proven to be more efficient than traditional techniques(Regression and Time Series).Fuzzy logic is an approach that uses membership functions(MF)and fuzzy inference model to forecast future electricity prices.Fuzzy c-means(FCM)is one of the popular clustering approach for generating fuzzy membership functions.However,the fuzzy c-means algorithm is limited to producing only one type of MFs,Gaussian MF.The generation of various fuzzy membership functions is critical since it allows for more efficient and optimal problem solutions.As a result,for the best and most improved results for electricity price forecasting,an approach to generate multiple type-1 fuzzy MFs using FCM algorithm is required.Therefore,the objective of this paper is to propose an approach for generating type-1 fuzzy triangular and trapezoidal MFs using FCM algorithm to overcome the limitations of the FCM algorithm.The approach is used to compute and improve forecasting accuracy for electricity prices,where Australian Energy Market Operator(AEMO)data is used.The results show that the proposed approach of using FCM to generate type-1 fuzzy MFs is effective and can be adopted.
文摘Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity.
文摘Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market.
文摘This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock price projection. Through bibliometric analysis and systematic literature review, it is observed that 333 authors wrote on the topic between 2018 and March 2022, and the journals Expert Systems with Applications, IEEE Access, Big Data Journal and Neural Computing and Applications, published the most relevant articles. Of the 99 articles published in this period, 43 are associated with Chinese institutions, the most cited being that of Kim and Won, who studies the volatility of returns and the market capitalization of South Korean stocks. The basis of 65% of the studies is the comparison between the RNN LSTM and other artificial neural networks. The daily closing price of shares is the most analyzed type of data, and the American (21%) and Chinese (20%) stock exchanges are the most studied. 57% of the studies include improvements to existing neural network models and 42% new projection models.
基金This paper is about a project financed by the National Outstanding Young Investigator Grant (6970025)863 High Tech Development Plan of China (2001AA413910) the Project of National Natural Science Foundation (60274054) the Key Project of National Natural Science Foundation (59937150)it is also supported by its cooperating project financed by 863 High Tech Development Plan of China (2004AA412050).
文摘Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, mis paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market
文摘Garlic prices fluctuate dramatically in recent years and it is very difficult to predict garlic prices.The autoregressive integrated moving average(ARIMA)model is currently the most important method for predicting garlic prices.However,the ARIMA model can only predict the linear part of the garlic prices,and cannot predict its nonlinear part.Therefore,it is urgent to adopt a method to analyze the nonlinear characteristics of garlic prices.After comparing the advantages and disadvantages of several major prediction models which used to forecast nonlinear time series,using support vector machine(SVM)model to predict the nonlinear part of garlic prices and establish ARIMA-SVM hybrid forecast model to predict garlic prices.The monthly average price data of garlic in 2010-2017 was used to test the effect of ARIMA model,SVM model and ARIMA-SVM model.The experimental results show that:(1)Garlic price is affected by many factors but the most is the supply and demand relationship;(2)The SVM model has a good effect in dealing with the nonlinear relationship of garlic prices;(3)The ARIMA-SVM hybrid model is better than the single ARIMA model and SVM model on the accuracy of garlic price prediction,it can be used as an effective method to predict the short-term price of garlic.
基金Tsupported by EDF Energy R&D UK Centre Limited and EPSRC under Grant EP/V519625/1.
文摘Electricity markets are highly complex,involving lots of interactions and complex dependencies that make it hard to understand the inner workings of the market and what is driving prices.Econometric methods have been developed for this,white-box models,however,they are not as powerful as deep neural network models(DNN).In this paper,we use a DNN to forecast the price and then use XAI methods to understand the factors driving the price dynamics in the market.The objective is to increase our understanding of how different electricity markets work.To do that,we apply explainable methods such as SHAP and Gradient,combined with visual techniques like heatmaps(saliency maps)to analyse the behaviour and contributions of various features across five electricity markets.We introduce the novel concepts of SSHAP values and SSHAP lines to enhance the complex representation of high-dimensional tabular models.
基金financial support of Science Foundation Ireland,Ireland under Grant Nos.18/CRT/6223 and 12/RC/2289-P2which are co-funded under the European Regional Development Fund.
文摘The integration of renewable energy into electricity markets poses significant challenges to price stability and increases the complexity of market operations.Accurate and reliable electricity price forecasting is crucial for effective market participation,where price dynamics can be significantly more challenging to predict.Probabilistic forecasting,through prediction intervals,efficiently quantifies the inherent uncertainties in electricity prices,supporting better decision-making for market participants.This study explores the enhancement of probabilistic price prediction using Conformal Prediction(CP)techniques,specifically Ensemble Batch Prediction Intervals and Sequential Predictive Conformal Inference.These methods provide precise and reliable prediction intervals,outperforming traditional models in validity metrics.We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.This ensemble delivers both narrow prediction intervals and high coverage,leading to more reliable and accurate forecasts.We further evaluate the practical implications of CP techniques through a simulated trading algorithm applied to a battery storage system.The ensemble approach demonstrates improved financial returns in energy trading in both the Day-Ahead and Balancing Markets,highlighting its practical benefits for market participants.
文摘Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies,hedge risk and plan generation schedules.By leveraging advanced data analytics and machine learning methods,accurate and reliable price forecasts can be achieved.This study forecasts day-ahead prices in Türkiye’s electricity market using eXtreme Gradient Boosting(XGBoost).We benchmark XGBoost against four alternatives—Support Vector Machines(SVM),Long Short-Term Memory(LSTM),Random Forest(RF),and Gradient Boosting(GBM)—using 8760 hourly observations from 2023 provided by Energy Exchange Istanbul(EXIST).All models were trained on an identical chronological 80/20 train–test split,with hyperparameters tuned via 5-fold cross-validation on the training set.XGBoost achieved the best performance(Mean Absolute Error(MAE)=144.8 TRY/MWh,Root Mean Square Error(RMSE)=201.8 TRY/MWh,coefficient of determination(R^(2))=0.923)while training in 94 s.To enhance interpretability and identify key drivers,we employed Shapley Additive Explanations(SHAP),which highlighted a strong association between higher prices and increased natural-gas-based generation.The results provide a clear performance benchmark and practical guidance for selecting forecasting approaches in day-ahead electricity markets.
基金supported by the Sichuan Science and Technology Program under Grant 2020JDJQ0037 and 2020YFG0312.
文摘Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price prediction is important for energy producers and consumers to develop bidding strategies.To improve the accuracy of prediction by using each algorithms’advantages,this paper proposes a hybrid model that uses the Empirical Mode Decomposition(EMD),Autoregressive Integrated Moving Average(ARIMA),and Temporal Convolutional Network(TCN).EMD is used to decompose the electricity prices into low and high frequency components.Low frequency components are forecasted by the ARIMA model and the high frequency series are predicted by the TCN model.Experimental results using the realistic electricity price data from Pennsylvania-New Jersey-Maryland(PJM)electricity markets show that the proposed method has a higher prediction accuracy than other single methods and hybrid methods.
基金funded in part by Grant No.DF-091-135-1441 from the Deanship of Scientific Research(DSR)at King Abdulaziz University in Saudi Arabia.
文摘In this paper,we propose STPLF,which stands for the short-term forecasting of locational marginal price components,including the forecasting of non-conforming hourly net loads.The volatility of transmission-level hourly locational marginal prices(LMPs)is caused by several factors,including weather data,hourly gas prices,historical hourly loads,and market prices.In addition,variations of non-conforming net loads,which are affected by behind-the-meter distributed energy resources(DERs)and retail customer loads,could have a major impact on the volatility of hourly LMPs,as bulk grid operators have limited visibility of such retail-level resources.We propose a fusion forecasting model for the STPLF,which uses machine learning and deep learning methods to forecast non-conforming loads and respective hourly prices.Additionally,data preprocessing and feature extraction are used to increase the accuracy of the STPLF.The proposed STPLF model also includes a post-processing stage for calculating the probability of hourly LMP spikes.We use a practical set of data to analyze the STPLF results and validate the proposed probabilistic method for calculating the LMP spikes.
基金supported by these three foundation programs:the Science and Technology Research Project(Youth)of Chongqing Municipal Education Commission(KJQN202201142)the Chongqing Research Program of Basic Research Frontier Technology(CSTB2022BSXM-JCX0069CCCC)the Training Program of the National Natural Science Foundation of China and National Social Science Fund of China of Chongqing University of Technology(2022PYZ030)。
文摘Stock market is volatile and predicting stock prices is a challenging task.Stock prices are influenced by multiple factors,and prediction using only numerical or image features is ineffective.To solve this problem,we propose a Hybrid Channel Stock model that incorporates multiple features of basic stock data,K-line charts and technical indicator factors for predicting the closing price of a stock on day n+1.The model combines multiple aspects of data and uses a multi-channel structure including improved CNN-TW,bidirectional LSTM and Transformer network.First,we construct the multi-channel branches of the multi-faceted feature fusion input network model;second,in this paper,we will use the concatenate method to stitch the output of each branch as the input of the rest of the network;the last layer in the network is the fully connected layer,which combines the linear activation function regression to output the predicted prices.Finally,we conducted extensive experiments on the Dow 30,SSH 50 and CSI100 indices.The experimental results show that the Hybrid Channel Stock method has the best performance with the smallest MSE,RMSE,MAE and MAPE compared with existing models.in addition,the experiments on different trading days validate the stability and effectiveness of the model,providing an important reference for investors to make stock investment decisions.
基金This research is partially supported by NSFC, CAS, RGC of Hong Kong and Ministry of Education and Technology of Japan
文摘The difficulty in crude oil price forecasting, due to inherent complexity, has attracted much attention of academic researchers and business practitioners. Various methods have been tried to solve the problem of forecasting crude oil prices. However, all of the existing models of prediction can not meet practical needs. Very recently, Wang and Yu proposed a new methodology for handling complex systems-TEI@I methodology by means of a systematic integration of text mining, econometrics and intelligent techniques.Within the framework of TEI@I methodology, econometrical models are used to model the linear components of crude oil price time series (i.e., main trends) while nonlinear components of crude oil price time series (i.e., error terms) are modelled by using artificial neural network (ANN) models. In addition, the impact of irregular and infrequent future events on crude oil price is explored using web-based text mining (WTM) and rule-based expert systems (RES) techniques. Thus, a fully novel nonlinear integrated forecasting approach with error correction and judgmental adjustment is formulated to improve prediction performance within the framework of the TEI@I methodology. The proposed methodology and the novel forecasting approach are illustrated via an example.
基金supported by National Natural Science Foundation of China (No.52077195)Zhejiang University Academic Award for Outstanding Doctoral Candidates (No.202022)。
文摘In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximizing revenues.Hence,it is necessary for a power generation company to develop an accurate electricity price forecasting algorithm.Given this background,this paper proposes a two-step day-ahead electricity price forecasting algorithm based on the weighted Knearest neighborhood(WKNN)method and the Gaussian process regression(GPR)approach.In the first step,several predictors,i.e.,operation indicators,are presented and the WKNN method is employed to detect the day-ahead price spike based on these indicators.In the second step,the outputs of the first step are regarded as a new predictor,and it is utilized together with the operation indicators to accurately forecast the electricity price based on the GPR approach.The proposed algorithm is verified by actual market data in Pennsylvania-New JerseyMaryland Interconnection(PJM),and comparisons between this algorithm and existing ones are also made to demonstrate the effectiveness of the proposed algorithm.Simulation results show that the proposed algorithm can attain accurate price forecasting results even with several price spikes in historical electricity price data.
文摘Accurately forecasting short-term electricity prices is of great significance to electricity market participants.Compared with the time series forecasting methods,machine learning forecasting methods can consider more external factors.The forecasting accuracy of machine learning models is greatly affected by the parameters,meanwhile,the manual selection of parameters usually cannot guarantee the accuracy and stability of the forecasting.Therefore,this paper proposes a random forest(RF)electricity price forecasting model based on the grey wolf optimizer(GWO)to improve the accuracy of forecasting.Among them,RF has a good ability to deal with the problem of non-linear and unstable electricity prices.The optimization of model parameters by GWO can overcome the instability of the forecasting accuracy of manually tune parameters.On this basis,the short-term electricity prices of the PJM power market in four seasons are separately predicted.Experimental results show that the RF algorithm can better predict the short-term electricity price,and the optimization of the RF forecasting model by GWO can effectively improve the accuracy of the RF forecasting model.
文摘Advanced machine learning(ML)algorithms have outperformed traditional approaches in various forecasting applications,especially electricity price forecasting(EPF).However,the prediction accuracy of ML reduces substantially if the input data is not similar to the ones seen by the model during training.This is often observed in EPF problems when market dynamics change owing to a rise in fuel prices,an increase in renewable penetration,a change in operational policies,etc.While the dip in model accuracy for unseen data is a cause for concern,what is more,challenging is not knowing when the ML model would respond in such a manner.Such uncertainty makes the power market participants,like bidding agents and retailers,vulnerable to substantial financial loss caused by the prediction errors of EPF models.Therefore,it becomes essential to identify whether or not the model prediction at a given instance is trustworthy.In this light,this paper proposes a trust algorithm for EPF users based on explainable artificial intelligence techniques.The suggested algorithm generates trust scores that reflect the model’s prediction quality for each new input.These scores are formulated in two stages:in the first stage,the coarse version of the score is formed using correlations of local and global explanations,and in the second stage,the score is fine-tuned further by the Shapley additive explanations values of different features.Such score-based explanations are more straightforward than feature-based visual explanations for EPF users like asset managers and traders.A dataset from Italy’s and ERCOT’s electricity market validates the efficacy of the proposed algorithm.Results show that the algorithm has more than 85%accuracy in identifying good predictions when the data distribution is similar to the training dataset.In the case of distribution shift,the algorithm shows the same accuracy level in identifying bad predictions.
文摘To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural network and Bayesian network in building a forecasting model. This research empirically shows that, in forecasting winning bid prices on online auction, data mining techniques have shown better performance than traditional statistical analysis, such as logistic regression and multivariate regression.