Only a few studies have reported the efects of electrochemical hydrogenation on the tensile mechanical properties of additively manufactured Ti–6Al–4V alloy,in all of them the alloy was processed by laser powder-bed...Only a few studies have reported the efects of electrochemical hydrogenation on the tensile mechanical properties of additively manufactured Ti–6Al–4V alloy,in all of them the alloy was processed by laser powder-bed fusion.Furthermore,the efects of either hot isostatic pressing(HIP)or heat treatment(HT)post-treatments on the mechanical properties were not reported.Here,the Young’s modulus,ultimate tensile stress,and uniform(homogeneous)strain of as-built electron beam melted(EBM)Ti–6Al–4V alloys were studied using small tensile specimens before and after electrochemical hydrogenation,as well as before and after secondary processes of HIP at 920℃ and HT at 1000℃.The tensile properties of all hydrogenated alloys were signifcantly degraded compared to their non-hydrogenated counterparts.The yield stress could not be determined for all hydrogenated alloys,as failure occurred at a strain below 0.2%ofset.The uniform strain of the hydrogenated alloys was less than 1%,compared to 1%–5%for the non-hydrogenated alloys.The fracture mode of the hydrogenated alloys after HIP and HT revealed cleavage fracture,indicating increased brittleness.In the as-built hydrogenated alloy,the fracture mode varied with location:brittle fracture occurred near the surface due to the formation of a hydride layer,while a more ductile fracture with dimples was observed below this layer.展开更多
This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.T...This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.The goal of this study was to provide a reliable tool for assessing the quality of sesame oil.The UV spectra of 51 samples of pressed sesame oil and 420 adulterated samples with refined sesame oil were measured in the range of 200-330 nm.Various classification and prediction methods,including linear discrimination analysis(LDA),support vector machines(SVM),soft independent modeling of class analogy(SIMCA),partial least squares regression(PLSR),support vector machine regression(SVR),and back-propagation neural network(BPNN),were employed to analyze the UV spectral data of pressed sesame oil and adulterated sesame oil.The results indicated that SVM outperformed the other classification methods in qualitatively identifying adulterated sesame oil,achieving an accuracy of 96.15%,a sensitivity of 97.87%,and a specificity of 80%.For quantitative analysis,BPNN yielded the best prediction results,with an R^(2) value of 0.99,RMSEP of 2.34%,and RPD value of 10.60(LOD of 8.60%and LOQ of 28.67%).Overall,the developed models exhibited significant potential for rapidly identifying and predicting the quality of sesame oil.展开更多
How time flies!I’m a little sad when I realize that I will graduate from junior high school in a few months.Luckily,I have some wonderful memories.The person who impressed me most was my friend.My English was bad bef...How time flies!I’m a little sad when I realize that I will graduate from junior high school in a few months.Luckily,I have some wonderful memories.The person who impressed me most was my friend.My English was bad before and I felt unhappy about it.So I told it to a girl called Mary,who was good at English.She was willing to help me and made friends with me.She taught me some useful ways to learn English.展开更多
Time flies like an arrow,and time lost never returns.In the past few years of my junior high school life,what impressed me most was running.At first,I didn’t like sports.I thought I was supposed to spend more time on...Time flies like an arrow,and time lost never returns.In the past few years of my junior high school life,what impressed me most was running.At first,I didn’t like sports.I thought I was supposed to spend more time on school work than on exercise.But gradually,I found that running was not only good for my health,but also helped me relieve stress.When I opened my arms and stretched my legs on the playground,I was like a deer running in the field,which made me get a sense of belonging.展开更多
In order to produce low-cost titanium(Ti)with high productivity,fundamental studies on producing metallic Ti from titanium dioxide(TiO_(2))in the cold pressed pellets were conducted by metallothermic reduction with an...In order to produce low-cost titanium(Ti)with high productivity,fundamental studies on producing metallic Ti from titanium dioxide(TiO_(2))in the cold pressed pellets were conducted by metallothermic reduction with an indirect contact method.This paper focuses on discussing the mechanism of the reduction process and the relationships of RM(a revised reduction index)with reduction temperature,reduction time,and mole ratio of TiO_(2) to CaCl_(2)(nTiO_(2)/nCaCl_(2))in the pellets.The results show that metallic Ti was obtained from the reduction of TiO_(2) in the pellets by calcium(Ca)vapor;pellets were reduced homogenously and Ca vapor diffused into the porous pellets by Knudsen diffusion or the mixing diffusion of molecular diffusion and Knudsen diffusion at 1273 K;RM increased with the increases of temperature and reduction time and was 96.34%when T_(Redu)=1273 K,t_(Redu)=6 h,and nTiO_(2)/nCaCl_(2)=4;the reasonable nTiO_(2)/nCaCl_(2) value is 3−5 for the pellets with enough strength and high RM.展开更多
Scandia pressed cathodes were prepared by powder metallurgy method using mixed powder of scandia doped tungsten and barium-calcium aluminates obtained by different mixing methods.The element distribution uniformity gr...Scandia pressed cathodes were prepared by powder metallurgy method using mixed powder of scandia doped tungsten and barium-calcium aluminates obtained by different mixing methods.The element distribution uniformity greatly affected the emission property.The powder prepared by ball-milling had small particle size and uniform distribution of different elements.This kind of powder was favorable for the chemical reaction among Ba,Ca aluminates,scandia and tungsten to take place sufficiently to form active substance which can improve the emission property.The emission current density of the cathode prepared with ball-milling powder was about 8 times higher than that prepared by manually mixing method,4 times higher than Os coated M-type cathode.The higher content of the active substance on the cathode surface prepared by ball-milling led to the better emission performance of the cathode.展开更多
Since the Internet of Things(IoT) secret information is easy to leak in data transfer,a data secure transmission model based on compressed sensing(CS) and digital watermarking technology is proposed here. Firstly,...Since the Internet of Things(IoT) secret information is easy to leak in data transfer,a data secure transmission model based on compressed sensing(CS) and digital watermarking technology is proposed here. Firstly, for node coding end, the digital watermarking technology is used to embed secret information in the conventional data carrier. Secondly, these data are reused to build the target transfer data by the CS algorithm which are called observed signals. Thirdly, these signals are transmitted to the base station through the wireless channel. After obtaining these observed signals, the decoder reconstructs the data carrier containing privacy information. Finally, the privacy information is obtained by digital watermark extraction algorithm to achieve the secret transmission of signals. By adopting the watermarking and compression sensing to hide secret information in the end of node code, the algorithm complexity and energy consumption are reduced. Meanwhile, the security of secret information is increased.The simulation results show that the method is able to accurately reconstruct the original signal and the energy consumption of the sensor node is also reduced significantly in consideration of the packet loss.展开更多
The present work reports the effect of thermal induced porosity(TIP)on the high-cycle fatigue(HCF)and very high-cycle fatigue(VHCF)behaviors of hot-isostatic-pressed(HIPed)Ti-6Al-4V alloy from gasatomized powder.The r...The present work reports the effect of thermal induced porosity(TIP)on the high-cycle fatigue(HCF)and very high-cycle fatigue(VHCF)behaviors of hot-isostatic-pressed(HIPed)Ti-6Al-4V alloy from gasatomized powder.The results show that the residual pores in the as-HIPed powder compacts present no obvious effect on the HCF life.The regrowth of the residual pores can be observed after solution heat treatment.The pore location ranks the most harmful for the fatigue life compared with the other initiating defects.The maximum stress intensity factors were calculated.The plastic zone size of fine granular area(FGA)is much less than the characteristic size of the microstructure,and the crucial size of the internal pores in this study is about 40μm.The failure types of fatigue specimens in the VHCF regime were classified,and the competition of different failure types was described based on the modified Poisson distribution.展开更多
To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isosta...To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isostatic pressing (HIPhag) treatment was performed at 1000℃ using nitrogen pressure up to 110 MPa. The mechanical properties of cermets after a coating process and subsequent HIPing treatment have been evaluated with respect to the hardness, the residual stress, and the coating adhesion. The results show that atter the HIPing process, there was a higher increase ha critical load ha the TiN-coated cermets with lower surface roughness compared with those with higher surface roughness. In all cases, the residual stress was found to be compressive. The effects of substrate surface roughness and posttreatment on the adhesion strength of the coatings were thus investigated. It was also fotmd that the HIPing posttreatment process is well suited for hacreasing the adhesion strength between the coating and the substrate.展开更多
60NiTi alloy is considered to be a promising material for specialized bearing and gear applications due to its high hardness,strength,and low modulus.However,fabricating 60NiTi through conventional processing methods ...60NiTi alloy is considered to be a promising material for specialized bearing and gear applications due to its high hardness,strength,and low modulus.However,fabricating 60NiTi through conventional processing methods is challenging due to the brittleness and poor workability.In this study,60NiTi with high relative density was successfully fabricated directly from pre-alloyed powder through hot isostatic pressing.The effects of solution and aging treatments on microstructure and mechanical properties were systematically studied by advanced characterization techniques.The hot-isostatic-pressed 60NiTi showed low average hardness and elastic strain due to the formation of a soft Ni_(3)Ti phase and B2 NiTi matrix.Solution treatment above 1000℃dissolved the Ni_(3)Ti phase and promoted the formation of nanoscale Ni_(4)Ti_(3)precipitates,which significantly improved the hardness,strength,and elastic strain of 60NiTi.The formation of the Ni_(4)Ti_(3) phase can be mainly attributed to the driving forces induced by the chemical supersaturation and mechanical stress concentration.Finally,the phase transformation mechanisms during heat treatment and compression test were discussed.展开更多
The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperat...The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperature range of 1323-1473 Kand strain rate range of 0.001-0.5s^(-1).The calculated activation energy in the above variational ranges of temperature and strain rate possesses a low activation energy value of approximately 365.6kJ/mol based on the constitutive relationship models developed with the Arrhenius-type constitutive model respectively considering the strain rate and deformation temperature.The hot working flow behavior during the deformation process was analyzed combined with the microstructural evolution.Meanwhile,the processing maps during the deformation process were established based on the dynamic material model and Prasad instability criterion under different deformation conditions.Finally,the optimal hot processing window of this alloy corresponding to the wide temperature range of 1353-1453 Kand the low strain rate of 0.001-0.1s^(-1) was obtained.展开更多
Characteristics of magnetic hardening in cast-hot pressed magnet Pr_(19)Fe_(74.5)B_5Cu_(1.5)were stu- died.The microstructure features and virgin magnetization curve reveal a nucleation control- led coercivity mechani...Characteristics of magnetic hardening in cast-hot pressed magnet Pr_(19)Fe_(74.5)B_5Cu_(1.5)were stu- died.The microstructure features and virgin magnetization curve reveal a nucleation control- led coercivity mechanism.Regression analysis shows that the intrinsic coercivity varies inversely as the logarithm of the average grain size: _iH_c(MA/m)=1.7312-0.48161nd(μm) which confirms the randomness of nucleation of reversed domains and the statistical nature of coercivity,indicating that the decrease of grain size would reduce the average number of de- fects on its surface and lower the probability of magnetization reversal of a grain and the cu- mulative fraction of the grains that have reversed their magnetization.Coercivity is thus en- hanced.展开更多
Nd-Fe-B hot-pressed(HP) magnet prepared from melt-spun MQU-F flakes features coarse grains(CG)with the average size of both 200 nm(CGS) and 700 nm(CGL) at flake boundary.The grain growth at the flake boundary of Nd2 F...Nd-Fe-B hot-pressed(HP) magnet prepared from melt-spun MQU-F flakes features coarse grains(CG)with the average size of both 200 nm(CGS) and 700 nm(CGL) at flake boundary.The grain growth at the flake boundary of Nd2 Fe14B/α-Fe composite HP magnet before and after diffusion of low-melting-point Pr82Cu18 phase was investigated,revealing the indispensable role of surface RE-rich phase of meltspun flakes in the formation of CG in HP magnet.The dominant role of surface oxygen content of melt-spun flakes in the formation of CGL has been clarified with etching method.The HP magnet prepared from the etched flakes with dramatically decreased oxygen content exhibits the CG regions merely with homoge neous equiaxed CGS at flake boundary.Consequently,the coercivity(μ0 Hc) shows significant increase while remanent magnetization(μ0 Mr) inappreciable change.Further investigation with sieving method reveals the elimination of CGL via removal of the fine Nd-Fe-B flakes smaller than 54 μm due to their much higher oxygen content,confirming the dominant role of oxygen content in the formation of CGL.The quantitative analysis on the magnetic properties of the above HP magnets reveals the monotonic increase of coercivity(μ0 Hc) and negligible change of remanent magnetization(μ0 Mr) with decreased oxygen contents of Nd-Fe-B flakes.The maximum value of coercivity(μ0 Hc) increases from2.26 to 2.47 T as the oxygen content decreases from 0.1692 wt% to 0.079 wt%.展开更多
Powder compacts of the system Bi2–xPbxSr2Ca2Cu3Oy with 0 ≤ x ≤ 0.5 molar ratio using both techniques;isothermal hot pressing and the solid state reaction (sintering). The XRD of the hot pressed powder compacts of t...Powder compacts of the system Bi2–xPbxSr2Ca2Cu3Oy with 0 ≤ x ≤ 0.5 molar ratio using both techniques;isothermal hot pressing and the solid state reaction (sintering). The XRD of the hot pressed powder compacts of the nominal compositions Bi2–xPbxSr2Ca2Cu3Oy showed 2212 and 2223 phases. The resistivity temperature variations belonging to the composition Bi1.8Pb0.2Sr2Ca2Cu3Oy showed metal-superconducting transition at Tons = 143 K for the annealed sample for 24 h. The annealed nominal composition Bi1.5Pb0.5Sr2Ca2Cu3Oy for 18 h showed metal to superconducting transition at 80 K.展开更多
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prep...Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys.展开更多
The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results s...The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results show that the interface region can be divided into four zones from base metal to deposited metal:carbon-depleted zone(CDZ),partial melting zone(PMZ),planar growth zone(PGZ),and brownish feature zone(BFZ).Dimensions of these zones do not significantly change during aging.However,type I carbides noticeably increase in size in the PMZ,and precipitates clearly occur in the PGZ.The main reason for their growth and occurrence is continuous carbon migration.The highest micro-hardness appears in the PGZ and BFZ regions,which is related to carbon accumulation and precipitates in these regions.Tensile failure occurs on the base metal side due to the high strength mismatch between these two materials.The CDZ,composed of only ferrite,has lower strength and fractures at the boundary between CDZ and base metal.The ultimate tensile strength decreases by only 50 MPa after aging for 1500 h,and the interface region maintains high strength without significant deformation.展开更多
To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0....To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys.展开更多
Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2...Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.展开更多
基金supported by the Pazy Foundation of the Israel Atomic Energy Commission and the Israeli Council of Higher Education(Grant No.322/20)。
文摘Only a few studies have reported the efects of electrochemical hydrogenation on the tensile mechanical properties of additively manufactured Ti–6Al–4V alloy,in all of them the alloy was processed by laser powder-bed fusion.Furthermore,the efects of either hot isostatic pressing(HIP)or heat treatment(HT)post-treatments on the mechanical properties were not reported.Here,the Young’s modulus,ultimate tensile stress,and uniform(homogeneous)strain of as-built electron beam melted(EBM)Ti–6Al–4V alloys were studied using small tensile specimens before and after electrochemical hydrogenation,as well as before and after secondary processes of HIP at 920℃ and HT at 1000℃.The tensile properties of all hydrogenated alloys were signifcantly degraded compared to their non-hydrogenated counterparts.The yield stress could not be determined for all hydrogenated alloys,as failure occurred at a strain below 0.2%ofset.The uniform strain of the hydrogenated alloys was less than 1%,compared to 1%–5%for the non-hydrogenated alloys.The fracture mode of the hydrogenated alloys after HIP and HT revealed cleavage fracture,indicating increased brittleness.In the as-built hydrogenated alloy,the fracture mode varied with location:brittle fracture occurred near the surface due to the formation of a hydride layer,while a more ductile fracture with dimples was observed below this layer.
基金supported by the project number of“China Agricultural Research System funded by the Ministry of Agriculture”CARS-14,the Key Project of Science and Technology of Henan Province (201300110600)the“Double First-Class”Project for Postgraduate Academic Innovation Enhancement Programme of Henan University of Technology (HAUTSYL2023TS16)Education and Teaching Reform Research and Practice Project in School of International Education,Henan University of Technology (GJXY202407).
文摘This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.The goal of this study was to provide a reliable tool for assessing the quality of sesame oil.The UV spectra of 51 samples of pressed sesame oil and 420 adulterated samples with refined sesame oil were measured in the range of 200-330 nm.Various classification and prediction methods,including linear discrimination analysis(LDA),support vector machines(SVM),soft independent modeling of class analogy(SIMCA),partial least squares regression(PLSR),support vector machine regression(SVR),and back-propagation neural network(BPNN),were employed to analyze the UV spectral data of pressed sesame oil and adulterated sesame oil.The results indicated that SVM outperformed the other classification methods in qualitatively identifying adulterated sesame oil,achieving an accuracy of 96.15%,a sensitivity of 97.87%,and a specificity of 80%.For quantitative analysis,BPNN yielded the best prediction results,with an R^(2) value of 0.99,RMSEP of 2.34%,and RPD value of 10.60(LOD of 8.60%and LOQ of 28.67%).Overall,the developed models exhibited significant potential for rapidly identifying and predicting the quality of sesame oil.
文摘How time flies!I’m a little sad when I realize that I will graduate from junior high school in a few months.Luckily,I have some wonderful memories.The person who impressed me most was my friend.My English was bad before and I felt unhappy about it.So I told it to a girl called Mary,who was good at English.She was willing to help me and made friends with me.She taught me some useful ways to learn English.
文摘Time flies like an arrow,and time lost never returns.In the past few years of my junior high school life,what impressed me most was running.At first,I didn’t like sports.I thought I was supposed to spend more time on school work than on exercise.But gradually,I found that running was not only good for my health,but also helped me relieve stress.When I opened my arms and stretched my legs on the playground,I was like a deer running in the field,which made me get a sense of belonging.
基金Projects(51774071,50804007,51974073)supported by the National Natural Science Foundation of China。
文摘In order to produce low-cost titanium(Ti)with high productivity,fundamental studies on producing metallic Ti from titanium dioxide(TiO_(2))in the cold pressed pellets were conducted by metallothermic reduction with an indirect contact method.This paper focuses on discussing the mechanism of the reduction process and the relationships of RM(a revised reduction index)with reduction temperature,reduction time,and mole ratio of TiO_(2) to CaCl_(2)(nTiO_(2)/nCaCl_(2))in the pellets.The results show that metallic Ti was obtained from the reduction of TiO_(2) in the pellets by calcium(Ca)vapor;pellets were reduced homogenously and Ca vapor diffused into the porous pellets by Knudsen diffusion or the mixing diffusion of molecular diffusion and Knudsen diffusion at 1273 K;RM increased with the increases of temperature and reduction time and was 96.34%when T_(Redu)=1273 K,t_(Redu)=6 h,and nTiO_(2)/nCaCl_(2)=4;the reasonable nTiO_(2)/nCaCl_(2) value is 3−5 for the pellets with enough strength and high RM.
基金Project supported by the National Natural Science Foundation of China (51071005)Beijing Natural Science Foundation (2102007)Program for Excellent Talents in Beijing (PHR201006101)
文摘Scandia pressed cathodes were prepared by powder metallurgy method using mixed powder of scandia doped tungsten and barium-calcium aluminates obtained by different mixing methods.The element distribution uniformity greatly affected the emission property.The powder prepared by ball-milling had small particle size and uniform distribution of different elements.This kind of powder was favorable for the chemical reaction among Ba,Ca aluminates,scandia and tungsten to take place sufficiently to form active substance which can improve the emission property.The emission current density of the cathode prepared with ball-milling powder was about 8 times higher than that prepared by manually mixing method,4 times higher than Os coated M-type cathode.The higher content of the active substance on the cathode surface prepared by ball-milling led to the better emission performance of the cathode.
基金Supported by the Foundation of Tianjin for Science and Technology Innovation(10FDZDGX00400,11ZCKFGX00900)Key Project of Educational Reform Foundation of Tianjin Municipal Education Commission(C03-0809)
文摘Since the Internet of Things(IoT) secret information is easy to leak in data transfer,a data secure transmission model based on compressed sensing(CS) and digital watermarking technology is proposed here. Firstly, for node coding end, the digital watermarking technology is used to embed secret information in the conventional data carrier. Secondly, these data are reused to build the target transfer data by the CS algorithm which are called observed signals. Thirdly, these signals are transmitted to the base station through the wireless channel. After obtaining these observed signals, the decoder reconstructs the data carrier containing privacy information. Finally, the privacy information is obtained by digital watermark extraction algorithm to achieve the secret transmission of signals. By adopting the watermarking and compression sensing to hide secret information in the end of node code, the algorithm complexity and energy consumption are reduced. Meanwhile, the security of secret information is increased.The simulation results show that the method is able to accurately reconstruct the original signal and the energy consumption of the sensor node is also reduced significantly in consideration of the packet loss.
基金financially supported by the Natural Science Foundation of Shanxi Province,China(No.201901D211085)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP)
文摘The present work reports the effect of thermal induced porosity(TIP)on the high-cycle fatigue(HCF)and very high-cycle fatigue(VHCF)behaviors of hot-isostatic-pressed(HIPed)Ti-6Al-4V alloy from gasatomized powder.The results show that the residual pores in the as-HIPed powder compacts present no obvious effect on the HCF life.The regrowth of the residual pores can be observed after solution heat treatment.The pore location ranks the most harmful for the fatigue life compared with the other initiating defects.The maximum stress intensity factors were calculated.The plastic zone size of fine granular area(FGA)is much less than the characteristic size of the microstructure,and the crucial size of the internal pores in this study is about 40μm.The failure types of fatigue specimens in the VHCF regime were classified,and the competition of different failure types was described based on the modified Poisson distribution.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50074017).
文摘To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isostatic pressing (HIPhag) treatment was performed at 1000℃ using nitrogen pressure up to 110 MPa. The mechanical properties of cermets after a coating process and subsequent HIPing treatment have been evaluated with respect to the hardness, the residual stress, and the coating adhesion. The results show that atter the HIPing process, there was a higher increase ha critical load ha the TiN-coated cermets with lower surface roughness compared with those with higher surface roughness. In all cases, the residual stress was found to be compressive. The effects of substrate surface roughness and posttreatment on the adhesion strength of the coatings were thus investigated. It was also fotmd that the HIPing posttreatment process is well suited for hacreasing the adhesion strength between the coating and the substrate.
文摘60NiTi alloy is considered to be a promising material for specialized bearing and gear applications due to its high hardness,strength,and low modulus.However,fabricating 60NiTi through conventional processing methods is challenging due to the brittleness and poor workability.In this study,60NiTi with high relative density was successfully fabricated directly from pre-alloyed powder through hot isostatic pressing.The effects of solution and aging treatments on microstructure and mechanical properties were systematically studied by advanced characterization techniques.The hot-isostatic-pressed 60NiTi showed low average hardness and elastic strain due to the formation of a soft Ni_(3)Ti phase and B2 NiTi matrix.Solution treatment above 1000℃dissolved the Ni_(3)Ti phase and promoted the formation of nanoscale Ni_(4)Ti_(3)precipitates,which significantly improved the hardness,strength,and elastic strain of 60NiTi.The formation of the Ni_(4)Ti_(3) phase can be mainly attributed to the driving forces induced by the chemical supersaturation and mechanical stress concentration.Finally,the phase transformation mechanisms during heat treatment and compression test were discussed.
基金the financial supports from the National Natural Science Foundation of China(Grant Nos.51301157 and 51434007)the National High Technology Research and Development Program of China 863 Program(Grant No.2013AA031103)
文摘The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperature range of 1323-1473 Kand strain rate range of 0.001-0.5s^(-1).The calculated activation energy in the above variational ranges of temperature and strain rate possesses a low activation energy value of approximately 365.6kJ/mol based on the constitutive relationship models developed with the Arrhenius-type constitutive model respectively considering the strain rate and deformation temperature.The hot working flow behavior during the deformation process was analyzed combined with the microstructural evolution.Meanwhile,the processing maps during the deformation process were established based on the dynamic material model and Prasad instability criterion under different deformation conditions.Finally,the optimal hot processing window of this alloy corresponding to the wide temperature range of 1353-1453 Kand the low strain rate of 0.001-0.1s^(-1) was obtained.
文摘Characteristics of magnetic hardening in cast-hot pressed magnet Pr_(19)Fe_(74.5)B_5Cu_(1.5)were stu- died.The microstructure features and virgin magnetization curve reveal a nucleation control- led coercivity mechanism.Regression analysis shows that the intrinsic coercivity varies inversely as the logarithm of the average grain size: _iH_c(MA/m)=1.7312-0.48161nd(μm) which confirms the randomness of nucleation of reversed domains and the statistical nature of coercivity,indicating that the decrease of grain size would reduce the average number of de- fects on its surface and lower the probability of magnetization reversal of a grain and the cu- mulative fraction of the grains that have reversed their magnetization.Coercivity is thus en- hanced.
基金Project supported by the Ningbo Science and Technology Major (2017B10002,2019B10093)the National Natural Science Foundation of China (51671207,51301192)Zhejiang Province Technology Application Research (LGG19E010001)。
文摘Nd-Fe-B hot-pressed(HP) magnet prepared from melt-spun MQU-F flakes features coarse grains(CG)with the average size of both 200 nm(CGS) and 700 nm(CGL) at flake boundary.The grain growth at the flake boundary of Nd2 Fe14B/α-Fe composite HP magnet before and after diffusion of low-melting-point Pr82Cu18 phase was investigated,revealing the indispensable role of surface RE-rich phase of meltspun flakes in the formation of CG in HP magnet.The dominant role of surface oxygen content of melt-spun flakes in the formation of CGL has been clarified with etching method.The HP magnet prepared from the etched flakes with dramatically decreased oxygen content exhibits the CG regions merely with homoge neous equiaxed CGS at flake boundary.Consequently,the coercivity(μ0 Hc) shows significant increase while remanent magnetization(μ0 Mr) inappreciable change.Further investigation with sieving method reveals the elimination of CGL via removal of the fine Nd-Fe-B flakes smaller than 54 μm due to their much higher oxygen content,confirming the dominant role of oxygen content in the formation of CGL.The quantitative analysis on the magnetic properties of the above HP magnets reveals the monotonic increase of coercivity(μ0 Hc) and negligible change of remanent magnetization(μ0 Mr) with decreased oxygen contents of Nd-Fe-B flakes.The maximum value of coercivity(μ0 Hc) increases from2.26 to 2.47 T as the oxygen content decreases from 0.1692 wt% to 0.079 wt%.
文摘Powder compacts of the system Bi2–xPbxSr2Ca2Cu3Oy with 0 ≤ x ≤ 0.5 molar ratio using both techniques;isothermal hot pressing and the solid state reaction (sintering). The XRD of the hot pressed powder compacts of the nominal compositions Bi2–xPbxSr2Ca2Cu3Oy showed 2212 and 2223 phases. The resistivity temperature variations belonging to the composition Bi1.8Pb0.2Sr2Ca2Cu3Oy showed metal-superconducting transition at Tons = 143 K for the annealed sample for 24 h. The annealed nominal composition Bi1.5Pb0.5Sr2Ca2Cu3Oy for 18 h showed metal to superconducting transition at 80 K.
基金support from CAS Project for Young Scientists in Basic Research(YSBR-025)and the Technology Innovation(RCJJ-145-24-39)R.P.Guo acknowledges the financial support from the National Natural Science Foundation of China(No.52401104)+1 种基金the Fundamental Research Program of Shanxi Province(No.202203021221072)the China Postdoctoral Science Foundation(No.2024M753298).
文摘Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys.
基金Major Scientific and Technological Project of Gansu(22ZD6GA008)Excellent Doctorate Project of Gansu(23JRRA806)National Natural Science Foundation of China(52175325,51961024,52071170)。
文摘The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results show that the interface region can be divided into four zones from base metal to deposited metal:carbon-depleted zone(CDZ),partial melting zone(PMZ),planar growth zone(PGZ),and brownish feature zone(BFZ).Dimensions of these zones do not significantly change during aging.However,type I carbides noticeably increase in size in the PMZ,and precipitates clearly occur in the PGZ.The main reason for their growth and occurrence is continuous carbon migration.The highest micro-hardness appears in the PGZ and BFZ regions,which is related to carbon accumulation and precipitates in these regions.Tensile failure occurs on the base metal side due to the high strength mismatch between these two materials.The CDZ,composed of only ferrite,has lower strength and fractures at the boundary between CDZ and base metal.The ultimate tensile strength decreases by only 50 MPa after aging for 1500 h,and the interface region maintains high strength without significant deformation.
基金National Natural Science Foundation of China(52105385)Stable Support Plan Program of Shenzhen Natural Science Fund(20220810132537001)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515010781)Joint Fund of Henan Province Science and Technology R&D Program(225200810002)Fundamental Research Funds of Henan Academy of Sciences(240621041)。
文摘To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys.
基金National Key R&D Program of China(2023YFE3812005)International Partnership Program of Chinese Academy of Sciences(121631KYSB20200039)+1 种基金National Center for Research and Development(WPC2/1/SCAPOL/2021)Chinese Academy of Sciences President’s International Fellowship Initiative(2024VEA0005,2024VEA0014)。
文摘Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.