This study was conducted in a fire-prone region in the Greater Xing'an Mountains, the primary forested area of northeastern China. We measured soil respiration and the affecting soil factors, i.e., soil microbial bio...This study was conducted in a fire-prone region in the Greater Xing'an Mountains, the primary forested area of northeastern China. We measured soil respiration and the affecting soil factors, i.e., soil microbial biomass and soil moisture, within an experimental plot of Larix gmelinii Rupr. A low-intensity, prescribed fire was applied as the treatment. Traditional descriptive statistics and geostatistics were used to analyze the spatial heterogeneity of soil respiration and the response of respiration to fire disturbance. Coefficients of variation (CVs) for pre-fire and post-fire soil respiration were 23.4 and 32.0 %, respec- tively. CVs for post-fire soil respiration increased signifi- cantly, with a moderate variation of all CVs. Soil respiration pre-fire was significantly correlated with soil microbial biomass carbon, biomass nitrogen, and soil moisture (W); post-fire soil respiration was not correlated with these factors. From the geostatistical analyses, the Co + C (sill) for post-fire soil respiration increased sig- nificantly, indicating that the post-fire spatial heterogeneity of soil respiration increased significantly. The nugget effect (nc) of soil respiration and the affecting factors pre-fire and post-fire disturbance were in the range of 12.5-50 %, with strong spatial autocorrelation. Fire disturbance changed the components of spatial heterogeneity, and the proportion of functional heterogeneity increased significantly post-fire. The ranges (a) for pre-fire and post-fire soil respiration were 81.0 and 68.2 m, respectively. The homogeneity of the distribution of post-fire soil respiration decreased and the spatial heterogeneity increased, thus the range for post- fire soil respiration decreased significantly. The fractal dimension (D) for soil respiration increased post-fire, the spatial heterogeneity of soil respiration affected by random components increased, indicating that the change in spatial heterogeneity of post-fire soil respiration should be con- sidered within the scale of the forest stand. Following Kriging interpolation, the increase in the patchiness of post-fire soil respiration was illustrated using a contour map. Based on these preliminary results, the change in the spatial heterogeneity of post-fire soil respiration was likely caused by changes in the distribution of soil moisture and microbial activity within the experimental plot at the scale of the forest stand.展开更多
Given the likelihood of regional extirpation of several once-common bat species in eastern North America from white-nose syndrome,it is critical that the impacts of forest management activities,such as prescribed fire...Given the likelihood of regional extirpation of several once-common bat species in eastern North America from white-nose syndrome,it is critical that the impacts of forest management activities,such as prescribed fire,are known in order to minimize potentially additive negative effects on bat populations.Historic wildfires may offer a suitable surrogate to assess long-term burn impacts on bats for planning,implementing and assessing burn programs.To examine the effects of historic fire on bats,we sampled bat activities at 24 transect locations in burned and unburned forest stands in the central Appalachian Mountains of Shenandoah National Park(SNP),Virginia,USA.There was limited evidence of positive fire effects over time on hoary bats(Lasiurus cinereus Beauvois)and big brown bats(Eptesicus fuscus Beauvois)occupancy.Overall,there were few or mostly equivocal relationships of bat occupancy relative to burn conditions or time since fire in SNP across species using a false-positive occupancy approach.Our results suggest that fire does not strongly affect bat site occupancy short-or long-term in the central Appalachians.展开更多
Based on field survey and measurement, and the simulated field burning test by indoor burning bed, a multiple linear regression model was established with factors of fuel load(x1), temperature(x2), fuel moisture c...Based on field survey and measurement, and the simulated field burning test by indoor burning bed, a multiple linear regression model was established with factors of fuel load(x1), temperature(x2), fuel moisture content(x3), wind velocity(x4), aspect(xs), slope(x6), forest height(x7), propagation velocity(x8), fire line intensity(xg) and prescribed burning width of fire isolated belt(y). The results showed that the multivari- ate linear model was y=-12.371 +4.182x1 +0.435x2 +0.013x3+0.083x4+0.017x5+0.916x6+ 0.540x7, and the influences of the factors on the prescribed burning width of fire isolated belt were in the order of x6, x7, x1, x4, x3, x2, x5. This model make it easier to establish fire isolated belt by using fuel characteristics, topographic factors, meteorological factors, and forest stand factors, providing basis for the development of prescribed burning and forest management fire.展开更多
Aims Understanding the drivers of grassland structure and function fol-lowing livestock removal will inform grassland restoration and management.Here,we investigated the effects of fire and nutri-ent addition on struc...Aims Understanding the drivers of grassland structure and function fol-lowing livestock removal will inform grassland restoration and management.Here,we investigated the effects of fire and nutri-ent addition on structure and function in a subtropical semi-native grassland recently released from grazing in south-central Florida.We examined responses of soil nutrients,plant tissue nutrients,bio-mass of live,standing dead and litter,and plant species composi-tion to experimental annual prescribed fire applied during different seasons(wet season vs.dry season),and nutrient additions(N,P and N+P)over 9 years.Methods Experimental plots were set up in a randomized block split-plot design,with season of prescribed fire as the main treatment and nutrient addition as the subplot treatment.Species cover data were collected annually from 2002 to 2011 and plant tissue and plant biomass data were collected in 2002-2006 and 2011.Soil nutrients were analyzed in 2004,2006 and 2011.Important Findings Soil total phosphorus(P)levels increased substantially with P addition but were not influenced by prescribed fire.Addition of P and N led to increased P and N concentrations in live plant tissues,but prescribed fire reduced N in live tissue.Levels of tissue N were higher in all plots at the beginning of the exper-iment,an effect that was likely due to grazing activity prior to removal of livestock.Plant tissue N steadily declined over time in all plots,with annually burned plots declining faster than unburned plots.Prescribed fire was an important driver of standing dead and litter biomass and was important for main-taining grass biomass and percent cover.Nutrient addition was also important:the addition of both N and P was associated with greater live biomass and woody forbs.Removal of grazing,lack of prescribed fire,and addition of N+P led to a reduction of grass biomass and a large increase in biomass of a woody forb.Annual prescribed fire promoted N loss from the system by reducing standing dead and litter,but maintained desirable biomass of grasses.展开更多
This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bound...This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bounded gain is proposed by using a new time-varying scaling function.Moreover,a same-side performance function and a novel barrier Lyapunov function are incorporated into the control algorithm,which can compress the feasible domain of tracking error to minimize the overshoot and solve the difficult in tracking error not converging to zero simultaneously.The proposed scheme guarantees the airship capable of operating autonomously with satisfactory transient performance and tracking accuracy,where the performance parameters can be designed artificially and link to the physical process directly.Finally,the effectiveness of the proposed control scheme is verified by theoretical analysis and numerical simulation.展开更多
This paper addresses the tracking control problem of a class of multiple-input–multiple-output nonlinear systems subject to actuator faults.Achieving a balance between input saturation and performance constraints,rat...This paper addresses the tracking control problem of a class of multiple-input–multiple-output nonlinear systems subject to actuator faults.Achieving a balance between input saturation and performance constraints,rather than conducting isolated analyses,especially in the presence of frequently encountered unknown actuator faults,becomes an interesting yet challenging problem.First,to enhance the tracking performance,Tunnel Prescribed Performance(TPP)is proposed to provide narrow tunnel-shape constraints instead of the common over-relaxed trumpet-shape performance constraints.A pair of non-negative signals produced by an auxiliary system is then integrated into TPP,resulting in Saturation-tolerant Prescribed Performance(SPP)with flexible performance boundaries that account for input saturation situations.Namely,SPP can appropriately relax TPP when needed and decrease the conservatism of control design.With the help of SPP,our developed Saturation-tolerant Prescribed Control(SPC)guarantees finite-time convergence while satisfying both input saturation and performance constraints,even under serious actuator faults.Simulations are conducted to illustrate the effectiveness of the proposed SPC.展开更多
Prescribed burning is commonly used to maintain forest ecosystem functions and reduce the risk of future wildfires.Although many studies have investigated the response of microbial community to wildfires in forest eco...Prescribed burning is commonly used to maintain forest ecosystem functions and reduce the risk of future wildfires.Although many studies have investigated the response of microbial community to wildfires in forest ecosystems,the effects of prescribed burnings on soil microbial community structure are less studied.It is also unclear that how post-fire soil physiochemical properties changes affected soil microbial communities.Here,we studied the impacts of prescribed burning on soil microbiome in three typical temperate forests of northern China by collecting soil physicochemical and high-throughput sequencing for 16S rRNA and 18S rRNA was applied to analyze the diversity and community composition of soil microbes(bacteria and fungi).Compared with pre-fire condition,prescribed burning significantly decreased Chaol index and altered soil bacterial communities(P<0.05),whereas it had no significant effect on fungal diversity and community structure of the(P>0.05).Planctomycetes and Actinobacteria made the greatest contributions to the bacterial community dissimilarity between the pre-fire and post-fire conditions.The main variables influencing the post-fire soil microbial community structure are soil pH,available phosphorus,total nitrogen,and the ratio of soil total carbon to soil total nitrogen,which could account for 73.5% of the variation in the microbial community structure in these stands.Our findings demonstrated a great discrepancy in the responses of bacteria and fungi to prescribed burning.Prescribed burning altered the soil microbial structure by modifying the physicochemical properties.Our results pointed that it is essential to evaluate the impact of prescribed burnings on forest ecosystem functions.These findings provide an important baseline for assessing post-fire microbial recovery in the region and offer critical guidance for restoration efforts.展开更多
Dear Editor,This letter investigates the fuzzy prescribed-time control(PTC)problem for a class of uncertain pure feedback nonlinear systems.Firstly,a novel prescribed-time stability lemma is introduced,which plays a c...Dear Editor,This letter investigates the fuzzy prescribed-time control(PTC)problem for a class of uncertain pure feedback nonlinear systems.Firstly,a novel prescribed-time stability lemma is introduced,which plays a critical role in stability analysis.Unlike existing PTC algorithms,where the nonlinear functions are typically known or satisfy a linear growth condition,our approach does not require such assumptions.To address these unknown factors,fuzzy logic systems(FLSs)are employed.Based on the new prescribed-time stability lemma,it is proven that the controller and all system states converge to the origin within the prescribed time and remain there.Finally,the effectiveness of the proposed algorithm is validated through a simulation example.展开更多
A servicing spacecraft installed with compliant flexible rod has recently emerged as an innovative solution for efficiently detumbling satellite.However,the undesired vibrations of the flexible rod are easily excited ...A servicing spacecraft installed with compliant flexible rod has recently emerged as an innovative solution for efficiently detumbling satellite.However,the undesired vibrations of the flexible rod are easily excited by the contact process,bringing detrimental effects for the accurate and safe operations.Besides,the contact-induced strong disturbance makes most of the existing controllers difficult to achieve guaranteed transient and steady-state performances.To conquer the above problems,a novel Nonlinear Energy Sink with Active Varying Stiffness(NES-AVS)device is proposed to significantly reduce the vibrations,wherein the AVS is realized by a small steel plate with the compression force adjusted by a piezoelectric actuator.Moreover,a composite prescribed performance detumbling controller is designed based on the fast non-singular terminal sliding mode control technique.A performance function is adopted to constrain the tracking errors to meet the prescribed dynamic properties,and an adaptive law is incorporated into the control framework to effectively reject the disturbance.Extensive simulations are conducted to demonstrate the effectiveness of the proposed NES-AVS device and controller.展开更多
In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung...In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung-mass subsystem(regarding ride comfort)and an unsprung-mass subsystem(regarding road holding),which correspond to two prescribed performance tracking problems.Subsequently,an integrated control law is designed by introducing the unsprung-mass sliding surface into the control of the sprung-mass one.To reduce chattering and stabilize the subsystems,a prescribed-time extended disturbance observer(PT-EDO)is designed,achieving the time-varying switching gain RDSMC(TVSG-RDSMC).Numerical simulations imply that the proposed TVSG-RDSMC can effectively improve ride comfort and road holding with a significantly reduced chattering.展开更多
The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may ...The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.展开更多
This article investigates the approaching control for fixed-wing Unmanned Aerial Vehi-cle(UAV)aerial recovery in the presence of pre-specified performance requirements,complex air-flows,maneuvering flight of transport...This article investigates the approaching control for fixed-wing Unmanned Aerial Vehi-cle(UAV)aerial recovery in the presence of pre-specified performance requirements,complex air-flows,maneuvering flight of transport aircraft,and different initial deviations.First,a novelcontrol-oriented Six-Degree-Of-Freedom(6-DOF)UAV model considering airflow disturbancesis established for better consistency with the actual UAV system.Then,to achieve satisfactory per-formance in the approaching process,a Flexible Appointed-time Prescribed Performance Control(FAPPC)algorithm,with the features of user-specified time convergence,no overshoot,indepen-dence from the initial value,and singularity-free,is proposed.Specifically,to solve the singularityissue encountered by the existing PPC methods in dealing with sudden disturbances,an adaptiveadjustment signal is introduced in FAPPC to perceive the threat of increasing error and relax thepreset boundaries appropriately.Moreover,minimum learning parameter-based neural networkestimators are developed to approximate unknown lumped disturbances at a low computationalcost.Finally,the stability of the closed system is analyzed via Lyapunov synthesis,and the effective-ness and advantages of the proposed control scheme are demonstrated via simulation andHardware-In-the-Loop(HIL)experimental validation.展开更多
This paper investigates the bipartite consensus control problem for discrete time nonlinear multiagent systems(MASs)based on data-driven adaptive method.To begin with,a dynamic linearization strategy is utilized to es...This paper investigates the bipartite consensus control problem for discrete time nonlinear multiagent systems(MASs)based on data-driven adaptive method.To begin with,a dynamic linearization strategy is utilized to establish the relationship between bipartite tracking error and control input for MASs.Secondly,the unknown parameter linearly associated with control input is acquired by the adaptive control approach,and a discrete time extended state observer is designed to estimate nonlinear uncertainties.Thirdly,in order to achieve the prescribed performance,the constrained bipartite consensus error is transformed through a strictly increasing function.Based on the converted equivalent unconstrained error function,a sliding mode controller using only the input and output data of the MASs is designed.Finally,the efficacy of the controller is confirmed by simulations.展开更多
This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance ...This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance control scheme is proposed,which enables the lateral position error of the vehicle to be kept within the prescribed performance boundaries all the time.This is achieved by firstly introducing an improved performance function into the controller design such that the stringent initial condition requirements can be relaxed,which further allows the global prescribed performance control result,and then,developing a multivariable adaptive terminal sliding mode based controller such that both input saturation and parameter uncertainties are handled effectively,which further ensures the robust lane-keeping control.Finally,the proposed control strategy is validated through numerical simulations,demonstrating its effectiveness.展开更多
Landscape disturbances can alter habitat structure and resource availability,often inducing physiological responses by organisms to cope with the changing conditions.Quantifying the endocrine stress response through m...Landscape disturbances can alter habitat structure and resource availability,often inducing physiological responses by organisms to cope with the changing conditions.Quantifying the endocrine stress response through measurement of glucocorticoids has become an increasingly common method for determining how organisms physiologically respond to challenges imposed by their environment.We tested the hypothesis that Eastern Fence Lizards cope with fire disturbance effects by modulating their secretion of corticosterone(CORT).We measured the baseline and stress-induced plasma CORT of male Eastern Fence Lizards in a chronosequence of fire-altered habitats(recently burned,recovering from burn,and unburned).Although habitat use by lizards differed among burn treatments,including differences in use of canopy cover,leaf litter,and vegetation composition,we did not detect a significant effect of fire-induced habitat alteration on plasma CORT concentration or on body condition.In addition,we found no effect of blood draw treatment(baseline or stress-induced),body temperature,body condition,or time taken to collect blood samples on concentration of plasma CORT.Low intensity burns,which are typical of prescribed fire,may not be a sufficient stressor to alter CORT secretion in Eastern Fence Lizards(at least during the breeding season).Instead,lizards may avoid allostatic overload using behavioral responses and by selecting microsites within their environment that permit thermoregulatory opportunities necessary for optimal performance and energy assimilation.展开更多
Fire is an important ecological factor and what constitutes appropriate fire management is much debated in the US and elsewhere. The role of fire as a source of greenhouse gases has been intensively investigated, but ...Fire is an important ecological factor and what constitutes appropriate fire management is much debated in the US and elsewhere. The role of fire as a source of greenhouse gases has been intensively investigated, but less is known about the production rate of the solid black carbon residue from fires. Black carbon accumulates in soil as it has longer turnover times than plant residues. To understand the significance of black carbon production during wildfire, we quantified black carbon using hydropyrolysis in O and A horizons before and after a prescribed bum at four sites in the New Jersey Pine Barrens forest in the North-Eastern US. Black carbon was found in both O- and A-horizons at all investigated sites, stocks in the range of 61.31-168.15 g m^-2 in the O-horizon and 169.59-425.25 g m^-2 in the A-horizon. Total black carbon stocks did not increase following the fire suggesting that either black carbon production in fires may be small compared to the variability, or that equivalent amounts of black carbon formed in previous fires may have been consumed in the fire. The study raises questions about how black carbon production and consumption in ftres can be quantified separately.展开更多
An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered, ...An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered, A thermal radiation term in the energy equation is considered. The similarity solutions for the problem are obtained and the reduced ordinary differential equations are solved numerically. To support the validity of the numerical results, a comparison is made with the available results for some particular cases of this study. Dual solutions exist when the surface and the fluid move in the opposite directions.展开更多
This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed t...This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.展开更多
A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the t...A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the traditional prescribed performance control in which the shape of the performance function is constant, this paper exploits new performance functions which can change the shape of their function according to different symbols of initial errors and can ensure the error convergence with a small overshoot. The neural backstepping control and the minimal learning parameters (MLP) technology are employed for exploring a prescribed performance controller (PPC) that provides robust tracking attitude reference trajectories. The highlight is that the transient performance of tracking errors is satisfactory and the computational load of neural approximation is low. The pseudo rate (PSR) modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation and high accuracy.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
基金supported by National Natural Science Foundation(Nos.31470657 and 31070544)Fundamental Research Funds for the Central Universities(No.2572015DA01)The CFERN and GENE Award Funds for Ecological Papers
文摘This study was conducted in a fire-prone region in the Greater Xing'an Mountains, the primary forested area of northeastern China. We measured soil respiration and the affecting soil factors, i.e., soil microbial biomass and soil moisture, within an experimental plot of Larix gmelinii Rupr. A low-intensity, prescribed fire was applied as the treatment. Traditional descriptive statistics and geostatistics were used to analyze the spatial heterogeneity of soil respiration and the response of respiration to fire disturbance. Coefficients of variation (CVs) for pre-fire and post-fire soil respiration were 23.4 and 32.0 %, respec- tively. CVs for post-fire soil respiration increased signifi- cantly, with a moderate variation of all CVs. Soil respiration pre-fire was significantly correlated with soil microbial biomass carbon, biomass nitrogen, and soil moisture (W); post-fire soil respiration was not correlated with these factors. From the geostatistical analyses, the Co + C (sill) for post-fire soil respiration increased sig- nificantly, indicating that the post-fire spatial heterogeneity of soil respiration increased significantly. The nugget effect (nc) of soil respiration and the affecting factors pre-fire and post-fire disturbance were in the range of 12.5-50 %, with strong spatial autocorrelation. Fire disturbance changed the components of spatial heterogeneity, and the proportion of functional heterogeneity increased significantly post-fire. The ranges (a) for pre-fire and post-fire soil respiration were 81.0 and 68.2 m, respectively. The homogeneity of the distribution of post-fire soil respiration decreased and the spatial heterogeneity increased, thus the range for post- fire soil respiration decreased significantly. The fractal dimension (D) for soil respiration increased post-fire, the spatial heterogeneity of soil respiration affected by random components increased, indicating that the change in spatial heterogeneity of post-fire soil respiration should be con- sidered within the scale of the forest stand. Following Kriging interpolation, the increase in the patchiness of post-fire soil respiration was illustrated using a contour map. Based on these preliminary results, the change in the spatial heterogeneity of post-fire soil respiration was likely caused by changes in the distribution of soil moisture and microbial activity within the experimental plot at the scale of the forest stand.
基金This work was supported by the Joint Fire Science Program(Grant#G14AC00316)National Park Service Whitenose Syndrome Program(Grant#P14AC01042)through the Southern Appalachian Cooperative Ecosystem Studies Unit at Virginia Tech.
文摘Given the likelihood of regional extirpation of several once-common bat species in eastern North America from white-nose syndrome,it is critical that the impacts of forest management activities,such as prescribed fire,are known in order to minimize potentially additive negative effects on bat populations.Historic wildfires may offer a suitable surrogate to assess long-term burn impacts on bats for planning,implementing and assessing burn programs.To examine the effects of historic fire on bats,we sampled bat activities at 24 transect locations in burned and unburned forest stands in the central Appalachian Mountains of Shenandoah National Park(SNP),Virginia,USA.There was limited evidence of positive fire effects over time on hoary bats(Lasiurus cinereus Beauvois)and big brown bats(Eptesicus fuscus Beauvois)occupancy.Overall,there were few or mostly equivocal relationships of bat occupancy relative to burn conditions or time since fire in SNP across species using a false-positive occupancy approach.Our results suggest that fire does not strongly affect bat site occupancy short-or long-term in the central Appalachians.
基金Supported by the Scientific Research Fund of the Education Bureau of Yunnan Province,China (2011C113)the Science and Technology Innovation Program for Undergraduates,Southwest Forestry University,China (1031)the "Forest Protection"Key Discipline of Yunnan Province,China (XKZ200905)~~
文摘Based on field survey and measurement, and the simulated field burning test by indoor burning bed, a multiple linear regression model was established with factors of fuel load(x1), temperature(x2), fuel moisture content(x3), wind velocity(x4), aspect(xs), slope(x6), forest height(x7), propagation velocity(x8), fire line intensity(xg) and prescribed burning width of fire isolated belt(y). The results showed that the multivari- ate linear model was y=-12.371 +4.182x1 +0.435x2 +0.013x3+0.083x4+0.017x5+0.916x6+ 0.540x7, and the influences of the factors on the prescribed burning width of fire isolated belt were in the order of x6, x7, x1, x4, x3, x2, x5. This model make it easier to establish fire isolated belt by using fuel characteristics, topographic factors, meteorological factors, and forest stand factors, providing basis for the development of prescribed burning and forest management fire.
文摘Aims Understanding the drivers of grassland structure and function fol-lowing livestock removal will inform grassland restoration and management.Here,we investigated the effects of fire and nutri-ent addition on structure and function in a subtropical semi-native grassland recently released from grazing in south-central Florida.We examined responses of soil nutrients,plant tissue nutrients,bio-mass of live,standing dead and litter,and plant species composi-tion to experimental annual prescribed fire applied during different seasons(wet season vs.dry season),and nutrient additions(N,P and N+P)over 9 years.Methods Experimental plots were set up in a randomized block split-plot design,with season of prescribed fire as the main treatment and nutrient addition as the subplot treatment.Species cover data were collected annually from 2002 to 2011 and plant tissue and plant biomass data were collected in 2002-2006 and 2011.Soil nutrients were analyzed in 2004,2006 and 2011.Important Findings Soil total phosphorus(P)levels increased substantially with P addition but were not influenced by prescribed fire.Addition of P and N led to increased P and N concentrations in live plant tissues,but prescribed fire reduced N in live tissue.Levels of tissue N were higher in all plots at the beginning of the exper-iment,an effect that was likely due to grazing activity prior to removal of livestock.Plant tissue N steadily declined over time in all plots,with annually burned plots declining faster than unburned plots.Prescribed fire was an important driver of standing dead and litter biomass and was important for main-taining grass biomass and percent cover.Nutrient addition was also important:the addition of both N and P was associated with greater live biomass and woody forbs.Removal of grazing,lack of prescribed fire,and addition of N+P led to a reduction of grass biomass and a large increase in biomass of a woody forb.Annual prescribed fire promoted N loss from the system by reducing standing dead and litter,but maintained desirable biomass of grasses.
基金supported by the National Natural Science Foundation of China(Nos.51775021,52302511)the Fundamental Research Funds for the Central Universities,China(Nos.501JCGG2024129003,501JCGG2024129005,501JCGG2024129006),the Fundamental Research Funds for the Central Universities,China(No.YWF-24-JC-09)the National Key Research and Development Program of China(No.2018YFC1506401)。
文摘This paper studies the tracking control problem for stratospheric airships with userspecified performance.Dealing with the infinite gain phenomenon in the prescribed-time stability,a new stability criterion with bounded gain is proposed by using a new time-varying scaling function.Moreover,a same-side performance function and a novel barrier Lyapunov function are incorporated into the control algorithm,which can compress the feasible domain of tracking error to minimize the overshoot and solve the difficult in tracking error not converging to zero simultaneously.The proposed scheme guarantees the airship capable of operating autonomously with satisfactory transient performance and tracking accuracy,where the performance parameters can be designed artificially and link to the physical process directly.Finally,the effectiveness of the proposed control scheme is verified by theoretical analysis and numerical simulation.
基金supported by the National Research Foundation Singapore under its AI Singapore Programme(Award Number:[AISG2-GC-2023-007]).
文摘This paper addresses the tracking control problem of a class of multiple-input–multiple-output nonlinear systems subject to actuator faults.Achieving a balance between input saturation and performance constraints,rather than conducting isolated analyses,especially in the presence of frequently encountered unknown actuator faults,becomes an interesting yet challenging problem.First,to enhance the tracking performance,Tunnel Prescribed Performance(TPP)is proposed to provide narrow tunnel-shape constraints instead of the common over-relaxed trumpet-shape performance constraints.A pair of non-negative signals produced by an auxiliary system is then integrated into TPP,resulting in Saturation-tolerant Prescribed Performance(SPP)with flexible performance boundaries that account for input saturation situations.Namely,SPP can appropriately relax TPP when needed and decrease the conservatism of control design.With the help of SPP,our developed Saturation-tolerant Prescribed Control(SPC)guarantees finite-time convergence while satisfying both input saturation and performance constraints,even under serious actuator faults.Simulations are conducted to illustrate the effectiveness of the proposed SPC.
基金financially supported by the National Natural Science Foundation(No.32471868,No.32001324)Youth Lift Project of China Association for Science and Technology(No.YESS20210370)+1 种基金Fundamental Research Funds for the Central Universities(2572023CT01)We thank the Grassland Bureau and the National Innovation Alliance of Wildland Fire Prevention and Control Technology of China for supporting this research.
文摘Prescribed burning is commonly used to maintain forest ecosystem functions and reduce the risk of future wildfires.Although many studies have investigated the response of microbial community to wildfires in forest ecosystems,the effects of prescribed burnings on soil microbial community structure are less studied.It is also unclear that how post-fire soil physiochemical properties changes affected soil microbial communities.Here,we studied the impacts of prescribed burning on soil microbiome in three typical temperate forests of northern China by collecting soil physicochemical and high-throughput sequencing for 16S rRNA and 18S rRNA was applied to analyze the diversity and community composition of soil microbes(bacteria and fungi).Compared with pre-fire condition,prescribed burning significantly decreased Chaol index and altered soil bacterial communities(P<0.05),whereas it had no significant effect on fungal diversity and community structure of the(P>0.05).Planctomycetes and Actinobacteria made the greatest contributions to the bacterial community dissimilarity between the pre-fire and post-fire conditions.The main variables influencing the post-fire soil microbial community structure are soil pH,available phosphorus,total nitrogen,and the ratio of soil total carbon to soil total nitrogen,which could account for 73.5% of the variation in the microbial community structure in these stands.Our findings demonstrated a great discrepancy in the responses of bacteria and fungi to prescribed burning.Prescribed burning altered the soil microbial structure by modifying the physicochemical properties.Our results pointed that it is essential to evaluate the impact of prescribed burnings on forest ecosystem functions.These findings provide an important baseline for assessing post-fire microbial recovery in the region and offer critical guidance for restoration efforts.
基金supported by the National Natural Science Foundation of China(U20A20187,U22A2050)the Science Fund of Hebei Province(F2024203134,F2023203100)+3 种基金the Science and Technology Development Grant of Hebei Province(20311803D)Hebei Innovation Capability Improvement Plan project(22567619H)Basic Research Project of Shijiazhuang(241791007A)the China Scholarship Council(CSC 202308130190).
文摘Dear Editor,This letter investigates the fuzzy prescribed-time control(PTC)problem for a class of uncertain pure feedback nonlinear systems.Firstly,a novel prescribed-time stability lemma is introduced,which plays a critical role in stability analysis.Unlike existing PTC algorithms,where the nonlinear functions are typically known or satisfy a linear growth condition,our approach does not require such assumptions.To address these unknown factors,fuzzy logic systems(FLSs)are employed.Based on the new prescribed-time stability lemma,it is proven that the controller and all system states converge to the origin within the prescribed time and remain there.Finally,the effectiveness of the proposed algorithm is validated through a simulation example.
基金supported by the National Natural Science Foundation of China(Nos.U2013206,52425212)the National Key Research and Development Program of China(No.2021YFA0717100)。
文摘A servicing spacecraft installed with compliant flexible rod has recently emerged as an innovative solution for efficiently detumbling satellite.However,the undesired vibrations of the flexible rod are easily excited by the contact process,bringing detrimental effects for the accurate and safe operations.Besides,the contact-induced strong disturbance makes most of the existing controllers difficult to achieve guaranteed transient and steady-state performances.To conquer the above problems,a novel Nonlinear Energy Sink with Active Varying Stiffness(NES-AVS)device is proposed to significantly reduce the vibrations,wherein the AVS is realized by a small steel plate with the compression force adjusted by a piezoelectric actuator.Moreover,a composite prescribed performance detumbling controller is designed based on the fast non-singular terminal sliding mode control technique.A performance function is adopted to constrain the tracking errors to meet the prescribed dynamic properties,and an adaptive law is incorporated into the control framework to effectively reject the disturbance.Extensive simulations are conducted to demonstrate the effectiveness of the proposed NES-AVS device and controller.
基金supported by the National Natural Science Foundation of China(No.62173125).
文摘In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung-mass subsystem(regarding ride comfort)and an unsprung-mass subsystem(regarding road holding),which correspond to two prescribed performance tracking problems.Subsequently,an integrated control law is designed by introducing the unsprung-mass sliding surface into the control of the sprung-mass one.To reduce chattering and stabilize the subsystems,a prescribed-time extended disturbance observer(PT-EDO)is designed,achieving the time-varying switching gain RDSMC(TVSG-RDSMC).Numerical simulations imply that the proposed TVSG-RDSMC can effectively improve ride comfort and road holding with a significantly reduced chattering.
基金supported in part by the National Natural Science Foundation of China under Grants 61991404,62103093 and 62473089the Research Program of the Liaoning Liaohe Laboratory,China under Grant LLL23ZZ-05-01+5 种基金the Key Research and Development Program of Liaoning Province of China under Grant 2023JH26/10200011the 111 Project 2.0 of China under Grant B08015,the National Key Research and Development Program of China under Grant 2022YFB3305905the Xingliao Talent Program of Liaoning Province of China under Grant XLYC2203130the Natural Science Foundation of Liaoning Province of China under Grants 2024JH3/10200012 and 2023-MS-087the Open Research Project of the State Key Laboratory of Industrial Control Technology of China under Grant ICT2024B12the Fundamental Research Funds for the Central Universities of China under Grants N2108003 and N2424004.
文摘The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.
基金funded by the National Natural Science Foundation of China(Nos.62173022,61673042)the Academic Excellence Foundation of Beihang University for Ph.D.Studentsthe Outstanding Research Project of Shen Yuan Honors College,Beihang University,China(No.230123104)。
文摘This article investigates the approaching control for fixed-wing Unmanned Aerial Vehi-cle(UAV)aerial recovery in the presence of pre-specified performance requirements,complex air-flows,maneuvering flight of transport aircraft,and different initial deviations.First,a novelcontrol-oriented Six-Degree-Of-Freedom(6-DOF)UAV model considering airflow disturbancesis established for better consistency with the actual UAV system.Then,to achieve satisfactory per-formance in the approaching process,a Flexible Appointed-time Prescribed Performance Control(FAPPC)algorithm,with the features of user-specified time convergence,no overshoot,indepen-dence from the initial value,and singularity-free,is proposed.Specifically,to solve the singularityissue encountered by the existing PPC methods in dealing with sudden disturbances,an adaptiveadjustment signal is introduced in FAPPC to perceive the threat of increasing error and relax thepreset boundaries appropriately.Moreover,minimum learning parameter-based neural networkestimators are developed to approximate unknown lumped disturbances at a low computationalcost.Finally,the stability of the closed system is analyzed via Lyapunov synthesis,and the effective-ness and advantages of the proposed control scheme are demonstrated via simulation andHardware-In-the-Loop(HIL)experimental validation.
基金supported in part by the National Natural Science Foundation of China(62373113,62433014,62433018)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011527,2023B1515120010).Recommended by Associate Editor Xiaohua Ge。
文摘This paper investigates the bipartite consensus control problem for discrete time nonlinear multiagent systems(MASs)based on data-driven adaptive method.To begin with,a dynamic linearization strategy is utilized to establish the relationship between bipartite tracking error and control input for MASs.Secondly,the unknown parameter linearly associated with control input is acquired by the adaptive control approach,and a discrete time extended state observer is designed to estimate nonlinear uncertainties.Thirdly,in order to achieve the prescribed performance,the constrained bipartite consensus error is transformed through a strictly increasing function.Based on the converted equivalent unconstrained error function,a sliding mode controller using only the input and output data of the MASs is designed.Finally,the efficacy of the controller is confirmed by simulations.
基金supported in part by the National Key Research and Development Program of China under Grant 2023YFA1011803in part by Natural Science Foundation of Chongqing,China under Grant CSTB2023NSCQ-MSX0588+2 种基金in part by the Fundamental Research Funds for the Central Universities,China under Grant 2023CDJKYJH047in part by the National Natural Science Foundation of China under Grant 62273064,Grant 61991400,Grant 61991403,Grant 61933012,Grant 62250710167,Grant 62203078in part by Innovation Support Program for International Students Returning to China under Grant cx2022016.
文摘This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance control scheme is proposed,which enables the lateral position error of the vehicle to be kept within the prescribed performance boundaries all the time.This is achieved by firstly introducing an improved performance function into the controller design such that the stringent initial condition requirements can be relaxed,which further allows the global prescribed performance control result,and then,developing a multivariable adaptive terminal sliding mode based controller such that both input saturation and parameter uncertainties are handled effectively,which further ensures the robust lane-keeping control.Finally,the proposed control strategy is validated through numerical simulations,demonstrating its effectiveness.
文摘Landscape disturbances can alter habitat structure and resource availability,often inducing physiological responses by organisms to cope with the changing conditions.Quantifying the endocrine stress response through measurement of glucocorticoids has become an increasingly common method for determining how organisms physiologically respond to challenges imposed by their environment.We tested the hypothesis that Eastern Fence Lizards cope with fire disturbance effects by modulating their secretion of corticosterone(CORT).We measured the baseline and stress-induced plasma CORT of male Eastern Fence Lizards in a chronosequence of fire-altered habitats(recently burned,recovering from burn,and unburned).Although habitat use by lizards differed among burn treatments,including differences in use of canopy cover,leaf litter,and vegetation composition,we did not detect a significant effect of fire-induced habitat alteration on plasma CORT concentration or on body condition.In addition,we found no effect of blood draw treatment(baseline or stress-induced),body temperature,body condition,or time taken to collect blood samples on concentration of plasma CORT.Low intensity burns,which are typical of prescribed fire,may not be a sufficient stressor to alter CORT secretion in Eastern Fence Lizards(at least during the breeding season).Instead,lizards may avoid allostatic overload using behavioral responses and by selecting microsites within their environment that permit thermoregulatory opportunities necessary for optimal performance and energy assimilation.
文摘Fire is an important ecological factor and what constitutes appropriate fire management is much debated in the US and elsewhere. The role of fire as a source of greenhouse gases has been intensively investigated, but less is known about the production rate of the solid black carbon residue from fires. Black carbon accumulates in soil as it has longer turnover times than plant residues. To understand the significance of black carbon production during wildfire, we quantified black carbon using hydropyrolysis in O and A horizons before and after a prescribed bum at four sites in the New Jersey Pine Barrens forest in the North-Eastern US. Black carbon was found in both O- and A-horizons at all investigated sites, stocks in the range of 61.31-168.15 g m^-2 in the O-horizon and 169.59-425.25 g m^-2 in the A-horizon. Total black carbon stocks did not increase following the fire suggesting that either black carbon production in fires may be small compared to the variability, or that equivalent amounts of black carbon formed in previous fires may have been consumed in the fire. The study raises questions about how black carbon production and consumption in ftres can be quantified separately.
文摘An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered, A thermal radiation term in the energy equation is considered. The similarity solutions for the problem are obtained and the reduced ordinary differential equations are solved numerically. To support the validity of the numerical results, a comparison is made with the available results for some particular cases of this study. Dual solutions exist when the surface and the fluid move in the opposite directions.
基金This work was supported by the National Natural Science Foundation of China(62003162,61833013,62020106003)the Natural Science Foundation of Jiangsu Province of China(BK20200416)+3 种基金the China Postdoctoral Science Foundation(2020TQ0151,2020M681590)the State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University(2019-KF-23-05)the 111 Project(B20007)the Natural Sciences and Engineering Research Council of Canada.
文摘This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.
基金supported by the National Natural Science Foundation of China(61773398 61703421)
文摘A prescribed performance neural controller to guarantee tracking quality is addressed for the near space kinetic kill vehicle (NSKKV) to meet the state constraints caused by side window detection. Different from the traditional prescribed performance control in which the shape of the performance function is constant, this paper exploits new performance functions which can change the shape of their function according to different symbols of initial errors and can ensure the error convergence with a small overshoot. The neural backstepping control and the minimal learning parameters (MLP) technology are employed for exploring a prescribed performance controller (PPC) that provides robust tracking attitude reference trajectories. The highlight is that the transient performance of tracking errors is satisfactory and the computational load of neural approximation is low. The pseudo rate (PSR) modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation and high accuracy.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.