Decabromodiphenyl ethane(DBDPE)is widely used as an additive flame retardant and has led to global pollution.Its has a large molecular mass and is prone to debromination and degradation under photothermal conditions,r...Decabromodiphenyl ethane(DBDPE)is widely used as an additive flame retardant and has led to global pollution.Its has a large molecular mass and is prone to debromination and degradation under photothermal conditions,resulting in smaller homologous compounds.Due to the lack of standard substances for debromination products,the in-depth study of DBDPE environmental geochemical behavior through debromination conversion has been hindered.Therefore,based on DBDPE photodegradation experiment,this study first analyzed and identified the brominated products of DBDPE using high-performance liquid chromatography-atmospheric pressure photoionization-time of flight mass spectrometry(HPLC-APPI-TOF/MS).Four debromination products-nonabromodiphenyl ethane(nonaBDPE),octabromodiphenyl ethane(octa-BDPE),heptabromodiphenyl ethane(hepta-BDPE)and hexabromodiphenyl ethane(hexa-BDPE)are identified based on the characteristic ion peak of[M-Br+O]^(-) in negative ion mode.Subsequently,using methanol as the mobile phase,four debromination products of DBDPE were separated and purified with a semi-preparative high-performance liquid chromatography(SP-HPLC)system equipped with an Agilent Zorbax Eclipse PAH column(4.6 mm×250 mm,5μm).The first-time acquisition of hexa-BDPE(60.00μg),octa-BDPE(19.40μg),hepta-BDPE(31.20μg)and octa-BDPE(isomer,45.20μg)with purity exceeding 90%has been achieved.Among them,the purity of one hepta-BDPE monomer is as high as 98.91%.This study indicates that based on photodegradation experiments,the combination of HPLC-APPI-TOF/MS and SP-HPLC techniques can rapidly identify and prepare DBDPE debrominated products.This approach meets the requirements for preliminary research on the pollution characteristics of DBDPE debrominated compounds and offers a feasible solution for the preparation of standard reference materials for emerging pollutants.展开更多
The aim of this study was to rapidly isolate the major effective flavanoids from the extract of safflower(Carthamus tinctorius) using ODS medium pressure liquid chromatography(MPLC) and semi-preparative HPLC, guid...The aim of this study was to rapidly isolate the major effective flavanoids from the extract of safflower(Carthamus tinctorius) using ODS medium pressure liquid chromatography(MPLC) and semi-preparative HPLC, guided by a developed fingerprint. Twelve compounds were isolated and their structures were elucidated as kaempferol 3-O-β-D-rutinoside(1), kaempferol 3-O-β-D-glucoside(2), rutin(3), quercetin 3-O-β-D-glucoside(4), 6-hydroxykaempferol 3,6,7-tri-O-β-D-glucoside(5), 6-hydroxykaempferol 3-O-β-D-glucoside(6), 6-hydroxykaempferol 6,7-di-O-β-D-glucoside(7), 6-hydroxykaempferol 3-O-β-Drutinoside(8), 6-hydroxykaempferol 3,6-di-O-β-D-glucosyl 7-O-β-D-glucuronide(9), isosafflomin C(10), safflomin C(11) and hydroxysafflor yellow A(12) by spectroscopic analysis and comparing with the literature. Our results demonstrated that preparative pressurized liquid chromatography combined with HPLC fingerprint guide is an efficient tool to isolate the target compounds quickly.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42107284 and 22078177)the Postdoctoral Fellowship Program of CPSF(No.GZB20240410)。
文摘Decabromodiphenyl ethane(DBDPE)is widely used as an additive flame retardant and has led to global pollution.Its has a large molecular mass and is prone to debromination and degradation under photothermal conditions,resulting in smaller homologous compounds.Due to the lack of standard substances for debromination products,the in-depth study of DBDPE environmental geochemical behavior through debromination conversion has been hindered.Therefore,based on DBDPE photodegradation experiment,this study first analyzed and identified the brominated products of DBDPE using high-performance liquid chromatography-atmospheric pressure photoionization-time of flight mass spectrometry(HPLC-APPI-TOF/MS).Four debromination products-nonabromodiphenyl ethane(nonaBDPE),octabromodiphenyl ethane(octa-BDPE),heptabromodiphenyl ethane(hepta-BDPE)and hexabromodiphenyl ethane(hexa-BDPE)are identified based on the characteristic ion peak of[M-Br+O]^(-) in negative ion mode.Subsequently,using methanol as the mobile phase,four debromination products of DBDPE were separated and purified with a semi-preparative high-performance liquid chromatography(SP-HPLC)system equipped with an Agilent Zorbax Eclipse PAH column(4.6 mm×250 mm,5μm).The first-time acquisition of hexa-BDPE(60.00μg),octa-BDPE(19.40μg),hepta-BDPE(31.20μg)and octa-BDPE(isomer,45.20μg)with purity exceeding 90%has been achieved.Among them,the purity of one hepta-BDPE monomer is as high as 98.91%.This study indicates that based on photodegradation experiments,the combination of HPLC-APPI-TOF/MS and SP-HPLC techniques can rapidly identify and prepare DBDPE debrominated products.This approach meets the requirements for preliminary research on the pollution characteristics of DBDPE debrominated compounds and offers a feasible solution for the preparation of standard reference materials for emerging pollutants.
基金National Science Fund for Excellent Young Scholars(Grant No.81222051)National Key Technology R&D Program"New Drug Innovation"of China(Grant No.2012ZX09103201-036,2012ZX09301002-002-002 and 2012ZX09304-005)
文摘The aim of this study was to rapidly isolate the major effective flavanoids from the extract of safflower(Carthamus tinctorius) using ODS medium pressure liquid chromatography(MPLC) and semi-preparative HPLC, guided by a developed fingerprint. Twelve compounds were isolated and their structures were elucidated as kaempferol 3-O-β-D-rutinoside(1), kaempferol 3-O-β-D-glucoside(2), rutin(3), quercetin 3-O-β-D-glucoside(4), 6-hydroxykaempferol 3,6,7-tri-O-β-D-glucoside(5), 6-hydroxykaempferol 3-O-β-D-glucoside(6), 6-hydroxykaempferol 6,7-di-O-β-D-glucoside(7), 6-hydroxykaempferol 3-O-β-Drutinoside(8), 6-hydroxykaempferol 3,6-di-O-β-D-glucosyl 7-O-β-D-glucuronide(9), isosafflomin C(10), safflomin C(11) and hydroxysafflor yellow A(12) by spectroscopic analysis and comparing with the literature. Our results demonstrated that preparative pressurized liquid chromatography combined with HPLC fingerprint guide is an efficient tool to isolate the target compounds quickly.