The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account o...The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account of the effects of large deformation andinitial geometric imperfection, the governing equations are obtainedby the Galerkin method and solved by the Runge-Kutta method. Theeffects of static preloading (uniform external radial pressure) onthe buckling features and the load-carrying ability of ring-stiffenedcy- lindrical shells against axial impact are discussed.展开更多
AIM: To compare characteristics of preloaded and nonpreloaded intraocular lens(IOL) delivery systems during IOL delivery procedures. METHODS: Total 101 human eyes were included in this prospective observational ca...AIM: To compare characteristics of preloaded and nonpreloaded intraocular lens(IOL) delivery systems during IOL delivery procedures. METHODS: Total 101 human eyes were included in this prospective observational case series. Delivery characteristics of 5 types of IOLs including i Sert250 NC60(NC60), En Vista MX60(MX60), Acry Sof IQ SN60 WF(SN60 WF), TECNIS ZCB00(ZCB00), and TECNIS PCB00(PCB00) were investigated. NC60 and PCB00 were injected via preloaded delivery systems and other IOLs were injected via nonpreloaded systems. In the human trial, time taken from IOL loading to completion of implantation was measured in all eyes undergoing conventional cataract surgery. Using 4 excised porcine eyes, dynamics of ophthalmic viscosurgical device(OVD) between an IOL injector and a porcine eye was analyzed using fluorescein sodiumstained OVD. RESULTS: The average time for IOL implantation was 22.0 s for NC60, 43.2 s for MX60, 32.3 s for SN60 WF, 41.4 s for ZCB00, and 14.6 s for PCB00 respectively. The number of cases with IOL manipulation with a second instrument was 6 for MX60, 2 for ZCB00, 0 for SN60 WF, NC60, and PCB00. Amount of OVD pushed into a porcine eye was smaller with a preloaded system than with non-preloaded systems. CONCLUSION: IOL delivery with preloaded systems is faster and more predictable. Moreover, a preloaded delivery system shows relatively less OVD pushed into a porcine eye than non-preloaded systems.展开更多
<strong>Background:</strong> The implantation of the intraocular lens (IOL) is still subject to error and complication, as it can result in traumatic opening of the IOL leading to rupture of the posterior ...<strong>Background:</strong> The implantation of the intraocular lens (IOL) is still subject to error and complication, as it can result in traumatic opening of the IOL leading to rupture of the posterior capsule and zonular dialysis, it takes time to train paramedic teams to assemble such IOLs with the manual injectors. Moreover, there is a potential risk of comtamination and endophthalmitis as there is manipulation of the IOL and cartridge. The preloaded IOLs tend to reduce those unwanted results and may optimize the surgical time. <strong>Purpose:</strong> The aim of this study is to compare the effectiveness and implantation time between three injectors and three intraocular lenses, two pre-loaded and one conventional. <strong>Methodology:</strong> Videos of thirty patients undergoing cataract surgery from December 2019 to December 2020 at the Hospital Oftalmológico de Brasília (HOB), Brasília, Brazil were included in this observational, analytical retrospective study, non randomized. All patients had their surgeries recorded, from which the time of injection and opening of the intraocular lens (IOL) was extracted, 20 eyes were implanted with preloaded intraocular lens, and 10 eyes with conventional IOL implant. The patients were divided into three groups with similar eye characteristics. The first received the AutonoMe<sup>TM</sup> (CE) injector with the Clareon<span style="white-space:nowrap;"><sup>®</sup></span><span style="font-size:10px;"> </span><span style="white-space:nowrap;"><span style="color:#FFFFFF;font-family:Roboto, "white-space:normal;background-color:#D46399;"><span style="white-space:nowrap;"></span></span></span>IOL, the second the Isert<sup>TM</sup> injector (I) with the Hoya<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> IOL, and the third was injected with Johnson & Johnson Platinum 1 Series injector used to deliver Sensar<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> One AAB00 lens. The Welch test and Tukey’s Post Hoc test were used in the statistical analysis. <strong>Results:</strong> It was observed that there was a statistical significance regarding the presence of a haptic stuck (5 Clareon vs 0 Sensar and Hoya), between the mean opening time of the IOL optics Sensar One, Hoya and Clareon (25.00 vs 31.40 vs 11.70 s, p < 0.001) and between the total time (the injection time more the opening time of the IOL) in relation to Hoya and Clareon lenses (39.50 s vs 19.60 s, p < 0.001);the total time of the Sensar IOL was 31.30 s. The opening time of the IOL optics was significantly longer for the Sensar One and Hoya groups compared to Clareon group, and the total time of Hoya group was significantly longer compared to the total time of the Clareon group. <strong>Conclusion:</strong> The study demonstrated that the choice of injector and IOL set can significantly affect the total time of IOL implantation. However, there was no difference regarding complications and collateral damage depending on the set chosen for the implant.展开更多
Eighteen reinforced concrete beams, including 16 beams strengthened with CFRP laminate at different levels of preload and 2 control beams, were tested to investigate the influence of preload level on flexural behavior...Eighteen reinforced concrete beams, including 16 beams strengthened with CFRP laminate at different levels of preload and 2 control beams, were tested to investigate the influence of preload level on flexural behavior of CFRP-strengthened RC beam. The experimental parameters include rebar ratios, number of plies of CFRP laminates and preload level at the time of strengthening. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the preload level has more influence on the stiffness and deflection of the strengthened beam, both at post-cracking and post-yielding stage, than that on the yielding and ultimate flexural strength of the strengthened beam. The main failure mode of CFRP-strengthened beam is the intermediate crack-induced debonding of CFRP laminates, provided that the development length of CFRP laminates and shear capacity of the beam are sufficient.展开更多
The frost resistance and compressive strength degradation of concrete under the simultaneous action of compressive load and freeze-thaw cycles were experimentally investigated. Air-entrained and non-air-entrained spec...The frost resistance and compressive strength degradation of concrete under the simultaneous action of compressive load and freeze-thaw cycles were experimentally investigated. Air-entrained and non-air-entrained specimens with different water/cement(w/c) ratios were subjected to different compressive stress by specially designed apparatus, while the specimens suffered freeze-thaw cycles. In order to track the strength degradation process, the nondestructive tests were carried out after each freeze-thaw cycle got the residual strength for each specimen. Based on the experimental data, a variable Kss was proposed to describe the damage velocity. Experimental results indicate that the deterioration processes are accelerated by the compressive loads, and the damage velocity increases with the increases of the preloading levels and w/c ratios. The air entrainment decreases the damage velocity and improves the frost resistance of non-air-entrained concrete, although it would reduce the compressive strength of concrete.展开更多
The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pr...The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.展开更多
Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery fa...Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems.展开更多
The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency di...The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency disturbance dynamic uniaxial compression tests on coal specimens using a self-developed dynamic-static load coupling electro-hydraulic servo system,and studied the strength evolutions,surface deformations,acoustic emission(AE)characteristic parameters,and the failure modes of coal specimens with different static preloading levels were studied.The disturbance damage is positively correlated with the coal specimen static preload level.Specifically,the cumulative AE count rates of the initial accelerated damage stage for the coal specimens with static preloading level of 60%and 70%of the uniaxial compressive strength(UCS)were 2.66 and 3.19 times that of the 50%UCS specimens,respectively.Macroscopically,this behaviour manifested as a decrease in the compressive strength,and the mean strengths of the disturbance-damaged coal specimens with 60%and 70%of UCS static preloading decreased by 8.53%and 9.32%,respectively,compared to those of the specimens under pure static loading.The crack sources,such as the primary fissures,strongly control the dynamic response of the coal specimen.The difference between the dynamic responses of the coal specimens and that of dense rocks is significant.展开更多
Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload...Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload can cause loosening,fatigue fracture,and other problems.This will affect the safety and reliability of mechanical equipment.The precise control of the preload has become a critical issue in mechanical assembly processes.Over the past few decades,various tightening measures and methods have been proposed to address this issue.However,many problems continue to exist with practical applications that have not been reviewed comprehensively and systematically.First,various control methods were summarized systematically,and their advantages and disadvantages in engineering applications were analyzed.Torque control is the most widely used tightening method owing to its simple operation and low cost.Therefore,the research on the torque control method was summarized systematically from three aspects:the torque-preload correlation formula,effective friction radius,and friction characteristics during tightening.In addition,the special circumstances that may increase preload uncertainty were discussed.Finally,based on a summary of the current research status,the prospects for future research were discussed.This study would aid researchers in extensively understanding the problems in preload control.展开更多
The environmental load chart is an important technical support required for the jack-up drilling platform to facilitate its adaptation to different operating waters and ensure the safety of operation.This chart is a c...The environmental load chart is an important technical support required for the jack-up drilling platform to facilitate its adaptation to different operating waters and ensure the safety of operation.This chart is a crucial part of the platform operation manual.The chart data are closely related to external factors such as water depth,wind,wave,and current conditions of the working water,as well as to the structural characteristics of the platform itself and the number of variable loads.This study examines the platform state under extreme wind,wave,and current conditions during preloading.In addition,this study focuses on the difference between the ultimate reaction force of the pile leg during preloading and the reaction force of the pile leg without considering any environmental load before preloading.Furthermore,the relationship between the difference and the new reaction force of the pile leg caused by the combination of different environmental conditions is established to facilitate the construction of a new form of environmental load chart.The newly formed chart is flexible and simple;thus,it can be used to evaluate the environmental adaptability of the platform in the target well location and provides the preloading target demand or variable load limit according to the given environmental constraints.Moreover,the platform can perform personalized preloading operations,thereby improving its capability to cope with complex geological conditions,such as reducing punch-through risks.This condition reduces the load on jacking system devices and increases its service life.展开更多
Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal ...Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties,a roller bearing preload test method based on the improved D-S evidence theorymulti-sensor fusion method was proposed.First,a novel controllable preload system is proposed and evaluated.Subsequently,multiple sensors are employed to collect data on the bearing parameters during preload application.Finally,a multisensor fusion algorithm is used to make predictions,and a neural network is used to optimize the fitting of the preload data.The limitations of conventional preload testing methods are identified,and the integration of complementary information frommultiple sensors is used to achieve accurate predictions,offering valuable insights into the optimal preload force.Experimental results demonstrate that the multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for rolling bearings.展开更多
The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs...The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.展开更多
Short video applications like Tik Tok have seen significant growth in recent years.One common behavior of users on these platforms is watching and swiping through videos,which can lead to a significant waste of bandwi...Short video applications like Tik Tok have seen significant growth in recent years.One common behavior of users on these platforms is watching and swiping through videos,which can lead to a significant waste of bandwidth.As such,an important challenge in short video streaming is to design a preloading algorithm that can effectively decide which videos to download,at what bitrate,and when to pause the download in order to reduce bandwidth waste while improving the Quality of Experience(QoE).However,designing such an algorithm is non-trivial,especially when considering the conflicting objectives of minimizing bandwidth waste and maximizing QoE.In this paper,we propose an end-to-end Deep reinforcement learning framework with Action Masking called DAM that leverages domain knowledge to learn an optimal policy for short video preloading.To achieve this,we introduce a reward shaping technique to minimize bandwidth waste and use action masking to make actions more reasonable,reduce playback rebuffering,and accelerate the training process.We have conducted extensive experiments using real-world video datasets and network traces including 4G/Wi Fi/5G.Our results show that DAM improves the Qo E score by 3.73%-11.28%compared to state-of-the-art algorithms,and achieves an average bandwidth waste of only 10.27%-12.07%,outperforming all baseline methods.展开更多
A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or set...A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.展开更多
As a rapid and effective ground improvement method is urgently required for the booming land reclamation in China's coastal area, this study proposes a new combined method of electroosmosis, vacuum preloading and sur...As a rapid and effective ground improvement method is urgently required for the booming land reclamation in China's coastal area, this study proposes a new combined method of electroosmosis, vacuum preloading and surcharge preloading. A new type of electrical prefabricated vertical drain (ePVD) and a new electroosmotic drainage system are suggested to allow the application of the new method. This combined method is then field-tested and compared with the conventional vacuum combined with surcharge preloading method. The monitoring and foundation test results show that the new method induces a settlement 20% larger than that of the conventional vacuum combined with surcharge preloading method in the same treatment period, and saves approximately half of the treatment time compared with the vacuum combined with surcharge preloading method according to the finite element prediction of the settlement. The proposed method also increases the vane shear strength of the soil significantly. The bearing capacity of the ground improved by use of the new proposed method raises 118%. In comparison, there is only a 75% rise when using the vacuum combined with surcharge preloading method during the same reinforcement period. All results indicate that the proposed combined method is effective and suitable for reinforcing the soft clay ground. Besides, the voltage applied between the anode and cathode increases exponentially versus treatment time when the output current of power supplies is kept constant. Most of the voltage potential in electroosmosis is lost at electrodes, leaving smaller than 50% of the voltage to be effectively transmitted into the soil.展开更多
The combined and interactive effects of the bolt-hole fit conditions and the preloads of the fasteners on the load carrying capacity of single-lap composite-to-titanium bolted joints have been investigated both experi...The combined and interactive effects of the bolt-hole fit conditions and the preloads of the fasteners on the load carrying capacity of single-lap composite-to-titanium bolted joints have been investigated both experimentally and numerically. Quasi-static tests of the hybrid joints with different fit conditions are implemented, and a three dimensional finite element progressive failure analysis model is proposed to predict the influences of the bolt-hole fit conditions and fastener's pre- loads on the mechanical behaviors of the joints. Based on the experimental validated simulation method, a multi-factor, mixed levels orthogonal design table and the analysis of variance method are used to arrange the simulation conditions and to further study the interactive effects of preloads and fit conditions. Through the analysis of the results, for the researched double bolt, single-lap composite-titanium joints, it is found that: the effects of both the interference fit and the preloads change from positive into negative mode with the increase of the interference fit values or preload values; appropriate bolt-hole fit conditions and preloads can improve the bolt-hole contact conditions of the loaded joints, and then retard the fiber failures around the fastener holes, and increase the load carrying capacity of the joints eventually; the interactive effect of the bolt-hole interference fit conditions and preloads cannot be ignored and the parameters need to be considered together and synthetically as the joints are being optimized.展开更多
To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory ...To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory test cell was designed and applied to evaluate the vacuum preloading combined electroosmosis. Several factors were taken into consideration, including the directions of the electroosmotic current and water induced by vacuum preloading and the replenishment of groundwater from the surrounding area. The results indicate that electroosmosis together with vacuum preloading improve the soil strength greatly, with an increase of approximately 60%, and reduce the water content of the soil on the basis of consolidation of vacuum preloading, howeve~ further settlement is not obvious with only 1.7 mm. The reinforcement effect of vacuum preloading combined electroosmosis is better than that of electroosmosis after vacuum preloading. Elemental analysis using X-ray fluorescence proves that the soil strengthening during electroosmotic period in this work is mainly caused by electroosmosis-induced electrochemical reactions, the concentrations of Al2O3 in the VPCEO region increase by 2.2%, 1.5%, and 0.9% at the anode, the midpoint between the electrodes, and the cathode, respectively.展开更多
Constant load tests in NS4 solution purged with N2-5%CO2 gas mixture were conducted on American Petroleum Institute (API) X80 pipeline steel applied in the 2nd West-East (;as Pipeline project with and without prelo...Constant load tests in NS4 solution purged with N2-5%CO2 gas mixture were conducted on American Petroleum Institute (API) X80 pipeline steel applied in the 2nd West-East (;as Pipeline project with and without preload. The results show that cracks could initiate and propagate in X80 pipeline steel in near-neutral pH environment under a constant load condition. The life of crack initiation and propagation increased with decreasing applied stress. Preload did not change its corrosion behavior obviously. However, preload reduced the time for crack initiation.展开更多
Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills.In this paper,an improved multiple-vacuum preloading method was de...Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills.In this paper,an improved multiple-vacuum preloading method was developed to consolidate newly dredger fills that are hydraulically placed in seawater for land reclamation in Lingang Industrial Zone of Tianjin City,China.With this multiplevacuum preloading method,the newly deposited dredger fills could be treated effectively by adopting a novel moisture separator and a rapid improvement technique without sand cushion.A series of model tests was conducted in the laboratory for comparing the results from the multiple-vacuum preloading method and the traditional one.Ten piezometers and settlement plates were installed to measure the variations in excess pore water pressures and moisture content,and vane shear strength was measured at different positions.The testing results indicate that water dischargeetime curves obtained by the traditional vacuum preloading method can be divided into three phases:rapid growth phase,slow growth phase,and steady phase.According to the process of fluid flow concentrated along tiny ripples and building of larger channels inside soils during the whole vacuum loading process,the fluctuations of pore water pressure during each loading step are divided into three phases:steady phase,rapid dissipation phase,and slow dissipation phase.An optimal loading pattern which could have a best treatment effect was proposed for calculating the water discharge and pore water pressure of soil using the improved multiple-vacuum preloading method.For the newly deposited dredger fills at Lingang Industrial Zone of Tianjin City,the best loading step was 20 kPa and the loading of 40-50 k Pa produced the highest drainage consolidation.The measured moisture content and vane shear strength were discussed in terms of the effect of reinforcement,both of which indicate that the multiple-vacuum preloading method has a better treatment effect not only in decreasing the moisture content and increasing the bearing capacity,but also in increasing the process uniformity at different depths of foundation.展开更多
For starved-oil or solid lubrication of high-speed instrument angular contact ball bearings, friction heating and wear are the main reasons of bearing failures. This paper presents a dynamic wear simulation model to i...For starved-oil or solid lubrication of high-speed instrument angular contact ball bearings, friction heating and wear are the main reasons of bearing failures. This paper presents a dynamic wear simulation model to investigate the impacts of different preload methods and the changes of preload caused by wear on bearing wear life. The integral value QV of stress and sliding velocity in the contact ellipses between a ball and the inner and outer races determines friction heating and wear. The changes of QV with the friction coefficient and the wear volume under constantforce preload and fixed-position preload are analyzed. Results show that under the same initial preload, the QV decreases with an increase of the friction coefficient for both preload methods, and the latter is slightly larger. The wear of the ball and the race is equivalent to the ball diameter reduction.The QV of constant-force preload is almost not changed with a decrease of the ball diameter, but for fixed-position preload, the value decreases firstly and then increases substantially due to insufficient preload, and slipping occurs, the ball diameter is reduced by 0.025%, while the preload is reduced by 60.33%. An estimation of the bearing wear life under different preload methods requires a consideration of the changes in the wear rate of bearing parts.展开更多
基金the National Natural Sciences Foundation of China(No.19802017)
文摘The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account of the effects of large deformation andinitial geometric imperfection, the governing equations are obtainedby the Galerkin method and solved by the Runge-Kutta method. Theeffects of static preloading (uniform external radial pressure) onthe buckling features and the load-carrying ability of ring-stiffenedcy- lindrical shells against axial impact are discussed.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) by the Ministry of Education, Science and Technology (No.NRF2016R1A2B4009626)
文摘AIM: To compare characteristics of preloaded and nonpreloaded intraocular lens(IOL) delivery systems during IOL delivery procedures. METHODS: Total 101 human eyes were included in this prospective observational case series. Delivery characteristics of 5 types of IOLs including i Sert250 NC60(NC60), En Vista MX60(MX60), Acry Sof IQ SN60 WF(SN60 WF), TECNIS ZCB00(ZCB00), and TECNIS PCB00(PCB00) were investigated. NC60 and PCB00 were injected via preloaded delivery systems and other IOLs were injected via nonpreloaded systems. In the human trial, time taken from IOL loading to completion of implantation was measured in all eyes undergoing conventional cataract surgery. Using 4 excised porcine eyes, dynamics of ophthalmic viscosurgical device(OVD) between an IOL injector and a porcine eye was analyzed using fluorescein sodiumstained OVD. RESULTS: The average time for IOL implantation was 22.0 s for NC60, 43.2 s for MX60, 32.3 s for SN60 WF, 41.4 s for ZCB00, and 14.6 s for PCB00 respectively. The number of cases with IOL manipulation with a second instrument was 6 for MX60, 2 for ZCB00, 0 for SN60 WF, NC60, and PCB00. Amount of OVD pushed into a porcine eye was smaller with a preloaded system than with non-preloaded systems. CONCLUSION: IOL delivery with preloaded systems is faster and more predictable. Moreover, a preloaded delivery system shows relatively less OVD pushed into a porcine eye than non-preloaded systems.
文摘<strong>Background:</strong> The implantation of the intraocular lens (IOL) is still subject to error and complication, as it can result in traumatic opening of the IOL leading to rupture of the posterior capsule and zonular dialysis, it takes time to train paramedic teams to assemble such IOLs with the manual injectors. Moreover, there is a potential risk of comtamination and endophthalmitis as there is manipulation of the IOL and cartridge. The preloaded IOLs tend to reduce those unwanted results and may optimize the surgical time. <strong>Purpose:</strong> The aim of this study is to compare the effectiveness and implantation time between three injectors and three intraocular lenses, two pre-loaded and one conventional. <strong>Methodology:</strong> Videos of thirty patients undergoing cataract surgery from December 2019 to December 2020 at the Hospital Oftalmológico de Brasília (HOB), Brasília, Brazil were included in this observational, analytical retrospective study, non randomized. All patients had their surgeries recorded, from which the time of injection and opening of the intraocular lens (IOL) was extracted, 20 eyes were implanted with preloaded intraocular lens, and 10 eyes with conventional IOL implant. The patients were divided into three groups with similar eye characteristics. The first received the AutonoMe<sup>TM</sup> (CE) injector with the Clareon<span style="white-space:nowrap;"><sup>®</sup></span><span style="font-size:10px;"> </span><span style="white-space:nowrap;"><span style="color:#FFFFFF;font-family:Roboto, "white-space:normal;background-color:#D46399;"><span style="white-space:nowrap;"></span></span></span>IOL, the second the Isert<sup>TM</sup> injector (I) with the Hoya<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> IOL, and the third was injected with Johnson & Johnson Platinum 1 Series injector used to deliver Sensar<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> One AAB00 lens. The Welch test and Tukey’s Post Hoc test were used in the statistical analysis. <strong>Results:</strong> It was observed that there was a statistical significance regarding the presence of a haptic stuck (5 Clareon vs 0 Sensar and Hoya), between the mean opening time of the IOL optics Sensar One, Hoya and Clareon (25.00 vs 31.40 vs 11.70 s, p < 0.001) and between the total time (the injection time more the opening time of the IOL) in relation to Hoya and Clareon lenses (39.50 s vs 19.60 s, p < 0.001);the total time of the Sensar IOL was 31.30 s. The opening time of the IOL optics was significantly longer for the Sensar One and Hoya groups compared to Clareon group, and the total time of Hoya group was significantly longer compared to the total time of the Clareon group. <strong>Conclusion:</strong> The study demonstrated that the choice of injector and IOL set can significantly affect the total time of IOL implantation. However, there was no difference regarding complications and collateral damage depending on the set chosen for the implant.
基金Project (No. 03HK03) supported by the Science and Technology Development Foundation for College and University of Shanghai, China
文摘Eighteen reinforced concrete beams, including 16 beams strengthened with CFRP laminate at different levels of preload and 2 control beams, were tested to investigate the influence of preload level on flexural behavior of CFRP-strengthened RC beam. The experimental parameters include rebar ratios, number of plies of CFRP laminates and preload level at the time of strengthening. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the preload level has more influence on the stiffness and deflection of the strengthened beam, both at post-cracking and post-yielding stage, than that on the yielding and ultimate flexural strength of the strengthened beam. The main failure mode of CFRP-strengthened beam is the intermediate crack-induced debonding of CFRP laminates, provided that the development length of CFRP laminates and shear capacity of the beam are sufficient.
基金National Natural Science Foundation of China ( No. 50678101)
文摘The frost resistance and compressive strength degradation of concrete under the simultaneous action of compressive load and freeze-thaw cycles were experimentally investigated. Air-entrained and non-air-entrained specimens with different water/cement(w/c) ratios were subjected to different compressive stress by specially designed apparatus, while the specimens suffered freeze-thaw cycles. In order to track the strength degradation process, the nondestructive tests were carried out after each freeze-thaw cycle got the residual strength for each specimen. Based on the experimental data, a variable Kss was proposed to describe the damage velocity. Experimental results indicate that the deterioration processes are accelerated by the compressive loads, and the damage velocity increases with the increases of the preloading levels and w/c ratios. The air entrainment decreases the damage velocity and improves the frost resistance of non-air-entrained concrete, although it would reduce the compressive strength of concrete.
文摘The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days.
基金supported by the National Key R&D Program of China(2022YFB2404300)the National Natural Science Foundation of China(NSFC Nos.52177217 and 52106244)。
文摘Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems.
基金Projects(51925402,52334005,52304094)supported by the National Natural Science Foundation of ChinaProject(20201102004)supported by the Shanxi Science and Technology Major Project,China。
文摘The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency disturbance dynamic uniaxial compression tests on coal specimens using a self-developed dynamic-static load coupling electro-hydraulic servo system,and studied the strength evolutions,surface deformations,acoustic emission(AE)characteristic parameters,and the failure modes of coal specimens with different static preloading levels were studied.The disturbance damage is positively correlated with the coal specimen static preload level.Specifically,the cumulative AE count rates of the initial accelerated damage stage for the coal specimens with static preloading level of 60%and 70%of the uniaxial compressive strength(UCS)were 2.66 and 3.19 times that of the 50%UCS specimens,respectively.Macroscopically,this behaviour manifested as a decrease in the compressive strength,and the mean strengths of the disturbance-damaged coal specimens with 60%and 70%of UCS static preloading decreased by 8.53%and 9.32%,respectively,compared to those of the specimens under pure static loading.The crack sources,such as the primary fissures,strongly control the dynamic response of the coal specimen.The difference between the dynamic responses of the coal specimens and that of dense rocks is significant.
基金Supported by National Natural Science Foundation of China(Grant Nos.U23B20104,52075012 and 52205510).
文摘Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload can cause loosening,fatigue fracture,and other problems.This will affect the safety and reliability of mechanical equipment.The precise control of the preload has become a critical issue in mechanical assembly processes.Over the past few decades,various tightening measures and methods have been proposed to address this issue.However,many problems continue to exist with practical applications that have not been reviewed comprehensively and systematically.First,various control methods were summarized systematically,and their advantages and disadvantages in engineering applications were analyzed.Torque control is the most widely used tightening method owing to its simple operation and low cost.Therefore,the research on the torque control method was summarized systematically from three aspects:the torque-preload correlation formula,effective friction radius,and friction characteristics during tightening.In addition,the special circumstances that may increase preload uncertainty were discussed.Finally,based on a summary of the current research status,the prospects for future research were discussed.This study would aid researchers in extensively understanding the problems in preload control.
基金Supported by the National Natural Science Foundation of China Youth Fund under Grant No.51909148the Doctoral Research Initiation Fund of Shandong Jiaotong University under Grant No.BS2018001。
文摘The environmental load chart is an important technical support required for the jack-up drilling platform to facilitate its adaptation to different operating waters and ensure the safety of operation.This chart is a crucial part of the platform operation manual.The chart data are closely related to external factors such as water depth,wind,wave,and current conditions of the working water,as well as to the structural characteristics of the platform itself and the number of variable loads.This study examines the platform state under extreme wind,wave,and current conditions during preloading.In addition,this study focuses on the difference between the ultimate reaction force of the pile leg during preloading and the reaction force of the pile leg without considering any environmental load before preloading.Furthermore,the relationship between the difference and the new reaction force of the pile leg caused by the combination of different environmental conditions is established to facilitate the construction of a new form of environmental load chart.The newly formed chart is flexible and simple;thus,it can be used to evaluate the environmental adaptability of the platform in the target well location and provides the preloading target demand or variable load limit according to the given environmental constraints.Moreover,the platform can perform personalized preloading operations,thereby improving its capability to cope with complex geological conditions,such as reducing punch-through risks.This condition reduces the load on jacking system devices and increases its service life.
基金supported by:The Key Project of National Natural Science Foundation of China(U21A20125)The Open Project of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC21KF03)+5 种基金The National Key Research and Development Program of China(2020YFB1314203,2020YFB1314103)The Open Project of Key Laboratory of Conveyance and Equipment(KLCE2021-05)The Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ210639)The Supply and Demand Linking Employment Education Project of the Ministry of Education(20220100621)The Open Project of State Key Laboratory for Manufacturing Systems Engineering(sklms2023009)The Suzhou Basic Research Project(SJC2023003).
文摘Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties,a roller bearing preload test method based on the improved D-S evidence theorymulti-sensor fusion method was proposed.First,a novel controllable preload system is proposed and evaluated.Subsequently,multiple sensors are employed to collect data on the bearing parameters during preload application.Finally,a multisensor fusion algorithm is used to make predictions,and a neural network is used to optimize the fitting of the preload data.The limitations of conventional preload testing methods are identified,and the integration of complementary information frommultiple sensors is used to achieve accurate predictions,offering valuable insights into the optimal preload force.Experimental results demonstrate that the multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for rolling bearings.
基金partially supported by the Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (No. I01211200001)LDS 2023 Educational Foundation of The University of Nottingham Ningbo China (No. E06221200002)
文摘The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.
基金supported by the National Key Research and Development Program of China(No.2021YFF0900503)partly by the National Natural Science Foundation of China(No.62262018,61971382)。
文摘Short video applications like Tik Tok have seen significant growth in recent years.One common behavior of users on these platforms is watching and swiping through videos,which can lead to a significant waste of bandwidth.As such,an important challenge in short video streaming is to design a preloading algorithm that can effectively decide which videos to download,at what bitrate,and when to pause the download in order to reduce bandwidth waste while improving the Quality of Experience(QoE).However,designing such an algorithm is non-trivial,especially when considering the conflicting objectives of minimizing bandwidth waste and maximizing QoE.In this paper,we propose an end-to-end Deep reinforcement learning framework with Action Masking called DAM that leverages domain knowledge to learn an optimal policy for short video preloading.To achieve this,we introduce a reward shaping technique to minimize bandwidth waste and use action masking to make actions more reasonable,reduce playback rebuffering,and accelerate the training process.We have conducted extensive experiments using real-world video datasets and network traces including 4G/Wi Fi/5G.Our results show that DAM improves the Qo E score by 3.73%-11.28%compared to state-of-the-art algorithms,and achieves an average bandwidth waste of only 10.27%-12.07%,outperforming all baseline methods.
文摘A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.
基金financially supported by the National Natural Science Joint High Speed Railway Key Program Foundation of China(Grant No.U1134207)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1125)the Key Science and Technology Program of the Science and Technology Department of Zhejiang Province(Grant No.2009C03001)
文摘As a rapid and effective ground improvement method is urgently required for the booming land reclamation in China's coastal area, this study proposes a new combined method of electroosmosis, vacuum preloading and surcharge preloading. A new type of electrical prefabricated vertical drain (ePVD) and a new electroosmotic drainage system are suggested to allow the application of the new method. This combined method is then field-tested and compared with the conventional vacuum combined with surcharge preloading method. The monitoring and foundation test results show that the new method induces a settlement 20% larger than that of the conventional vacuum combined with surcharge preloading method in the same treatment period, and saves approximately half of the treatment time compared with the vacuum combined with surcharge preloading method according to the finite element prediction of the settlement. The proposed method also increases the vane shear strength of the soil significantly. The bearing capacity of the ground improved by use of the new proposed method raises 118%. In comparison, there is only a 75% rise when using the vacuum combined with surcharge preloading method during the same reinforcement period. All results indicate that the proposed combined method is effective and suitable for reinforcing the soft clay ground. Besides, the voltage applied between the anode and cathode increases exponentially versus treatment time when the output current of power supplies is kept constant. Most of the voltage potential in electroosmosis is lost at electrodes, leaving smaller than 50% of the voltage to be effectively transmitted into the soil.
文摘The combined and interactive effects of the bolt-hole fit conditions and the preloads of the fasteners on the load carrying capacity of single-lap composite-to-titanium bolted joints have been investigated both experimentally and numerically. Quasi-static tests of the hybrid joints with different fit conditions are implemented, and a three dimensional finite element progressive failure analysis model is proposed to predict the influences of the bolt-hole fit conditions and fastener's pre- loads on the mechanical behaviors of the joints. Based on the experimental validated simulation method, a multi-factor, mixed levels orthogonal design table and the analysis of variance method are used to arrange the simulation conditions and to further study the interactive effects of preloads and fit conditions. Through the analysis of the results, for the researched double bolt, single-lap composite-titanium joints, it is found that: the effects of both the interference fit and the preloads change from positive into negative mode with the increase of the interference fit values or preload values; appropriate bolt-hole fit conditions and preloads can improve the bolt-hole contact conditions of the loaded joints, and then retard the fiber failures around the fastener holes, and increase the load carrying capacity of the joints eventually; the interactive effect of the bolt-hole interference fit conditions and preloads cannot be ignored and the parameters need to be considered together and synthetically as the joints are being optimized.
基金Project(2009B13014) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(IRT1125) supported by the Program for Changjiang Scholars and Innovative Research Team in University,China
文摘To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory test cell was designed and applied to evaluate the vacuum preloading combined electroosmosis. Several factors were taken into consideration, including the directions of the electroosmotic current and water induced by vacuum preloading and the replenishment of groundwater from the surrounding area. The results indicate that electroosmosis together with vacuum preloading improve the soil strength greatly, with an increase of approximately 60%, and reduce the water content of the soil on the basis of consolidation of vacuum preloading, howeve~ further settlement is not obvious with only 1.7 mm. The reinforcement effect of vacuum preloading combined electroosmosis is better than that of electroosmosis after vacuum preloading. Elemental analysis using X-ray fluorescence proves that the soil strengthening during electroosmotic period in this work is mainly caused by electroosmosis-induced electrochemical reactions, the concentrations of Al2O3 in the VPCEO region increase by 2.2%, 1.5%, and 0.9% at the anode, the midpoint between the electrodes, and the cathode, respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 51025104)
文摘Constant load tests in NS4 solution purged with N2-5%CO2 gas mixture were conducted on American Petroleum Institute (API) X80 pipeline steel applied in the 2nd West-East (;as Pipeline project with and without preload. The results show that cracks could initiate and propagate in X80 pipeline steel in near-neutral pH environment under a constant load condition. The life of crack initiation and propagation increased with decreasing applied stress. Preload did not change its corrosion behavior obviously. However, preload reduced the time for crack initiation.
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.51378344 and 51578371)Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.14JCYBJC21700)Beijing-Tianjin-Hebei Special Projects of Cooperation(Grant No.16JCJDJC40000) for their financial supports
文摘Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills.In this paper,an improved multiple-vacuum preloading method was developed to consolidate newly dredger fills that are hydraulically placed in seawater for land reclamation in Lingang Industrial Zone of Tianjin City,China.With this multiplevacuum preloading method,the newly deposited dredger fills could be treated effectively by adopting a novel moisture separator and a rapid improvement technique without sand cushion.A series of model tests was conducted in the laboratory for comparing the results from the multiple-vacuum preloading method and the traditional one.Ten piezometers and settlement plates were installed to measure the variations in excess pore water pressures and moisture content,and vane shear strength was measured at different positions.The testing results indicate that water dischargeetime curves obtained by the traditional vacuum preloading method can be divided into three phases:rapid growth phase,slow growth phase,and steady phase.According to the process of fluid flow concentrated along tiny ripples and building of larger channels inside soils during the whole vacuum loading process,the fluctuations of pore water pressure during each loading step are divided into three phases:steady phase,rapid dissipation phase,and slow dissipation phase.An optimal loading pattern which could have a best treatment effect was proposed for calculating the water discharge and pore water pressure of soil using the improved multiple-vacuum preloading method.For the newly deposited dredger fills at Lingang Industrial Zone of Tianjin City,the best loading step was 20 kPa and the loading of 40-50 k Pa produced the highest drainage consolidation.The measured moisture content and vane shear strength were discussed in terms of the effect of reinforcement,both of which indicate that the multiple-vacuum preloading method has a better treatment effect not only in decreasing the moisture content and increasing the bearing capacity,but also in increasing the process uniformity at different depths of foundation.
基金supported by the National ‘the twelfth five-year’ Projects of Science and Technology of China
文摘For starved-oil or solid lubrication of high-speed instrument angular contact ball bearings, friction heating and wear are the main reasons of bearing failures. This paper presents a dynamic wear simulation model to investigate the impacts of different preload methods and the changes of preload caused by wear on bearing wear life. The integral value QV of stress and sliding velocity in the contact ellipses between a ball and the inner and outer races determines friction heating and wear. The changes of QV with the friction coefficient and the wear volume under constantforce preload and fixed-position preload are analyzed. Results show that under the same initial preload, the QV decreases with an increase of the friction coefficient for both preload methods, and the latter is slightly larger. The wear of the ball and the race is equivalent to the ball diameter reduction.The QV of constant-force preload is almost not changed with a decrease of the ball diameter, but for fixed-position preload, the value decreases firstly and then increases substantially due to insufficient preload, and slipping occurs, the ball diameter is reduced by 0.025%, while the preload is reduced by 60.33%. An estimation of the bearing wear life under different preload methods requires a consideration of the changes in the wear rate of bearing parts.