The supersonic gas-particle two-phase transverse jet is a typical flow process in many applications,such as solid rocket scramjet.This study carried out experimental tests as well as Large Eddy Simulation(LES)to inves...The supersonic gas-particle two-phase transverse jet is a typical flow process in many applications,such as solid rocket scramjet.This study carried out experimental tests as well as Large Eddy Simulation(LES)to investigate the evolution process of transverse gas-particle two-phase jets in supersonic crossflow,especially focusing on the phenomena called preferential concentration.The simulation is based on the Eulerian-Lagrangian method,which successfully reproduces the characteristic phenomena observed in experiments.The particle cloud forms three different characteristic distribution patterns:tooth-like waves near the jet port,quasi-ordered structures near counter-rotating vortex pairs(CVP),and filamentous clouds in the upper part.The turbulence and small unstable shock play a suppressing role in mixing small-diameter particles,which tend to aggregate in regions of high density and low vorticity.Furthermore,it is found that there exists a specific range of particle sizes,as particles'sizes approach this specific range,the influence of compressibility of the airflow on particle distribution becomes increasingly prominent.Overall,this study shed some light on the understanding of the complex and intricate nature of the supersonic gas-particle two-phase transverse jet.展开更多
In this study,the preferential concentration and clustering of inertial particles in fully developed turbulent square duct flows are studied using large eddy simulations combined with Lagrangian approach,where the Rey...In this study,the preferential concentration and clustering of inertial particles in fully developed turbulent square duct flows are studied using large eddy simulations combined with Lagrangian approach,where the Reynolds number is equal to Reτ=600(based on the mean friction velocity and duct full height),and the particle Stokes number ranges from 0.0007 to 1.16.The results obtained for duct flows are compared with those for channel flows under the same working conditions.Then,the effect of the secondary flow on the particle concentration in duct flows is investigated.The equation of particle motion is governed by the drag force,lift force,added mass force,pressure gradient force,and gravity.The inter-phase interaction that was considered includes one-way and two-way coupling.The simulations of a single phase are verified and in good agreement with the available literature data.For the discrete phase,particles in the duct flow are found to be more dispersed in the vertical direction compared with the channel flow.In near-wall regions,a small fraction of particles tends to accumulate in duct corners,forming stable particle streaks under the effect of the secondary flow.Meanwhile,most particles are likely to reside preferentially in the low-speed flow regions and form elongated particle streaks steadily in the middle region of duct or channel floors.The Voronoi diagram analysis shows that the near-wall secondary flows in the square duct could cause particle clusters to transfer from regions of high to low concentration,and this trend increases with particle size.In addition,two-way coupling is found to enhance the near-wall particle accumulation and to promote particles to form more elongated streaks than one-way coupling.Finally,the mechanism responsible for the particle preferential concentration in turbulent square duct flows is determined.展开更多
The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the Nor...The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.展开更多
Direct numerical simulations were conducted to investigate the behavior of heavy particles in homogeneous isotropic turbulence. The present study focused on the effect of particle inertia and drift on the autocorrelat...Direct numerical simulations were conducted to investigate the behavior of heavy particles in homogeneous isotropic turbulence. The present study focused on the effect of particle inertia and drift on the autocorrelations of the particle velocity and the fluid seen by particles and the dispersion characteristics of particles. The Lagrangian integral time scale of particles monotonically increased as the magnitude of the particle response time increased, while that of the fluid seen by particles remained relatively constant; it reached a maximum when the particle response time was close to the Kolmolgorov time scale of the flow. Particle dispersion increased as the particle inertia increased for small particles, while for larger particles, it decreased as particle inertia increased; particle eddy diffusion coefficient was maximal, and greater than that of the fluid by about 30%, at the preferential concentration. The concentration field of the particles with <SUB>p</SUB>/<SUB>k</SUB>1.0 showed that particles tend to collect in regions of low vorticity (high strain) due to preferential concentration. As the drift velocity of a particle is increased it crosses the paths of fluid elements more rapidly and will tend to lose correlation with its previous velocity faster than a fluid element will. And the correlation of particle velocities along the drift direction is more persistent than that perpendicular to the direction of drift. Simulations also showed that the continuity effect and the crossing-trajectory effect are weakened for particles with infinite inertia.展开更多
A particle-laden turbulent channel flow is investigated to study particle clusters in large-scale turbulent coherent structures. The fluid phase is calculated by large eddy simulation and particles are tracked using L...A particle-laden turbulent channel flow is investigated to study particle clusters in large-scale turbulent coherent structures. The fluid phase is calculated by large eddy simulation and particles are tracked using Lagrangian trajectory method. The flow Reynolds number is 180 based on the friction velocity and half-width of the channel. The particle is lycopodium with St=0.93 which may well follow the fluid phase. The mean and fluctuating velocities of both two phases are obtained, which are in good agreement with previous data. The strongest accumulations of particles in low-speed streak structures are observed at y~=l 1.3. Moreover, once particles are captured in low-speed streaks, most of them will reside there for a long period. Particles clustered in low-speed streaks obtain smaller instantaneous wall-normal and spanwise velocities than those out of there, which induce a larger particle flux into low-speed streaks than that out of there. The study is important for understanding particle dispersion mechanisms in gas-particle turbulent channel flows.展开更多
基金supported by the National Natural Science Foundation of China(grant Nos.12272409,T2221002)Changsha Science and Technology Project(grant No.kq2107001)+1 种基金the Science and Technology Innovation Program of Hunan Province(grant No.2022RC1233)Hunan Provincial Innovation Foundation for Postgraduate(grant No.QL20230015).
文摘The supersonic gas-particle two-phase transverse jet is a typical flow process in many applications,such as solid rocket scramjet.This study carried out experimental tests as well as Large Eddy Simulation(LES)to investigate the evolution process of transverse gas-particle two-phase jets in supersonic crossflow,especially focusing on the phenomena called preferential concentration.The simulation is based on the Eulerian-Lagrangian method,which successfully reproduces the characteristic phenomena observed in experiments.The particle cloud forms three different characteristic distribution patterns:tooth-like waves near the jet port,quasi-ordered structures near counter-rotating vortex pairs(CVP),and filamentous clouds in the upper part.The turbulence and small unstable shock play a suppressing role in mixing small-diameter particles,which tend to aggregate in regions of high density and low vorticity.Furthermore,it is found that there exists a specific range of particle sizes,as particles'sizes approach this specific range,the influence of compressibility of the airflow on particle distribution becomes increasingly prominent.Overall,this study shed some light on the understanding of the complex and intricate nature of the supersonic gas-particle two-phase transverse jet.
基金This work was supported by the National Natural Science Foundation of China(Nos.51876221,51776225)High-end Foreign Expert Introduction Project(G20190001270,B18054).
文摘In this study,the preferential concentration and clustering of inertial particles in fully developed turbulent square duct flows are studied using large eddy simulations combined with Lagrangian approach,where the Reynolds number is equal to Reτ=600(based on the mean friction velocity and duct full height),and the particle Stokes number ranges from 0.0007 to 1.16.The results obtained for duct flows are compared with those for channel flows under the same working conditions.Then,the effect of the secondary flow on the particle concentration in duct flows is investigated.The equation of particle motion is governed by the drag force,lift force,added mass force,pressure gradient force,and gravity.The inter-phase interaction that was considered includes one-way and two-way coupling.The simulations of a single phase are verified and in good agreement with the available literature data.For the discrete phase,particles in the duct flow are found to be more dispersed in the vertical direction compared with the channel flow.In near-wall regions,a small fraction of particles tends to accumulate in duct corners,forming stable particle streaks under the effect of the secondary flow.Meanwhile,most particles are likely to reside preferentially in the low-speed flow regions and form elongated particle streaks steadily in the middle region of duct or channel floors.The Voronoi diagram analysis shows that the near-wall secondary flows in the square duct could cause particle clusters to transfer from regions of high to low concentration,and this trend increases with particle size.In addition,two-way coupling is found to enhance the near-wall particle accumulation and to promote particles to form more elongated streaks than one-way coupling.Finally,the mechanism responsible for the particle preferential concentration in turbulent square duct flows is determined.
文摘The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on.
基金The project supported by the Special Fund for Major Slate Basic Research Project(G1999022207)the National Natural Science Foundation of China(50276021,50006003)
文摘Direct numerical simulations were conducted to investigate the behavior of heavy particles in homogeneous isotropic turbulence. The present study focused on the effect of particle inertia and drift on the autocorrelations of the particle velocity and the fluid seen by particles and the dispersion characteristics of particles. The Lagrangian integral time scale of particles monotonically increased as the magnitude of the particle response time increased, while that of the fluid seen by particles remained relatively constant; it reached a maximum when the particle response time was close to the Kolmolgorov time scale of the flow. Particle dispersion increased as the particle inertia increased for small particles, while for larger particles, it decreased as particle inertia increased; particle eddy diffusion coefficient was maximal, and greater than that of the fluid by about 30%, at the preferential concentration. The concentration field of the particles with <SUB>p</SUB>/<SUB>k</SUB>1.0 showed that particles tend to collect in regions of low vorticity (high strain) due to preferential concentration. As the drift velocity of a particle is increased it crosses the paths of fluid elements more rapidly and will tend to lose correlation with its previous velocity faster than a fluid element will. And the correlation of particle velocities along the drift direction is more persistent than that perpendicular to the direction of drift. Simulations also showed that the continuity effect and the crossing-trajectory effect are weakened for particles with infinite inertia.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.11132005)the National Natural Science Foundation of China(Grant No.50876053)Opening Fund of State of Key Laboratory of Nonlinear Mechanics
文摘A particle-laden turbulent channel flow is investigated to study particle clusters in large-scale turbulent coherent structures. The fluid phase is calculated by large eddy simulation and particles are tracked using Lagrangian trajectory method. The flow Reynolds number is 180 based on the friction velocity and half-width of the channel. The particle is lycopodium with St=0.93 which may well follow the fluid phase. The mean and fluctuating velocities of both two phases are obtained, which are in good agreement with previous data. The strongest accumulations of particles in low-speed streak structures are observed at y~=l 1.3. Moreover, once particles are captured in low-speed streaks, most of them will reside there for a long period. Particles clustered in low-speed streaks obtain smaller instantaneous wall-normal and spanwise velocities than those out of there, which induce a larger particle flux into low-speed streaks than that out of there. The study is important for understanding particle dispersion mechanisms in gas-particle turbulent channel flows.