To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier s...To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier structure configuration and the mechanism of local damage formation.Integrating the DTC into the PASP,numerical models of a previous experimental reference PASP and a PASP with damage transfer configuration(DTPASP)were established using the finite element software ABAQUS with a concrete damage plasticity(CDP)model.The models were then compared with experimental results regarding damage distribution,hysteresis curves,energy dissipation capacity,the joint opening degree,and residual displacement.The findings indicate that the finite element model developed in this study can well reflect the experimental results of the reference PASP.The incorporation of the DTC proved to be beneficial in preserving structural integrity,bearing capacity,and the functionality of the core structure of bridge piers following an earthquake.Meanwhile,this addition did not exert a significant influence on the seismic behavior of the core structure of the bridge pier.展开更多
This article provides an overview of the current development status of prestressed segmental precast and assembled piers,Emphasis was placed on analyzing the stress characteristics of bridge piers under impact.The con...This article provides an overview of the current development status of prestressed segmental precast and assembled piers,Emphasis was placed on analyzing the stress characteristics of bridge piers under impact.The concept of recoverable functional design and its application prospects were elaborated,and finally,the research on the impact resistance performance of prestressed segmental precast and assembled pierswas discussed.Research has shown that optimizing design and material selection can effectively enhance the impact resistance and structural durability of bridge piers.At the same time,the introduction of the concept of recoverable functionality provides new ideas for the rapid repair and functional recovery of bridge piers,which helps to improve the recovery efficiency of bridges after extreme events.Future research should focus on the evaluation methods of impact resistance performance,new connection technologies,in-depth application of recoverable functional design,a combination of impact simulation experiments and numerical analysis,and exploration of comprehensive disaster prevention and reduction strategies.These research results will also promote the further development and innovation of prefabricated assembly technology in bridge engineering,bringing new ideas and methods to the field of engineering construction.展开更多
In view of the limited theoretical research on the load model of initial support for horseshoe-shaped prefabrication,this study focuses on the Luochuan Tunnel on the Xi'an-Yan'an newly built railway as the res...In view of the limited theoretical research on the load model of initial support for horseshoe-shaped prefabrication,this study focuses on the Luochuan Tunnel on the Xi'an-Yan'an newly built railway as the research object to explore its load model,load characteristic curve,plastic zone,deformation,and critical thickness.Theoretical research and numerical analysis were conducted.The results indicate that under the same boundary conditions,the ultimate bearing capacity of the prefabricated assembly initial support is higher than that of the shotcrete initial support,resulting in larger ultimate deformation capacity of the prefabricated assembly initial support.Based on numerical calculations,the ultimate deformation and critical thickness of the prefabricated initial lining for single-and double-track railway tunnels are obtained when buried at depths of 200,500,and 900 m in rock masses of classes Ⅲ,Ⅳ,and Ⅴ.展开更多
基金National Natural Science Foundation of China under Grant Nos.51408359,52278527 and 52478536。
文摘To address local concrete damage in joint areas at the footing of prefabricated assembled self-centering bridge piers(PASPs)in seismic design,a damage transfer configuration(DTC)was proposed,based on the bridge pier structure configuration and the mechanism of local damage formation.Integrating the DTC into the PASP,numerical models of a previous experimental reference PASP and a PASP with damage transfer configuration(DTPASP)were established using the finite element software ABAQUS with a concrete damage plasticity(CDP)model.The models were then compared with experimental results regarding damage distribution,hysteresis curves,energy dissipation capacity,the joint opening degree,and residual displacement.The findings indicate that the finite element model developed in this study can well reflect the experimental results of the reference PASP.The incorporation of the DTC proved to be beneficial in preserving structural integrity,bearing capacity,and the functionality of the core structure of bridge piers following an earthquake.Meanwhile,this addition did not exert a significant influence on the seismic behavior of the core structure of the bridge pier.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGG23E080001Scientific Research Foundation of Hangzhou City University under Grant Nos.X-202107 and X-202109Zhejiang Engineering Research Center of Intelligent Urban Infrastructure under Grant No.IUI2023-ZD-14.
文摘This article provides an overview of the current development status of prestressed segmental precast and assembled piers,Emphasis was placed on analyzing the stress characteristics of bridge piers under impact.The concept of recoverable functional design and its application prospects were elaborated,and finally,the research on the impact resistance performance of prestressed segmental precast and assembled pierswas discussed.Research has shown that optimizing design and material selection can effectively enhance the impact resistance and structural durability of bridge piers.At the same time,the introduction of the concept of recoverable functionality provides new ideas for the rapid repair and functional recovery of bridge piers,which helps to improve the recovery efficiency of bridges after extreme events.Future research should focus on the evaluation methods of impact resistance performance,new connection technologies,in-depth application of recoverable functional design,a combination of impact simulation experiments and numerical analysis,and exploration of comprehensive disaster prevention and reduction strategies.These research results will also promote the further development and innovation of prefabricated assembly technology in bridge engineering,bringing new ideas and methods to the field of engineering construction.
基金Research Project of China Railway Engineering Equipment Group Co.,Ltd.,Grant/Award Number:Equipment Research Cooperation 2019-14Postdoctoral Science Fund,Grant/Award Number:043201027。
文摘In view of the limited theoretical research on the load model of initial support for horseshoe-shaped prefabrication,this study focuses on the Luochuan Tunnel on the Xi'an-Yan'an newly built railway as the research object to explore its load model,load characteristic curve,plastic zone,deformation,and critical thickness.Theoretical research and numerical analysis were conducted.The results indicate that under the same boundary conditions,the ultimate bearing capacity of the prefabricated assembly initial support is higher than that of the shotcrete initial support,resulting in larger ultimate deformation capacity of the prefabricated assembly initial support.Based on numerical calculations,the ultimate deformation and critical thickness of the prefabricated initial lining for single-and double-track railway tunnels are obtained when buried at depths of 200,500,and 900 m in rock masses of classes Ⅲ,Ⅳ,and Ⅴ.