期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
On-Line Tuning Scheme for the Generalized Predictive Controller via Simulation Optimization
1
作者 Li Shaoyuan Institute of Automation, Shanghai Jiaotong University, Shanghai 200030, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第2期57-62,共6页
Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to t... Predictive control has recently received much attention from researchers. However a challenging problem to be solved is how to tune the parameters of the predictive controller. So far, only few guidelines related to tuning of the parameters of predictive controllers have been provided in literature. In practice, these parameters are generally off-line determined by the designers' experience. From the point of view of process control, it is difficult to find out the optimal parameters for the control system based on a single quadratic performance index, which is used in the standard predictive control algorithm. The fuzzy decision-making function is investigated in this paper. Firstly, M control actions are achieved by unconstrained predictive control algorithm, and fuzzy goals and fuzzy constraints are then calculated and the global satisfaction degree is obtained by fuzzy inference. Moreover, the weighting coefficient λ in the cost function is tuned using simulation optimization according to the fuzzy criteria. 展开更多
关键词 predictive control simulation optimization fuzzy decision-making.
在线阅读 下载PDF
Model predictive control for unprotected left-turn based on sequential convex programming
2
作者 Changlong Hao Yuan Zhang Yuanqing Xia 《Journal of Automation and Intelligence》 2024年第4期230-239,共10页
In autonomous driving,an unprotected left turn is a highly challenging scenario.It refers to the situation where there is no dedicated traffic signal controlling the left turns;instead,left-turning vehicles rely on th... In autonomous driving,an unprotected left turn is a highly challenging scenario.It refers to the situation where there is no dedicated traffic signal controlling the left turns;instead,left-turning vehicles rely on the same traffic signal as the through traffic.This presents a significant challenge,as left-turning vehicles may encounter oncoming traffic with high speeds and pedestrians crossing against red lights.To address this issue,we propose a Model Predictive Control(MPC)framework to predict high-quality future trajectories.In particular,we have adopted the infinity norm to describe the obstacle avoidance for rectangular vehicles.The high degree of non-convexity due to coupling terms in our model makes its optimization challenging.Our way to solve it is to employ Sequential Convex Optimization(SCP)to approximate the original non-convex problem near certain initial solutions.Our method performs well in the comparison with the widely used sampling-based planning methods. 展开更多
关键词 Autonomous driving decision-making Planning and control Model predictive control optimization
在线阅读 下载PDF
Predictive Control in Fuzzy Dynamic Environment
3
作者 Li Shaoyuan Xi Yugeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第4期24-29,共6页
This paper investigates the use of fuzzy decision making in predictive control. The use of fuzzy goals and fuzzy constraints in predictive control allows for a more flexible aggregation of the control objectives than ... This paper investigates the use of fuzzy decision making in predictive control. The use of fuzzy goals and fuzzy constraints in predictive control allows for a more flexible aggregation of the control objectives than the usual weighting sum of squared errors. Compared to the standard quadratic objective function, with the fuzzy decision-making approach, the designer has more freedom in specifying the desired process behavior. 展开更多
关键词 fuzzy predictive control fuzzy goals fuzzy constraints optimization.?
在线阅读 下载PDF
Neuro-fuzzy predictive control for nonlinear application
4
作者 陈东祥 王刚 吕世霞 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第6期763-766,共4页
Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. ... Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to reduce the model errors caused by changes of the process under control. To cope with the difficult problem of nonlinear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition. 展开更多
关键词 model predictive control fuzzy neural network nonlinear optimization adaptive control
在线阅读 下载PDF
Multi-objective Model Predictive Control of Grid-connected Three-level Inverter Based on Hierarchical Optimization
5
作者 Ting Liu Yong Li +4 位作者 Li Jiang Jianghu Wan Jiaqi Yu Chao Ding Yijia Cao 《Chinese Journal of Electrical Engineering》 CSCD 2021年第1期63-72,共10页
In order to solve the problem of weighting factors selection in the conventional finite-control-set model predictive control for a grid-connected three-level inverter,an improved multi-objective model predictive contr... In order to solve the problem of weighting factors selection in the conventional finite-control-set model predictive control for a grid-connected three-level inverter,an improved multi-objective model predictive control without weighting factors based on hierarchical optimization is proposed.Four control objectives are considered in this strategy.The grid current and neutral-point voltage of the DC-link are taken as the objectives in the first optimization hierarchy,and by using fuzzy satisfaction decision,several feasible candidates of voltage vectors are determined.Then,the average switching frequency and common-mode voltage are optimized in the second hierarchy.The average ranking criterion is introduced to sort the objective functions,and the best voltage vector is obtained to realize the coordinated control of multiple objectives.At last,the effectiveness of the proposed strategy is verified by simulation results. 展开更多
关键词 Multi-objective model predictive control grid-connected three-level inverter hierarchical optimization fuzzy satisfaction decision average ranking criterion
原文传递
Enhanced Water Quality Control Based on Predictive Optimization for Smart Fish Farming
6
作者 Azimbek Khudoyberdiev Mohammed Abdul Jaleel +1 位作者 Israr Ullah DoHyeun Kim 《Computers, Materials & Continua》 SCIE EI 2023年第6期5471-5499,共29页
The requirement for high-quality seafood is a global challenge in today’s world due to climate change and natural resource limitations.Internet of Things(IoT)based Modern fish farming systems can significantly optimi... The requirement for high-quality seafood is a global challenge in today’s world due to climate change and natural resource limitations.Internet of Things(IoT)based Modern fish farming systems can significantly optimize seafood production by minimizing resource utilization and improving healthy fish production.This objective requires intensive monitoring,prediction,and control by optimizing leading factors that impact fish growth,including temperature,the potential of hydrogen(pH),water level,and feeding rate.This paper proposes the IoT based predictive optimization approach for efficient control and energy utilization in smart fish farming.The proposed fish farm control mechanism has a predictive optimization to deal with water quality control and efficient energy consumption problems.Fish farm indoor and outdoor values are applied to predict the water quality parameters,whereas a novel objective function is proposed to achieve an optimal fish growth environment based on predicted parameters.Fuzzy logic control is utilized to calculate control parameters for IoT actuators based on predictive optimal water quality parameters by minimizing energy consumption.To evaluate the efficiency of the proposed system,the overall approach has been deployed to the fish tank as a case study,and a number of experiments have been carried out.The results show that the predictive optimization module allowed the water quality parameters to be maintained at the optimal level with nearly 30%of energy efficiency at the maximum actuator control rate compared with other control levels. 展开更多
关键词 Smart fish farming internet of things(IoT) predictive optimization objective function fuzzy logic control(FLC)
在线阅读 下载PDF
IDBO-Fuzzy-PID控制器在立磨机液压控制中的应用
7
作者 李玲 刘佳芸 +2 位作者 李瑶 程福安 解妙霞 《中南大学学报(自然科学版)》 北大核心 2025年第9期3724-3736,共13页
为解决立磨机液压控制系统存在的非线性、时变性问题,本文提出了一种基于改进蜣螂算法(improved dung beetle optimizer,IDBO)的模糊PID控制器(IDBO-Fuzzy-PID)。首先,基于立磨机液压位置控制系统模型,设计模糊PID控制器以实时调整控制... 为解决立磨机液压控制系统存在的非线性、时变性问题,本文提出了一种基于改进蜣螂算法(improved dung beetle optimizer,IDBO)的模糊PID控制器(IDBO-Fuzzy-PID)。首先,基于立磨机液压位置控制系统模型,设计模糊PID控制器以实时调整控制参数;其次,针对DBO算法存在的种群多样性匮乏、全局搜索能力弱、易陷局部最优等不足,引入佳点集与反向学习、自适应繁殖偷窃及自适应混合变异3种策略进行改进,并通过多类型测试函数验证IDBO收敛速度及求解精度;最后,构建联合仿真平台,验证控制器在随机干扰与系统参数波动条件下的控制性能。研究结果表明:本文提出的IDBO-Fuzzy-PID控制器具有良好的跟踪性能与时变适应性,系统平衡点附近上升、调节时间最短,基本无超调至目标位移;在外界扰动条件下,液压杆振幅降至0.252 mm,较PID控制器降幅达71.3%,其抗干扰性能最优;在系统参数波动条件下,其稳定性未受显著影响,正弦波跟踪性能最优。该控制器通过动态调整参数以快速补偿液压杆位移的偏差,有效抑制了磨辊的波动,提升了磨粉工艺的稳定性。 展开更多
关键词 立磨机 液压控制 模糊PID控制 蜣螂优化算法 联合仿真
在线阅读 下载PDF
Fuzzy Logic for Solving an Optimal Control Problem of Hypoxemic Hypoxia Tissue Blood Carbon Dioxide Exchange during Physical Activity 被引量:1
8
作者 Jean Marie Ntaganda Mahamat Saleh Daoussa Haggar Benjamin Mampassi 《Open Journal of Applied Sciences》 2014年第11期501-514,共14页
This paper aims at using of an approach integrating the fuzzy logic strategy for hypoxemic hypoxia tissue blood carbon dioxide human optimal control problem. To test the efficiency of this strategy, the authors propos... This paper aims at using of an approach integrating the fuzzy logic strategy for hypoxemic hypoxia tissue blood carbon dioxide human optimal control problem. To test the efficiency of this strategy, the authors propose a numerical comparison with the direct method by taking the values of determinant parameters of cardiovascular-respiratory system for a 30 years old woman in jogging as her regular physical activity. The results are in good agreement with experimental data. 展开更多
关键词 fuzzy LOGIC optimal control MEMBERSHIP Function MEMBERSHIP DEGREE Hypoxemic-Hypoxia Pressure Carbon Dioxide Oxygen Numerical simulation
暂未订购
Distribution Inventory Cost Optimization Under Grey and Fuzzy Uncertainty
9
作者 LIU Dongbo HUANG Dao CHEN Yujua 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1238-1242,共5页
The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inven... The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inventory uncertain programming model was presented. The grey fuzzy simulation technology can generate input-output data for the uncertain functions. The neural network trained from the inputoutput data can approximate the uncertain functions. The designed hybrid intelligent algorithm by embedding the trained neural network into genetic algorithm can optimize the general grey fuzzy programming problems. Finally, one numerical example is provided to illustrate the effectiveness of the model and the hybrid intelligent algorithm. 展开更多
关键词 grey fuzzy variable grey fuzzy simulation neural network genetic algorithm inventory control supply chain optimization
在线阅读 下载PDF
Fuzzy Logic Approach for Solving an Optimal Control Problem of an Uninfected Hepatitis B Virus Dynamics
10
作者 Jean Marie Ntaganda Marcel Gahamanyi 《Applied Mathematics》 2015年第9期1524-1537,共14页
We aimed in this paper to use fuzzy logic approach to solve a hepatitis B virus optimal control problem. The approach efficiency is tested through a numerical comparison with the direct method by taking the values of ... We aimed in this paper to use fuzzy logic approach to solve a hepatitis B virus optimal control problem. The approach efficiency is tested through a numerical comparison with the direct method by taking the values of determinant parameters of this disease for people administrating the drugs. Final results of both numerical methods are in good agreement with experimental data. 展开更多
关键词 fuzzy LOGIC optimal control MEMBERSHIP Function MEMBERSHIP DEGREE HEPATITIS B VIRUS Numerical simulation
在线阅读 下载PDF
Fuzzy Logic Strategy for Solving an Optimal Control Problem of Glucose and Insulin in Diabetic Human
11
作者 Jean Marie Ntaganda 《Open Journal of Applied Sciences》 2013年第7期421-429,共9页
This paper aims at the development of an approach integrating the fuzzy logic strategy for a glucose and insulin in diabetic human optimal control problem. To test the efficiency of this strategy, the author proposes ... This paper aims at the development of an approach integrating the fuzzy logic strategy for a glucose and insulin in diabetic human optimal control problem. To test the efficiency of this strategy, the author proposes a numerical comparison with the indirect method. The results are in good agreement with experimental data. 展开更多
关键词 fuzzy LOGIC optimal control MEMBERSHIP Function MEMBERSHIP DEGREE GLUCOSE INSULIN Numerical simulation
在线阅读 下载PDF
Fuzzy Logic Strategy for Solving an Optimal Control Problem of Therapeutic Hepatitis C Virus Dynamics
12
作者 Jean Marie Ntaganda Mahamat Saleh Daoussa Haggar Benjamin Mampassi 《Open Journal of Applied Sciences》 2015年第9期527-541,共15页
This paper aims at the development of an approach integrating the fuzzy logic strategy for a therapeutic hepatitis C virus dynamics optimal control problem. To test the efficiency of this strategy, the authors propose... This paper aims at the development of an approach integrating the fuzzy logic strategy for a therapeutic hepatitis C virus dynamics optimal control problem. To test the efficiency of this strategy, the authors propose a numerical comparison with the direct method by taking the values of determinant parameters of this disease for people administrating the drugs. The results are in good agreement with experimental data. 展开更多
关键词 fuzzy Logic optimal control MEMBERSHIP Function MEMBERSHIP Degree HEPATITIS C VIRUS Uninfected HEPATOCYTES INFECTED HEPATOCYTES Numerical simulation
暂未订购
Real-time multi-step prediction control for BP network with delay 被引量:8
13
作者 张吉礼 欧进萍 于达仁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第2期82-86,共5页
Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i... Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system. 展开更多
关键词 DELAYED time system multi STEP prediction BP network COMPENSATION of DYNAMICAL characteristics fuzzy control simulation
在线阅读 下载PDF
Microscopic sand production simulation and visual sanding pattern description in weakly consolidated sandstone reservoirs 被引量:5
14
作者 Chang-Yin Dong Bo Zhou +4 位作者 Fan-Sheng Huang Lei Zhang Yi-Zhong Zhao Yang Song Jun-Yu Deng 《Petroleum Science》 SCIE CAS CSCD 2022年第1期279-295,共17页
To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and p... To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure. 展开更多
关键词 Weakly consolidated reservoir Particle-scale microstructure model Microcosmic sanding process simulation Visual sanding cavity description Sanding prediction Sand control optimization
原文传递
滚动预报优化调度模式下水库防洪和发电效益分析 被引量:1
15
作者 黎良辉 曹志明 +3 位作者 万迪文 何中政 李邦浩 兰芳 《水利水电技术(中英文)》 北大核心 2025年第8期192-203,共12页
【目的】水库调度是目前水资源综合利用的重要非工程措施。近年来,随着水文预报技术水平的提升,结合水文预报开展水库优化调度日渐受到关注。然而水库滚动预报优化调度下防洪和发电效益影响机制尚不明晰。【方法】针对此问题,研究建立... 【目的】水库调度是目前水资源综合利用的重要非工程措施。近年来,随着水文预报技术水平的提升,结合水文预报开展水库优化调度日渐受到关注。然而水库滚动预报优化调度下防洪和发电效益影响机制尚不明晰。【方法】针对此问题,研究建立了水库滚动预报优化调度模型,采用控制变量法分析了不同的洪水量级、预见期和汛期水位动态控制上限对水库防洪和发电效益的影响,以峡江水库为对象开展实例研究。【结果】结果表明:(1)水库洪水削峰率随汛期水位动态控制上限增加呈现逐渐减小的趋势;(2)水库发电量随着汛期水位动态控制上限的增高而增大,同时最大下泄流量也在增加;(3)洪水量级越大,水库调度达到最大削峰效果所需预见期逐渐减少;(4)考虑预报不确定性和确定性来水条件下的防洪滚动预报优化调度结果差别较小。【结论】综上所述,在水库防洪滚动预报优化调度模式下,洪水量级、预见期和汛期水位动态控制上限对水库防洪和发电效益影响存在规律,结合可靠的预报信息,提高水库汛限水位在风险可控的前提下能够提高发电效益。以50 a一遇洪水为例,当预见期为72 h时,汛期水位动态控制上限为43.5 m与46 m条件相比,平均削峰率仅仅提高0.46%(约104 m^(3)/s),但平均发电量减少30.55%(约1555.57万kWh)。 展开更多
关键词 滚动预报优化调度 防洪调度 发电调度 洪水预见期 汛限水位 洪水预报 流量 数值模拟
在线阅读 下载PDF
基于自适应时域MPC的无人车轨迹跟踪控制
16
作者 丁承君 耿宇坤 +2 位作者 胡健鑫 王逸桐 王镇林 《科学技术与工程》 北大核心 2025年第23期9883-9891,共9页
为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒... 为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒子群优化算法(particle swarm optimization,PSO)对时域参数优化,获得不同工况下的离线最优时域数据集。然后,利用自适应神经模糊推理系统(adaptive network-based fuzzy inference system,ANFIS)对数据集训练,得到能够自适应调整时域的控制系统。最后,通过Carsim和Simulink联合仿真和实车验证。结果表明:自适应时域MPC控制器在不同工况下的轨迹跟踪精度和稳定性均得到了较大幅度的提高,且该算法具有较好的实用性。 展开更多
关键词 模型预测控制 轨迹跟踪 粒子群优化算法(PSO) 自适应神经模糊推理系统(ANFIS)
在线阅读 下载PDF
Stochastic occupancy-integrated MPC for multi-objective optimal built environment control
17
作者 Hanbei Zhang Christian Ankerstjerne Thilker +4 位作者 Fu Xiao Henrik Madsen Rongling Li Tianyou Ma Kan Xu 《Building Simulation》 2025年第8期1963-1999,共37页
Efficient built environment control is essential for balancing energy consumption,thermal comfort,and indoor air quality(IAQ),especially in spaces with highly dynamic and intermittent occupancy patterns.Traditional co... Efficient built environment control is essential for balancing energy consumption,thermal comfort,and indoor air quality(IAQ),especially in spaces with highly dynamic and intermittent occupancy patterns.Traditional control strategies,such as fixed schedules or simple occupancy-based rules,often fail to address the stochastic nature of occupancy behaviors,leading to suboptimal performance.This study proposes a stochastic occupancy-integrated model predictive control(MPC)strategy that advances built environment optimization through several innovative contributions.First,the proposed MPC integrates stochastic occupancy number predictions into its control scheme,enabling multi-objective optimization considering thermal comfort and IAQ for spaces with sudden occupancy changes and irregular usage.Second,the stochastic differential equations(SDE)-based building dynamic models are developed considering the stochasticity and time-inhomogeneity of occupancy heat gains and CO_(2)generations in the prediction of indoor temperature,CO_(2)concentration and energy consumption.Third,a TRNSYS-Python co-simulation platform is established to evaluate the MPC strategy’s performance,addressing the discrepancies between the SDE models used for MPC and the actual process of the target system.Finally,the study comprehensively evaluates the MPC’s multi-dimensional performance under different optimization weight combinations and benchmarks it against two baseline strategies:a fixed-schedule(FIX)strategy and occupancy-based control(OBC)strategies with varying per-person fresh airflow rates.Simulation results demonstrate that the proposed MPC achieves 32%energy savings and 17%IAQ improvement compared to the FIX strategy,and 30%thermal comfort improvement and 20%IAQ improvement with the same energy consumption compared to OBC.These findings highlight the robustness and enhanced performance of the proposed MPC in addressing the complexities of stochastic and time-varying occupancy,offering a state-of-the-art solution for energy-efficient and occupant-centric built environment control. 展开更多
关键词 model predictive control multi-objective optimization stochastic occupancy prediction inhomogeneous Markov chains built environment control TRNSYS simulation
原文传递
微型燃气轮机的动态建模与优化控制研究 被引量:2
18
作者 罗保洋 祝培旺 +4 位作者 吕洪坤 来振亚 丁历威 帅威 肖刚 《中国电机工程学报》 北大核心 2025年第1期175-183,I0014,共10页
微型燃气轮机因其灵活性和快速响应能力,可作为综合能源系统中的灵活调度资源,填补因气象条件的随机性和间歇性带来的能量缺口,也可为分布式可再生能源电站的并网提供支撑。为解决微型燃气轮机在复杂系统中的控制问题,同时适应微燃机自... 微型燃气轮机因其灵活性和快速响应能力,可作为综合能源系统中的灵活调度资源,填补因气象条件的随机性和间歇性带来的能量缺口,也可为分布式可再生能源电站的并网提供支撑。为解决微型燃气轮机在复杂系统中的控制问题,同时适应微燃机自身的强耦合、非线性和时变性特点,该文基于MATLAB/SIMULINK平台,搭建燃机动态模型,并提出一种自适应模型预测控制算法,通过引入模型在线修正、PI静差控制等方法,以解决线性模型难以准确调控非线性系统和全局控制问题。结果表明,构建的燃机模型在孤网模式和并网模式下的平均相对误差分别为0.08%和0.52%。提出的自适应模型预测控制算法在响应多能互补系统调度时平均相对误差相较比例积分微分(proportional-integral-derivative,PID)控制和模型预测控制(model predictive control,MPC)分别降低了36.67%和88.05%,在响应速度和控制精度方面均优于其他算法,具有优秀的控制性能,且展现出与调度算法很好的适配性,有较好的发展潜能。 展开更多
关键词 微型燃气轮机 仿真 模型预测控制算法 优化控制 多能互补
原文传递
采用改进黑洞算法优化车辆速度控制仿真研究
19
作者 李晓英 王小洁 +1 位作者 黄淳 刘书丹 《机械设计与制造》 北大核心 2025年第4期305-308,313,共5页
为了缩短混合动力汽车起步时间,设计了汽车电机分数阶模糊PD+I控制器,并对电机转速启动效果进行仿真验证。给出了非线性车辆动力学模型,根据牛顿第二定律,推导出非线性混合动力汽车动力学方程式。针对模糊PID控制系统进行改进,设计了汽... 为了缩短混合动力汽车起步时间,设计了汽车电机分数阶模糊PD+I控制器,并对电机转速启动效果进行仿真验证。给出了非线性车辆动力学模型,根据牛顿第二定律,推导出非线性混合动力汽车动力学方程式。针对模糊PID控制系统进行改进,设计了汽车电机分数阶模糊PD+I控制器。为了提高控制系数自适应响应速度,采用改进黑洞算法对其进行优化,给出了电机控制系统的优化流程。为了检验优化后的控制系统输出效果,采用MATLAB软件对混合动力汽车电机响应速度进行仿真,并且与优化前输出结果进行对比。结果显示:优化前,混合动力汽车电机自适应调节时间较长,受到外界干扰时,电机转速变化幅度较大;优化后,混合动力汽车电机自适应调节时间较短,受到外界干扰时,电机转速变化幅度较小。采用改进黑洞算法优化分数阶模糊PD+I控制器,可以提高电机响应速度,缩短混合动力汽车起步时间。 展开更多
关键词 改进黑洞算法 分数阶模糊PD+I控制器 电机 优化 仿真
在线阅读 下载PDF
电子机械制动夹紧力闭环控制策略研究
20
作者 营江澎 孙有平 +2 位作者 吴光庆 陈鹏宇 季宏春 《现代制造工程》 北大核心 2025年第7期48-56,共9页
为了提高汽车电子机械制动系统的动态响应特性及可靠性,在分析了电子机械制动系统工作原理的基础上,使用Matlab/Simulink和AMESim软件分别建立了永磁同步电机磁场定向控制仿真模型和机械执行机构物理模型,提出了基于期望夹紧力的转角预... 为了提高汽车电子机械制动系统的动态响应特性及可靠性,在分析了电子机械制动系统工作原理的基础上,使用Matlab/Simulink和AMESim软件分别建立了永磁同步电机磁场定向控制仿真模型和机械执行机构物理模型,提出了基于期望夹紧力的转角预测前馈和模糊PID反馈的闭环控制策略。基于AMESim与Matlab/Simulink软件搭建联合仿真平台,采用阶跃信号、方波信号和梯形信号分别模拟车辆紧急制动、频繁制动和常规制动工况,进行仿真对比分析,验证了该夹紧力闭环控制策略的有效性。仿真结果表明,相比传统方法,该策略显著提高了系统的动态响应速度和控制精度。 展开更多
关键词 电子机械制动系统 联合仿真 转角预测 模糊PID控制
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部