The variation of plant dead-time deeply a?ects the stability of the predictive PI controlsystem. It is important for designing and applying the PPI controller to calculate the delay margin.A criterion of stability for...The variation of plant dead-time deeply a?ects the stability of the predictive PI controlsystem. It is important for designing and applying the PPI controller to calculate the delay margin.A criterion of stability for the PPI system and the quantitive relationship among the delay margin,the time constant of the closed-loop system, and the dead-time of the model are given. A graphicalgorithm to compute the delay margin is also developed. The phenomenon that there exist morethan one stability delay zones is discussed. The algorithm is shown to be precise by some simulations.展开更多
This paper investigates the impact of electric vehicle(EV)aggregator with communication time delay on stability regions and stability delay margins of a single-area load frequency control(LFC)system.Primarily,a graphi...This paper investigates the impact of electric vehicle(EV)aggregator with communication time delay on stability regions and stability delay margins of a single-area load frequency control(LFC)system.Primarily,a graphical method characterizing stability boundary locus is implemented.For a given time delay,the method computes all the stabilizing proportional-integral(PI)controller gains,which constitutes a stability region in the parameter space of PI controller.Secondly,in order to complement the stability regions,a frequency-domain exact method is used to calculate stability delay margins for various values of PI controller gains.The qualitative impact of EV aggregator on both stability regions and stability delay margins is thoroughly analyzed and the results are authenticated by time-domain simulations and quasi-polynomial mapping-based root finder(QPmR)algorithm.展开更多
Predictive PI (PPI) control form, capable of time delay compensation, has been put forward recently. This control algorithm is essentially a PI controller with enhanced derivative action, which is not only suitable fo...Predictive PI (PPI) control form, capable of time delay compensation, has been put forward recently. This control algorithm is essentially a PI controller with enhanced derivative action, which is not only suitable for long time delay process, but also of simple structure and excellent robust stability. The performance of PPI controller was demonstrated and compared with that of traditional PID controller by different tuning methods.展开更多
The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performa...The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performance of the power system. This paper proposes a robust method to design a controller for multi-area LFC schemes considering communication delays. In existing literature, the controller values of LFC are designed using time domain approach which is less accurate than the proposed method. In proposed method, the controller values are determined by moving the rightmosteigenvalues of the system to the left half plane in a quasi-continuous way for a preset upper bound of time delay. Then the robustness of the proposed controller is assessed by estimating the maximumtolerable value of time delay for maintaining system stability. Simulation studies are carried out for multi-area LFC scheme equipped with the proposed controller using Matlab/simulink. From the results, it has been concluded that the proposed controller guarantees the tolerance for all time delays smaller than the preset upper bound and provides a bigger delay margin than the existing controllers.展开更多
This study aims to determine the improvement effect on the delay margin if fractional-order proportional integral(PI) controller is used in the control of a singlearea delayed load frequency control(LFC) system. The d...This study aims to determine the improvement effect on the delay margin if fractional-order proportional integral(PI) controller is used in the control of a singlearea delayed load frequency control(LFC) system. The delay margin of the system with fractional-order PI control has been obtained for various fractional integral orders and the effect of them has been shown on the delay margin as a third controller parameter. Furthermore,the stability of the system that is either under or over the delay margin is examined by generalized modified Mikhailov criterion.The stability results obtained have been confirmed numerically in time domain. It is demonstrated that the proposed controller for delayed LFC system provides more flexibility on delay margin according to integer-order PI controller.展开更多
文摘The variation of plant dead-time deeply a?ects the stability of the predictive PI controlsystem. It is important for designing and applying the PPI controller to calculate the delay margin.A criterion of stability for the PPI system and the quantitive relationship among the delay margin,the time constant of the closed-loop system, and the dead-time of the model are given. A graphicalgorithm to compute the delay margin is also developed. The phenomenon that there exist morethan one stability delay zones is discussed. The algorithm is shown to be precise by some simulations.
基金This work was supported by the Project of Scientific and Technological Research Council of Turkey(TUBITAK)(No.118E744).
文摘This paper investigates the impact of electric vehicle(EV)aggregator with communication time delay on stability regions and stability delay margins of a single-area load frequency control(LFC)system.Primarily,a graphical method characterizing stability boundary locus is implemented.For a given time delay,the method computes all the stabilizing proportional-integral(PI)controller gains,which constitutes a stability region in the parameter space of PI controller.Secondly,in order to complement the stability regions,a frequency-domain exact method is used to calculate stability delay margins for various values of PI controller gains.The qualitative impact of EV aggregator on both stability regions and stability delay margins is thoroughly analyzed and the results are authenticated by time-domain simulations and quasi-polynomial mapping-based root finder(QPmR)algorithm.
基金"8 63" High-Tech Research &Development Program of China(No.2 0 0 1-AA413 13 0 )
文摘Predictive PI (PPI) control form, capable of time delay compensation, has been put forward recently. This control algorithm is essentially a PI controller with enhanced derivative action, which is not only suitable for long time delay process, but also of simple structure and excellent robust stability. The performance of PPI controller was demonstrated and compared with that of traditional PID controller by different tuning methods.
文摘The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performance of the power system. This paper proposes a robust method to design a controller for multi-area LFC schemes considering communication delays. In existing literature, the controller values of LFC are designed using time domain approach which is less accurate than the proposed method. In proposed method, the controller values are determined by moving the rightmosteigenvalues of the system to the left half plane in a quasi-continuous way for a preset upper bound of time delay. Then the robustness of the proposed controller is assessed by estimating the maximumtolerable value of time delay for maintaining system stability. Simulation studies are carried out for multi-area LFC scheme equipped with the proposed controller using Matlab/simulink. From the results, it has been concluded that the proposed controller guarantees the tolerance for all time delays smaller than the preset upper bound and provides a bigger delay margin than the existing controllers.
文摘This study aims to determine the improvement effect on the delay margin if fractional-order proportional integral(PI) controller is used in the control of a singlearea delayed load frequency control(LFC) system. The delay margin of the system with fractional-order PI control has been obtained for various fractional integral orders and the effect of them has been shown on the delay margin as a third controller parameter. Furthermore,the stability of the system that is either under or over the delay margin is examined by generalized modified Mikhailov criterion.The stability results obtained have been confirmed numerically in time domain. It is demonstrated that the proposed controller for delayed LFC system provides more flexibility on delay margin according to integer-order PI controller.