Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives ...Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.展开更多
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as...Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.展开更多
Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attent...Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction.展开更多
1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace c...1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).展开更多
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict...With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.展开更多
Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull st...Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull structures canbe straightforwardly predictedfromthe head,but a fullheadshapemust be available.Most scanning devices can only capture the face shape.Consequently,a method that can quickly predict the full skull structures from the face is necessary.In this study,a novel face-to-skull prediction procedure is introduced.Given a threedimensional(3-D)face shape,a skull mesh could be predicted so that its shape would statistically fit the face shape.Several prediction strategies were conducted.The optimal prediction strategy with its optimal hyperparameters was experimentally selected through a ten-fold cross-validation with 329 subjects.As a result,the face-to-skull prediction strategy based on the relations between face head shape and back head shape,between face head shape and face skull shape,and between back head shape and back skull shape was optimal.The optimal mean mesh-to-mesh distance(mean±SD)between the predicted skull shapes and the ground truth skull shapes was 1.93±0.36 mm,and those between the predicted skull meshes and the ground truth skull meshes were 2.65±0.36 mm.Moreover,the prediction errors in back-skull and muscle attachment regions were 1.7432±0.5217 mm and 1.7671±0.3829 mm,respectively.These errors are within the acceptable range of facial muscle simulation.In perspective,this method will be employed in our clinical decision support system to enhance the accuracy of biomechanical head simulation based on a stereo fusion camera system.Moreover,we will also enhance the accuracy of the face-to-skull prediction by diversifying the dataset intomore varied geographical regions and genders.More types of parameters,such as BodyMass Index(BMI),coupled with head-to-skull thicknesses,will be fused with the proposed face-to-skull procedure.展开更多
The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Convention...The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Conventional prediction methods, such as the Equivalent Depth Method, are either inapplicable or yield unsatisfactory results (e.g., Fillippone’s method), contributing to frequent drilling incidents like gas kick, overfl ow, and lost circulation, which hinder the safe and effi cient exploration of natural gas. To address these challenges, this paper integrates lithology, physical properties, and overpressure mechanisms of the Canglangpu Formation. From a petrophysical perspective, a pore pressure prediction model independent of lithology and overpressure mechanisms was developed by combining the poroelasticity theory, linear elastic Hooke’s Law, and Biot’s eff ective stress theory, with an analysis of the relationship between carbonate rock strain, external stress, and internal pore pressure. Unlike conventional methods, the model does not rely on the establishment of a normal compaction trend line. Pre-stack seismic inversion was applied to achieve 3D pore pressure prediction for the formation. Results indicate high accuracy, with a relative error of less than 5% compared to measured data, and strong consistency with actual drilling events. The proposed method provides robust technical support for pore pressure prediction in carbonate formations and drilling geological design.展开更多
Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective meas...Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.展开更多
Polymer optical materials are becoming increasingly important in modern technologies owing to their unique properties.This study applies coupled perturbed density functional theory(DFT)to predict the refractive index(...Polymer optical materials are becoming increasingly important in modern technologies owing to their unique properties.This study applies coupled perturbed density functional theory(DFT)to predict the refractive index(RI)and Abbe number of polymers.Using the LorentzLorenz equation,the frequency-dependent polarizability and molecular volume were calculated to estimate RI.Wavelength-dependent RI values were used to derive the Abbe numbers.Our results show a strong correlation with experimental data,with Pearson coefficients of 0.912 for RI and 0.968 for Abbe number,enabling the introduction of linear correction functions to minimize discrepancies between theoretical predictions and experimental results.By categorizing polymers into classes such as poly(methyl methacrylate)(PMMA)-,polyethylene(PE)-,polycarbonate(PC)-,polyimide(PI)-,and polyurethane(PU)-based materials,this method enables precise predictions and reduces discrepancies using linear correction functions.This efficient and direct computational framework avoids the complexity of traditional models and offers a practical tool for the design and optimization of advanced optical materials.展开更多
Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-value...Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-values of O^(1)D,NO_(2),HONO,H_(2)O_(2),HCHO,and NO_(3),which are the crucial values for the prediction of the atmospheric oxidation capacity(AOC)and secondary pollutant concentrations such as ozone(O_(3)),secondary organic aerosols(SOA).The J-ML can self-select the optimal“Model+Hyperparameters”without human interference.The evaluated results showed that the J-ML had a good performance to reproduce the J-values wheremost of the correlation(R)coefficients exceed 0.93 and the accuracy(P)values are in the range of 0.68-0.83,comparing with the J-values from observations and from the tropospheric ultraviolet and visible(TUV)radiation model in Beijing,Chengdu,Guangzhou and Shanghai,China.The hourly prediction was also well performed with R from 0.78 to 0.81 for next 3-days and from 0.69 to 0.71 for next 7-days,respectively.Compared with O_(3)concentrations by using J-values from the TUV model,an emission-driven observation-based model(e-OBM)by using the J-values from the J-ML showed a 4%-12%increase in R and 4%-30%decrease in ME,indicating that the J-ML could be used as an excellent supplement to traditional numerical models.The feature importance analysis concluded that the key influential parameter was the surface solar downwards radiation for all J-values,and the other dominant factors for all J-values were 2-m mean temperature,O_(3),total cloud cover,boundary layer height,relative humidity and surface pressure.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg...Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.展开更多
Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditiona...Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditional CSI feedback approaches face challenges such as performance degradation due to feedback delay and channel aging caused by user mobility.To address these issues,we propose a novel spatio-temporal predictive network(STPNet)that jointly integrates CSI feedback and prediction modules.STPNet employs stacked Inception modules to learn the spatial correlation and temporal evolution of CSI,which captures both the local and the global spatiotemporal features.In addition,the signal-to-noise ratio(SNR)adaptive module is designed to adapt flexibly to diverse feedback channel conditions.Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 count...Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 countries and territories from 1990 to 2019 and predicted future incidence trends through 2034.Methods COPD data by age and sex from the GBD 2019 database were analyzed for incidence,prevalence,mortality,and disability-adjusted life years(DALY)rates from 1990 to 2019.Joinpoint regression identified significant annual trends,and age-standardized incidence rates were predicted through 2034 using age-period-cohort models.Results The incidence,prevalence,mortality,and disease burden of COPD have been decreasing,and the incidence rates will continue to decrease or remain stable until 2034 in most selected countries and territories,except for a few Southeastern Asian countries.The Lao People’s Democratic Republic and Vietnam are projected to experience an increase in COPD incidence from 165.3 per 100,000 in 2019 to 177 per 100,000 in 2034 and from 179.9 per 100,000 in 2019 to 192.5 per 100,000 in 2034,respectively.Older males had a higher incidence than any other sex or age group.The sex gap in incidence rates continues to widen,though it is smaller and less significant in the younger age group than in those in the older one.Conclusion COPD rates are expected to decline until 2034 but remain a health risk,especially in countries with rising rates.Urgent action on tobacco control,air pollution,and public education is needed.展开更多
Stroke,a major cerebrovascular disease,has high morbidity and mortality.Effective methods to reduce the risk and improve the prognosis are lacking.Currently,uric acid(UA)is associated with the pathological mechanism,p...Stroke,a major cerebrovascular disease,has high morbidity and mortality.Effective methods to reduce the risk and improve the prognosis are lacking.Currently,uric acid(UA)is associated with the pathological mechanism,prognosis,and therapy of stroke.UA plays pro/anti-oxidative and pro-inflammatory roles in vivo.The specific role of UA in stroke,which may have both neuroprotective and damaging effects,remains unclear.There is a U-shaped association between serum uric acid(SUA)levels and ischemic stroke(IS).UA therapy provides neuroprotection during reperfusion therapy for acute ischemic stroke(AIS).Urate-lowering therapy(ULT)plays a protective role in IS with hyperuricemia or gout.SUA levels are associated with the cerebrovascular injury mechanism,risk,and outcomes of hemorrhagic stroke.In this review,we summarize the current research on the role of UA in stroke,providing potential targets for its prediction and treatment.展开更多
BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperat...BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.展开更多
Negative logarithm of the acid dissociation constant(pK_(a))significantly influences the absorption,dis-tribution,metabolism,excretion,and toxicity(ADMET)properties of molecules and is a crucial indicator in drug rese...Negative logarithm of the acid dissociation constant(pK_(a))significantly influences the absorption,dis-tribution,metabolism,excretion,and toxicity(ADMET)properties of molecules and is a crucial indicator in drug research.Given the rapid and accurate characteristics of computational methods,their role in predicting drug properties is increasingly important.Although many pK_(a) prediction models currently exist,they often focus on enhancing model precision while neglecting interpretability.In this study,we present GraFpKa,a pK_(a) prediction model using graph neural networks(GNNs)and molecular finger-prints.The results show that our acidic and basic models achieved mean absolute errors(MAEs)of 0.621 and 0.402,respectively,on the test set,demonstrating good predictive performance.Notably,to improve interpretability,GraFpKa also incorporates Integrated Gradients(IGs),providing a clearer visual description of the atoms significantly affecting the pK_(a) values.The high reliability and interpretability of GraFpKa ensure accurate pKa predictions while also facilitating a deeper understanding of the relation-ship between molecular structure and pK_(a) values,making it a valuable tool in the field of pK_(a) prediction.展开更多
Objective:To compare the clinical efficacy of mifepristone-misoprostol medical management versus surgical curettage for first-trimester missed miscarriage,and to establish evidence-based sonographic cutoff values pred...Objective:To compare the clinical efficacy of mifepristone-misoprostol medical management versus surgical curettage for first-trimester missed miscarriage,and to establish evidence-based sonographic cutoff values predictive of incomplete abortion requiring surgical intervention.Methods:We retrospectively analyzed a cohort of 702 women diagnosed with first-trimester missed miscarriage between January 2020 and May 2023.Demographic characteristics and ultrasound parameters were systematically recorded.Receiver operating characteristic(ROC)curve analysis was performed to establish optimal sonographic cutoff values for predicting incomplete abortion requiring surgical intervention.Results:146 patients received medical treatment(mifepristone and misoprostol)and 556 underwent surgical curettage.At the 1-month follow-up,the medical group showed significantly greater endometrial thickness and longer postoperative bleeding duration than the surgical group(P<0.05).The menstrual volume reduction rate(23.56%)was significantly lower in the medical group than in the surgical group.The incomplete abortion rate was higher in the medical group(17.12%,25/146)than in the surgical group(2.88%,16/556).Among the medical group,14 patients(9.59%)required curettage due to incomplete abortion,while 11 cases resolved spontaneously after prolonged medication.ROC curve analysis identified two cut-off values indicating the need for surgical intervention:endometrial thickness>1.21 cm at 24 h post-medical abortion,and residual mass diameter>0.95 cm at 7 days post-medical abortion.Conclusions:Medical management of first-trimester missed miscarriage using mifepristone-misoprostol demonstrates comparable efficacy to surgical curettage.An endometrial thickness>1.21 cm at 24 h or residual tissue diameter>0.95 cm at 7 days post-medical abortion should prompt consideration of incomplete abortion.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U2342208)support from NSF/Climate Dynamics Award#2025057。
文摘Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.
基金supported by National Natural Science Foundation of China(32122066,32201855)STI2030—Major Projects(2023ZD04076).
文摘Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.
基金funded by the project supported by the Natural Science Foundation of Heilongjiang Provincial(Grant Number LH2023F033)the Science and Technology Innovation Talent Project of Harbin(Grant Number 2022CXRCCG006).
文摘Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction.
文摘1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).
基金supported by General Scientific Research Funding of the Science and Technology Development Fund(FDCT)in Macao(No.0150/2022/A)the Faculty Research Grants of Macao University of Science and Technology(No.FRG-22-074-FIE).
文摘With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.
基金funded by the International University,VNU-HCM,under grant number T2023-01-BME.
文摘Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull structures canbe straightforwardly predictedfromthe head,but a fullheadshapemust be available.Most scanning devices can only capture the face shape.Consequently,a method that can quickly predict the full skull structures from the face is necessary.In this study,a novel face-to-skull prediction procedure is introduced.Given a threedimensional(3-D)face shape,a skull mesh could be predicted so that its shape would statistically fit the face shape.Several prediction strategies were conducted.The optimal prediction strategy with its optimal hyperparameters was experimentally selected through a ten-fold cross-validation with 329 subjects.As a result,the face-to-skull prediction strategy based on the relations between face head shape and back head shape,between face head shape and face skull shape,and between back head shape and back skull shape was optimal.The optimal mean mesh-to-mesh distance(mean±SD)between the predicted skull shapes and the ground truth skull shapes was 1.93±0.36 mm,and those between the predicted skull meshes and the ground truth skull meshes were 2.65±0.36 mm.Moreover,the prediction errors in back-skull and muscle attachment regions were 1.7432±0.5217 mm and 1.7671±0.3829 mm,respectively.These errors are within the acceptable range of facial muscle simulation.In perspective,this method will be employed in our clinical decision support system to enhance the accuracy of biomechanical head simulation based on a stereo fusion camera system.Moreover,we will also enhance the accuracy of the face-to-skull prediction by diversifying the dataset intomore varied geographical regions and genders.More types of parameters,such as BodyMass Index(BMI),coupled with head-to-skull thicknesses,will be fused with the proposed face-to-skull procedure.
基金supported by innovation consortium project of China Petroleum and Southwest Petroleum University (No.2020CX010201)Sichuan Science and Technology Program (No. 2024NSFSC0081)。
文摘The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Conventional prediction methods, such as the Equivalent Depth Method, are either inapplicable or yield unsatisfactory results (e.g., Fillippone’s method), contributing to frequent drilling incidents like gas kick, overfl ow, and lost circulation, which hinder the safe and effi cient exploration of natural gas. To address these challenges, this paper integrates lithology, physical properties, and overpressure mechanisms of the Canglangpu Formation. From a petrophysical perspective, a pore pressure prediction model independent of lithology and overpressure mechanisms was developed by combining the poroelasticity theory, linear elastic Hooke’s Law, and Biot’s eff ective stress theory, with an analysis of the relationship between carbonate rock strain, external stress, and internal pore pressure. Unlike conventional methods, the model does not rely on the establishment of a normal compaction trend line. Pre-stack seismic inversion was applied to achieve 3D pore pressure prediction for the formation. Results indicate high accuracy, with a relative error of less than 5% compared to measured data, and strong consistency with actual drilling events. The proposed method provides robust technical support for pore pressure prediction in carbonate formations and drilling geological design.
基金supported by the National Natural Science Founion of China(U2241285).
文摘Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.
基金financially supported by the Shenzhen Science and Technology Project(Nos.JCYJ20210324095210028,JSGGZD20220822095201003)the National Natural Science Foundation of China(U21A2087)。
文摘Polymer optical materials are becoming increasingly important in modern technologies owing to their unique properties.This study applies coupled perturbed density functional theory(DFT)to predict the refractive index(RI)and Abbe number of polymers.Using the LorentzLorenz equation,the frequency-dependent polarizability and molecular volume were calculated to estimate RI.Wavelength-dependent RI values were used to derive the Abbe numbers.Our results show a strong correlation with experimental data,with Pearson coefficients of 0.912 for RI and 0.968 for Abbe number,enabling the introduction of linear correction functions to minimize discrepancies between theoretical predictions and experimental results.By categorizing polymers into classes such as poly(methyl methacrylate)(PMMA)-,polyethylene(PE)-,polycarbonate(PC)-,polyimide(PI)-,and polyurethane(PU)-based materials,this method enables precise predictions and reduces discrepancies using linear correction functions.This efficient and direct computational framework avoids the complexity of traditional models and offers a practical tool for the design and optimization of advanced optical materials.
基金supported by the National Key Project of the Ministry of Science and Technology of China(No.2022YFC3701200)the National Natural Science Foundation of China(No.42090030).
文摘Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-values of O^(1)D,NO_(2),HONO,H_(2)O_(2),HCHO,and NO_(3),which are the crucial values for the prediction of the atmospheric oxidation capacity(AOC)and secondary pollutant concentrations such as ozone(O_(3)),secondary organic aerosols(SOA).The J-ML can self-select the optimal“Model+Hyperparameters”without human interference.The evaluated results showed that the J-ML had a good performance to reproduce the J-values wheremost of the correlation(R)coefficients exceed 0.93 and the accuracy(P)values are in the range of 0.68-0.83,comparing with the J-values from observations and from the tropospheric ultraviolet and visible(TUV)radiation model in Beijing,Chengdu,Guangzhou and Shanghai,China.The hourly prediction was also well performed with R from 0.78 to 0.81 for next 3-days and from 0.69 to 0.71 for next 7-days,respectively.Compared with O_(3)concentrations by using J-values from the TUV model,an emission-driven observation-based model(e-OBM)by using the J-values from the J-ML showed a 4%-12%increase in R and 4%-30%decrease in ME,indicating that the J-ML could be used as an excellent supplement to traditional numerical models.The feature importance analysis concluded that the key influential parameter was the surface solar downwards radiation for all J-values,and the other dominant factors for all J-values were 2-m mean temperature,O_(3),total cloud cover,boundary layer height,relative humidity and surface pressure.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd..(Grant No.H20230317)。
文摘Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.
基金supported in part by the Natural Science Foundation of China under Grant Nos.U2468201 and 62221001ZTE Industry-University-Institute Cooperation Funds under Grant No.IA20240420002。
文摘Accurate channel state information(CSI)is crucial for 6G wireless communication systems to accommodate the growing demands of mobile broadband services.In massive multiple-input multiple-output(MIMO)systems,traditional CSI feedback approaches face challenges such as performance degradation due to feedback delay and channel aging caused by user mobility.To address these issues,we propose a novel spatio-temporal predictive network(STPNet)that jointly integrates CSI feedback and prediction modules.STPNet employs stacked Inception modules to learn the spatial correlation and temporal evolution of CSI,which captures both the local and the global spatiotemporal features.In addition,the signal-to-noise ratio(SNR)adaptive module is designed to adapt flexibly to diverse feedback channel conditions.Simulation results demonstrate that STPNet outperforms existing channel prediction methods under various channel conditions.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金supported by a major project of the Zhejiang Natural Science Foundation(LD21G030001).
文摘Objective The Asia-Pacific region has a high chronic obstructive pulmonary disease(COPD)burden,but studies on its trends are limited.Using the Global Burden of Disease(GBD)2019 data,we analyzed COPD trends in 36 countries and territories from 1990 to 2019 and predicted future incidence trends through 2034.Methods COPD data by age and sex from the GBD 2019 database were analyzed for incidence,prevalence,mortality,and disability-adjusted life years(DALY)rates from 1990 to 2019.Joinpoint regression identified significant annual trends,and age-standardized incidence rates were predicted through 2034 using age-period-cohort models.Results The incidence,prevalence,mortality,and disease burden of COPD have been decreasing,and the incidence rates will continue to decrease or remain stable until 2034 in most selected countries and territories,except for a few Southeastern Asian countries.The Lao People’s Democratic Republic and Vietnam are projected to experience an increase in COPD incidence from 165.3 per 100,000 in 2019 to 177 per 100,000 in 2034 and from 179.9 per 100,000 in 2019 to 192.5 per 100,000 in 2034,respectively.Older males had a higher incidence than any other sex or age group.The sex gap in incidence rates continues to widen,though it is smaller and less significant in the younger age group than in those in the older one.Conclusion COPD rates are expected to decline until 2034 but remain a health risk,especially in countries with rising rates.Urgent action on tobacco control,air pollution,and public education is needed.
基金supported by the National Natural Science Foundation of China(82371300)Zhejiang Provincial Natural Science Foundation of China(LY23H090014)Zhejiang Province Traditional Chinese Medicine Science and Technology Project(2024ZL1215).
文摘Stroke,a major cerebrovascular disease,has high morbidity and mortality.Effective methods to reduce the risk and improve the prognosis are lacking.Currently,uric acid(UA)is associated with the pathological mechanism,prognosis,and therapy of stroke.UA plays pro/anti-oxidative and pro-inflammatory roles in vivo.The specific role of UA in stroke,which may have both neuroprotective and damaging effects,remains unclear.There is a U-shaped association between serum uric acid(SUA)levels and ischemic stroke(IS).UA therapy provides neuroprotection during reperfusion therapy for acute ischemic stroke(AIS).Urate-lowering therapy(ULT)plays a protective role in IS with hyperuricemia or gout.SUA levels are associated with the cerebrovascular injury mechanism,risk,and outcomes of hemorrhagic stroke.In this review,we summarize the current research on the role of UA in stroke,providing potential targets for its prediction and treatment.
基金Supported by National Key Research and Development Program,No.2022YFC2407304Major Research Project for Middle-Aged and Young Scientists of Fujian Provincial Health Commission,No.2021ZQNZD013+2 种基金The National Natural Science Foundation of China,No.62275050Fujian Province Science and Technology Innovation Joint Fund Project,No.2019Y9108Major Science and Technology Projects of Fujian Province,No.2021YZ036017.
文摘BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.
基金upported by the National Key Research and Development Program of China(Grant No.:2023YFF1204904)the National Natural Science Foundation of China(Grant Nos.:U23A20530 and 82173746)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission,China).
文摘Negative logarithm of the acid dissociation constant(pK_(a))significantly influences the absorption,dis-tribution,metabolism,excretion,and toxicity(ADMET)properties of molecules and is a crucial indicator in drug research.Given the rapid and accurate characteristics of computational methods,their role in predicting drug properties is increasingly important.Although many pK_(a) prediction models currently exist,they often focus on enhancing model precision while neglecting interpretability.In this study,we present GraFpKa,a pK_(a) prediction model using graph neural networks(GNNs)and molecular finger-prints.The results show that our acidic and basic models achieved mean absolute errors(MAEs)of 0.621 and 0.402,respectively,on the test set,demonstrating good predictive performance.Notably,to improve interpretability,GraFpKa also incorporates Integrated Gradients(IGs),providing a clearer visual description of the atoms significantly affecting the pK_(a) values.The high reliability and interpretability of GraFpKa ensure accurate pKa predictions while also facilitating a deeper understanding of the relation-ship between molecular structure and pK_(a) values,making it a valuable tool in the field of pK_(a) prediction.
基金supported by National Natural Science Foundation of China(Project approval number 82201825).
文摘Objective:To compare the clinical efficacy of mifepristone-misoprostol medical management versus surgical curettage for first-trimester missed miscarriage,and to establish evidence-based sonographic cutoff values predictive of incomplete abortion requiring surgical intervention.Methods:We retrospectively analyzed a cohort of 702 women diagnosed with first-trimester missed miscarriage between January 2020 and May 2023.Demographic characteristics and ultrasound parameters were systematically recorded.Receiver operating characteristic(ROC)curve analysis was performed to establish optimal sonographic cutoff values for predicting incomplete abortion requiring surgical intervention.Results:146 patients received medical treatment(mifepristone and misoprostol)and 556 underwent surgical curettage.At the 1-month follow-up,the medical group showed significantly greater endometrial thickness and longer postoperative bleeding duration than the surgical group(P<0.05).The menstrual volume reduction rate(23.56%)was significantly lower in the medical group than in the surgical group.The incomplete abortion rate was higher in the medical group(17.12%,25/146)than in the surgical group(2.88%,16/556).Among the medical group,14 patients(9.59%)required curettage due to incomplete abortion,while 11 cases resolved spontaneously after prolonged medication.ROC curve analysis identified two cut-off values indicating the need for surgical intervention:endometrial thickness>1.21 cm at 24 h post-medical abortion,and residual mass diameter>0.95 cm at 7 days post-medical abortion.Conclusions:Medical management of first-trimester missed miscarriage using mifepristone-misoprostol demonstrates comparable efficacy to surgical curettage.An endometrial thickness>1.21 cm at 24 h or residual tissue diameter>0.95 cm at 7 days post-medical abortion should prompt consideration of incomplete abortion.