期刊文献+
共找到9,410篇文章
< 1 2 250 >
每页显示 20 50 100
Advancing Asian Monsoon Climate Prediction under Global Change:Progress,Challenges,and Outlook
1
作者 Bin WANG Fei LIU +9 位作者 Renguang WU Qinghua DING Shaobo QIAO Juan LI Zhiwei WU Keerthi SASIKUMAR Jianping LI Qing BAO Haishan CHEN Yuhang XIANG 《Advances in Atmospheric Sciences》 2026年第1期1-29,共29页
Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives ... Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction. 展开更多
关键词 Asian summer monsoon monsoon climate prediction climate predictability predictability sources seasonal prediction models seasonal prediction techniques artificial intelligence
在线阅读 下载PDF
A brief review on comparative analysis of IoT-based healthcare system for breast cancer prediction
2
作者 Krishna Murari Rajiv Ranjan Suman 《Medical Data Mining》 2026年第1期46-58,共13页
The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare I... The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare IoT(H-IoT)technology,which also provides proactive statistical findings and precise medical diagnoses that enhance healthcare performance.This study examines how ML might support IoT-based health care systems,namely in the areas of prognostic systems,disease detection,patient tracking,and healthcare operations control.The study looks at the benefits and drawbacks of several machine learning techniques for H-IoT applications.It also examines the fundamental problems,such as data security and cyberthreats,as well as the high processing demands that these systems face.Alongside this,the essay discusses the advantages of all the technologies,including machine learning,deep learning,and the Internet of Things,as well as the significant difficulties and problems that arise when integrating the technology into healthcare forecasts. 展开更多
关键词 IOT healthcare system machine learning breast cancer prediction medical data mining security challenges
在线阅读 下载PDF
An Optimized Customer Churn Prediction Approach Based on Regularized Bidirectional Long Short-Term Memory Model
3
作者 Adel Saad Assiri 《Computers, Materials & Continua》 2026年第1期1783-1803,共21页
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ... Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies. 展开更多
关键词 Customer churn prediction deep learning RBiLSTM DROPOUT baseline models
在线阅读 下载PDF
An effective deep-learning prediction of Arctic sea-ice concentration based on the U-Net model
4
作者 Yifan Xie Ke Fan +2 位作者 Hongqing Yang Yi Fan Shengping He 《Atmospheric and Oceanic Science Letters》 2026年第1期34-40,共7页
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote... Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC. 展开更多
关键词 Arctic sea-ice concentration Deep-learning prediction U-Net model CFSv2 NorCPM
在线阅读 下载PDF
Extreme Attitude Prediction of Amphibious Vehicles Based on Improved Transformer Model and Extreme Loss Function
5
作者 Qinghuai Zhang Boru Jia +3 位作者 Zhengdao Zhu Jianhua Xiang Yue Liu Mengwei Li 《哈尔滨工程大学学报(英文版)》 2026年第1期228-238,共11页
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili... Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics. 展开更多
关键词 Amphibious vehicle Attitude prediction Extreme value loss function Enhanced transformer architecture External information embedding
在线阅读 下载PDF
Visual field prediction using K-means clustering in patients with primary open angle glaucoma
6
作者 Junyoung Lee Jihun Kim +5 位作者 Hwayoung Kim Sangwoo Moon EunAh Kim Sanghun Jeong Hojin Yang Jiwoong Lee 《International Journal of Ophthalmology(English edition)》 2026年第1期63-68,共6页
AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 to... AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 total deviation values(TDVs)from the first 10 VF tests of the training dataset,VF points were clustered into several regions using the hierarchical ordered partitioning and collapsing hybrid(HOPACH)and K-means clustering.Based on the clustering results,a linear regression analysis was applied to each clustered region of the testing dataset to predict the TDVs of the 10th VF test.Three to nine VF tests were used to predict the 10th VF test,and the prediction errors(root mean square error,RMSE)of each clustering method and pointwise linear regression(PLR)were compared.RESULTS:The training group consisted of 228 patients(mean age,54.20±14.38y;123 males and 105 females),and the testing group included 81 patients(mean age,54.88±15.22y;43 males and 38 females).All subjects were diagnosed with POAG.Fifty-two VF points were clustered into 11 and nine regions using HOPACH and K-means clustering,respectively.K-means clustering had a lower prediction error than PLR when n=1:3 and 1:4(both P≤0.003).The prediction errors of K-means clustering were lower than those of HOPACH in all sections(n=1:4 to 1:9;all P≤0.011),except for n=1:3(P=0.680).PLR outperformed K-means clustering only when n=1:8 and 1:9(both P≤0.020).CONCLUSION:K-means clustering can predict longterm VF test results more accurately in patients with POAG with limited VF data. 展开更多
关键词 K-means clustering hierarchical ordered partitioning and collapsing hybrid pointwise linear regression visual field prediction
原文传递
Multi-view BLUP:a promising solution for post-omics data integrative prediction 被引量:1
7
作者 Bingjie Wu Huijuan Xiong +3 位作者 Lin Zhuo Yingjie Xiao Jianbing Yan Wenyu Yang 《Journal of Genetics and Genomics》 2025年第6期839-847,共9页
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as... Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data. 展开更多
关键词 Multi-view data Best linear unbiased prediction Similarity function Phenotype prediction Differential evolution algorithm
原文传递
Research on Stock Price Prediction Method Based on the GAN-LSTM-Attention Model
8
作者 Peng Li Yanrui Wei Lili Yin 《Computers, Materials & Continua》 SCIE EI 2025年第1期609-625,共17页
Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attent... Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction. 展开更多
关键词 Stock price prediction generative adversarial network attention mechanism time-series prediction
在线阅读 下载PDF
Prediction of groundwater level in Indonesian tropical peatland forest plantations using machine learning
9
作者 Kazuo Yonekura Sota Miyazaki +3 位作者 Masaatsu Aichi Takafumi Nishizu Masao Hasegawa Katsuyuki Suzuki 《Artificial Intelligence in Geosciences》 2025年第2期177-183,共7页
Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neur... Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neural networks(DNN)have been used for prediction;however,they have not been applied to groundwater prediction in Indonesian peatlands.Tropical peatland is characterized by high permeability and forest plantations are surrounded by several canals.By predicting daily differences in GWL,the GWL can be predicted with high accuracy.DNNs,random forests,support vector regression,and XGBoost were compared,all of which indicated similar errors.The SHAP value revealed that the precipitation falling on the hill rapidly seeps into the soil and flows into the canals,which agrees with the fact that the soil has high permeability.These findings can potentially be used to alleviate and manage future fires in peatlands. 展开更多
关键词 predicting daily differences gwlthe machine learning maintaining high groundwater groundwater prediction machine learning methods groundwater level prediction deep neural networks neural networks dnn
在线阅读 下载PDF
Advancing operation safety and efficiency by innovative flight trajectory prediction
10
作者 Zhijie CHEN 《Chinese Journal of Aeronautics》 2025年第7期285-287,共3页
1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace c... 1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO). 展开更多
关键词 flight trajectory prediction air traffic control air traffic control atc future trajec flight trajectory prediction ftp airspace complexity conflict detection air transportation
原文传递
PM_(2.5) concentration prediction system combining fuzzy information granulation and multi-model ensemble learning
11
作者 Yamei Chen Jianzhou Wang +1 位作者 Runze Li Jialu Gao 《Journal of Environmental Sciences》 2025年第10期332-345,共14页
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict... With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning. 展开更多
关键词 Air pollution prediction Fuzzy information granulation Meta-heuristic optimization algorithm Ensemble learning model Point interval prediction
原文传递
A Novel Face-to-Skull Prediction Based on Face-to-Back Head Relation
12
作者 Tien-Tuan Dao Lan-Nhi Tran-Ngoc +4 位作者 Trong-Pham Nguyen-Huu Khanh-Linh Dinh-Bui Nhat-Minh Nguyen Ngoc-Bich Le Tan-Nhu Nguyen 《Computers, Materials & Continua》 2025年第8期3345-3369,共25页
Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull st... Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull structures canbe straightforwardly predictedfromthe head,but a fullheadshapemust be available.Most scanning devices can only capture the face shape.Consequently,a method that can quickly predict the full skull structures from the face is necessary.In this study,a novel face-to-skull prediction procedure is introduced.Given a threedimensional(3-D)face shape,a skull mesh could be predicted so that its shape would statistically fit the face shape.Several prediction strategies were conducted.The optimal prediction strategy with its optimal hyperparameters was experimentally selected through a ten-fold cross-validation with 329 subjects.As a result,the face-to-skull prediction strategy based on the relations between face head shape and back head shape,between face head shape and face skull shape,and between back head shape and back skull shape was optimal.The optimal mean mesh-to-mesh distance(mean±SD)between the predicted skull shapes and the ground truth skull shapes was 1.93±0.36 mm,and those between the predicted skull meshes and the ground truth skull meshes were 2.65±0.36 mm.Moreover,the prediction errors in back-skull and muscle attachment regions were 1.7432±0.5217 mm and 1.7671±0.3829 mm,respectively.These errors are within the acceptable range of facial muscle simulation.In perspective,this method will be employed in our clinical decision support system to enhance the accuracy of biomechanical head simulation based on a stereo fusion camera system.Moreover,we will also enhance the accuracy of the face-to-skull prediction by diversifying the dataset intomore varied geographical regions and genders.More types of parameters,such as BodyMass Index(BMI),coupled with head-to-skull thicknesses,will be fused with the proposed face-to-skull procedure. 展开更多
关键词 Face-to-skull prediction statistical shape modeling skull prediction biomechanical head simulation skull structures
暂未订购
Research on Seismic Prediction Methods for Pore Pressure in the Canglangpu Formation Carbonate of JT1 Well Area in Sichuan Basin
13
作者 Zhao Hu Yu Huan +5 位作者 Zhang Hang Zhang Jie-wei Li Wen-hao Yang Heng Dai Jing-yun An Hong-yi 《Applied Geophysics》 2025年第2期432-446,558,559,共17页
The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Convention... The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Conventional prediction methods, such as the Equivalent Depth Method, are either inapplicable or yield unsatisfactory results (e.g., Fillippone’s method), contributing to frequent drilling incidents like gas kick, overfl ow, and lost circulation, which hinder the safe and effi cient exploration of natural gas. To address these challenges, this paper integrates lithology, physical properties, and overpressure mechanisms of the Canglangpu Formation. From a petrophysical perspective, a pore pressure prediction model independent of lithology and overpressure mechanisms was developed by combining the poroelasticity theory, linear elastic Hooke’s Law, and Biot’s eff ective stress theory, with an analysis of the relationship between carbonate rock strain, external stress, and internal pore pressure. Unlike conventional methods, the model does not rely on the establishment of a normal compaction trend line. Pre-stack seismic inversion was applied to achieve 3D pore pressure prediction for the formation. Results indicate high accuracy, with a relative error of less than 5% compared to measured data, and strong consistency with actual drilling events. The proposed method provides robust technical support for pore pressure prediction in carbonate formations and drilling geological design. 展开更多
关键词 Sichuan Basin Canglangpu Formation pore pressure prediction seismic prediction pre-stack inversion
在线阅读 下载PDF
BlastGraphNet:An Intelligent Computational Method for the Precise and Rapid Prediction of Blast Loads on Complex 3D Buildings Using Graph Neural Networks
14
作者 Zhiqiao Wang Jiangzhou Peng +6 位作者 Jie Hu Mingchuan Wang Xiaoli Rong Leixiang Bian Mingyang Wang Yong He Weitao Wu 《Engineering》 2025年第6期205-224,共20页
Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective meas... Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering. 展开更多
关键词 Blast load prediction Graph neural networks Data-driven learning Real-time prediction Protective engineering
在线阅读 下载PDF
Efficient Prediction of Refractive Index and Abbe Number in Polymers Using Density Functional Theory
15
作者 Lu-Kun Feng Ai-Wei Zhang +3 位作者 Guo-Hua Huang Cai-Zhen Zhu Ming-Liang Wang Jian Xu 《Chinese Journal of Polymer Science》 2025年第8期1468-1482,共15页
Polymer optical materials are becoming increasingly important in modern technologies owing to their unique properties.This study applies coupled perturbed density functional theory(DFT)to predict the refractive index(... Polymer optical materials are becoming increasingly important in modern technologies owing to their unique properties.This study applies coupled perturbed density functional theory(DFT)to predict the refractive index(RI)and Abbe number of polymers.Using the LorentzLorenz equation,the frequency-dependent polarizability and molecular volume were calculated to estimate RI.Wavelength-dependent RI values were used to derive the Abbe numbers.Our results show a strong correlation with experimental data,with Pearson coefficients of 0.912 for RI and 0.968 for Abbe number,enabling the introduction of linear correction functions to minimize discrepancies between theoretical predictions and experimental results.By categorizing polymers into classes such as poly(methyl methacrylate)(PMMA)-,polyethylene(PE)-,polycarbonate(PC)-,polyimide(PI)-,and polyurethane(PU)-based materials,this method enables precise predictions and reduces discrepancies using linear correction functions.This efficient and direct computational framework avoids the complexity of traditional models and offers a practical tool for the design and optimization of advanced optical materials. 展开更多
关键词 Optical polymers Refractive index prediction Abbe number prediction Coupled perturbed DFT Linear correction
原文传递
Development of an automated photolysis rates prediction system based on machine learning
16
作者 Weijun Pan Sunling Gong +4 位作者 Huabing Ke Xin Li Duohong Chen Cheng Huang Danlin Song 《Journal of Environmental Sciences》 2025年第5期211-224,共14页
Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-value... Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-values of O^(1)D,NO_(2),HONO,H_(2)O_(2),HCHO,and NO_(3),which are the crucial values for the prediction of the atmospheric oxidation capacity(AOC)and secondary pollutant concentrations such as ozone(O_(3)),secondary organic aerosols(SOA).The J-ML can self-select the optimal“Model+Hyperparameters”without human interference.The evaluated results showed that the J-ML had a good performance to reproduce the J-values wheremost of the correlation(R)coefficients exceed 0.93 and the accuracy(P)values are in the range of 0.68-0.83,comparing with the J-values from observations and from the tropospheric ultraviolet and visible(TUV)radiation model in Beijing,Chengdu,Guangzhou and Shanghai,China.The hourly prediction was also well performed with R from 0.78 to 0.81 for next 3-days and from 0.69 to 0.71 for next 7-days,respectively.Compared with O_(3)concentrations by using J-values from the TUV model,an emission-driven observation-based model(e-OBM)by using the J-values from the J-ML showed a 4%-12%increase in R and 4%-30%decrease in ME,indicating that the J-ML could be used as an excellent supplement to traditional numerical models.The feature importance analysis concluded that the key influential parameter was the surface solar downwards radiation for all J-values,and the other dominant factors for all J-values were 2-m mean temperature,O_(3),total cloud cover,boundary layer height,relative humidity and surface pressure. 展开更多
关键词 J-values Automated prediction system Machine learning Short-term prediction O_(3)simulated improvement
原文传递
Short-Term Multi-Hazard Prediction Using a Multi-Source Data Fusion Approach
17
作者 Syeda Zoupash Zahra Najia Saher +4 位作者 Malik Muhammad Saad Missen Rab Nawaz Bashir Salma Idris Tahani Jaser Alahmadi Muhammad Inshal Khan 《Computers, Materials & Continua》 2025年第12期4869-4883,共15页
The increasing frequency and intensity of natural disasters necessitate advanced prediction techniques to mitigate potential damage.This study presents a comprehensive multi-hazard early warning framework by integrati... The increasing frequency and intensity of natural disasters necessitate advanced prediction techniques to mitigate potential damage.This study presents a comprehensive multi-hazard early warning framework by integrating the multi-source data fusion technique.A multi-source data extraction method was introduced by extracting pressure level and average precipitation data based on the hazard event from the Cooperative Open Online Landslide Repository(COOLR)dataset across multiple temporal intervals(12 h to 1 h prior to events).Feature engineering was performed using Choquet fuzzy integral-based importance scoring,which enables the model to account for interactions and uncertainty across multiple features.Three individual Long Short-Term Memory(LSTM)models were trained for hazard location,average precipitation,and hazard category(i.e.,to detect the potential of natural disasters).These models were trained on varying temporal scales from 12 to 1 h prior to the event.These individual models achieved the performance of Mean Absolute Error(MAE)2.2 and 3.2,respectively,for the hazard location and average precipitation models,and an F1-score of 0.825 for the hazard category model.The results also indicate that the LSTM model outperformed traditional Machine Learning(ML)models,and the use of the fuzzy integral enhanced the prediction capability by 8.12%,2.6%,and 6.37%,respectively,for all three individual models.Furthermore,a rule-based algorithm was developed to synthesize the outputs from the individual models into a 3×3 grid of multi-hazard warnings.These findings underscore the effectiveness of the proposed framework in advancing multi-hazard forecasting and situational awareness,offering valuable support for timely and data-driven emergency response planning. 展开更多
关键词 Time series prediction machine learning spatio-temporal data multi-hazard prediction
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:2
18
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation prediction OPTIMIZATION
在线阅读 下载PDF
Remaining Life Prediction Method for Photovoltaic Modules Based on Two-Stage Wiener Process 被引量:1
19
作者 Jie Lin Hongchi Shen +1 位作者 Tingting Pei Yan Wu 《Energy Engineering》 EI 2025年第1期331-347,共17页
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p... Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules. 展开更多
关键词 Photovoltaic modules DEGRADATION stochastic processes lifetime prediction
在线阅读 下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions 被引量:4
20
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 Data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部