Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives ...Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.展开更多
The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare I...The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare IoT(H-IoT)technology,which also provides proactive statistical findings and precise medical diagnoses that enhance healthcare performance.This study examines how ML might support IoT-based health care systems,namely in the areas of prognostic systems,disease detection,patient tracking,and healthcare operations control.The study looks at the benefits and drawbacks of several machine learning techniques for H-IoT applications.It also examines the fundamental problems,such as data security and cyberthreats,as well as the high processing demands that these systems face.Alongside this,the essay discusses the advantages of all the technologies,including machine learning,deep learning,and the Internet of Things,as well as the significant difficulties and problems that arise when integrating the technology into healthcare forecasts.展开更多
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ...Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.展开更多
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili...Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.展开更多
AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 to...AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 total deviation values(TDVs)from the first 10 VF tests of the training dataset,VF points were clustered into several regions using the hierarchical ordered partitioning and collapsing hybrid(HOPACH)and K-means clustering.Based on the clustering results,a linear regression analysis was applied to each clustered region of the testing dataset to predict the TDVs of the 10th VF test.Three to nine VF tests were used to predict the 10th VF test,and the prediction errors(root mean square error,RMSE)of each clustering method and pointwise linear regression(PLR)were compared.RESULTS:The training group consisted of 228 patients(mean age,54.20±14.38y;123 males and 105 females),and the testing group included 81 patients(mean age,54.88±15.22y;43 males and 38 females).All subjects were diagnosed with POAG.Fifty-two VF points were clustered into 11 and nine regions using HOPACH and K-means clustering,respectively.K-means clustering had a lower prediction error than PLR when n=1:3 and 1:4(both P≤0.003).The prediction errors of K-means clustering were lower than those of HOPACH in all sections(n=1:4 to 1:9;all P≤0.011),except for n=1:3(P=0.680).PLR outperformed K-means clustering only when n=1:8 and 1:9(both P≤0.020).CONCLUSION:K-means clustering can predict longterm VF test results more accurately in patients with POAG with limited VF data.展开更多
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as...Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.展开更多
Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attent...Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction.展开更多
Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neur...Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neural networks(DNN)have been used for prediction;however,they have not been applied to groundwater prediction in Indonesian peatlands.Tropical peatland is characterized by high permeability and forest plantations are surrounded by several canals.By predicting daily differences in GWL,the GWL can be predicted with high accuracy.DNNs,random forests,support vector regression,and XGBoost were compared,all of which indicated similar errors.The SHAP value revealed that the precipitation falling on the hill rapidly seeps into the soil and flows into the canals,which agrees with the fact that the soil has high permeability.These findings can potentially be used to alleviate and manage future fires in peatlands.展开更多
1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace c...1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).展开更多
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict...With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.展开更多
Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull st...Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull structures canbe straightforwardly predictedfromthe head,but a fullheadshapemust be available.Most scanning devices can only capture the face shape.Consequently,a method that can quickly predict the full skull structures from the face is necessary.In this study,a novel face-to-skull prediction procedure is introduced.Given a threedimensional(3-D)face shape,a skull mesh could be predicted so that its shape would statistically fit the face shape.Several prediction strategies were conducted.The optimal prediction strategy with its optimal hyperparameters was experimentally selected through a ten-fold cross-validation with 329 subjects.As a result,the face-to-skull prediction strategy based on the relations between face head shape and back head shape,between face head shape and face skull shape,and between back head shape and back skull shape was optimal.The optimal mean mesh-to-mesh distance(mean±SD)between the predicted skull shapes and the ground truth skull shapes was 1.93±0.36 mm,and those between the predicted skull meshes and the ground truth skull meshes were 2.65±0.36 mm.Moreover,the prediction errors in back-skull and muscle attachment regions were 1.7432±0.5217 mm and 1.7671±0.3829 mm,respectively.These errors are within the acceptable range of facial muscle simulation.In perspective,this method will be employed in our clinical decision support system to enhance the accuracy of biomechanical head simulation based on a stereo fusion camera system.Moreover,we will also enhance the accuracy of the face-to-skull prediction by diversifying the dataset intomore varied geographical regions and genders.More types of parameters,such as BodyMass Index(BMI),coupled with head-to-skull thicknesses,will be fused with the proposed face-to-skull procedure.展开更多
The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Convention...The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Conventional prediction methods, such as the Equivalent Depth Method, are either inapplicable or yield unsatisfactory results (e.g., Fillippone’s method), contributing to frequent drilling incidents like gas kick, overfl ow, and lost circulation, which hinder the safe and effi cient exploration of natural gas. To address these challenges, this paper integrates lithology, physical properties, and overpressure mechanisms of the Canglangpu Formation. From a petrophysical perspective, a pore pressure prediction model independent of lithology and overpressure mechanisms was developed by combining the poroelasticity theory, linear elastic Hooke’s Law, and Biot’s eff ective stress theory, with an analysis of the relationship between carbonate rock strain, external stress, and internal pore pressure. Unlike conventional methods, the model does not rely on the establishment of a normal compaction trend line. Pre-stack seismic inversion was applied to achieve 3D pore pressure prediction for the formation. Results indicate high accuracy, with a relative error of less than 5% compared to measured data, and strong consistency with actual drilling events. The proposed method provides robust technical support for pore pressure prediction in carbonate formations and drilling geological design.展开更多
Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective meas...Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.展开更多
Polymer optical materials are becoming increasingly important in modern technologies owing to their unique properties.This study applies coupled perturbed density functional theory(DFT)to predict the refractive index(...Polymer optical materials are becoming increasingly important in modern technologies owing to their unique properties.This study applies coupled perturbed density functional theory(DFT)to predict the refractive index(RI)and Abbe number of polymers.Using the LorentzLorenz equation,the frequency-dependent polarizability and molecular volume were calculated to estimate RI.Wavelength-dependent RI values were used to derive the Abbe numbers.Our results show a strong correlation with experimental data,with Pearson coefficients of 0.912 for RI and 0.968 for Abbe number,enabling the introduction of linear correction functions to minimize discrepancies between theoretical predictions and experimental results.By categorizing polymers into classes such as poly(methyl methacrylate)(PMMA)-,polyethylene(PE)-,polycarbonate(PC)-,polyimide(PI)-,and polyurethane(PU)-based materials,this method enables precise predictions and reduces discrepancies using linear correction functions.This efficient and direct computational framework avoids the complexity of traditional models and offers a practical tool for the design and optimization of advanced optical materials.展开更多
Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-value...Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-values of O^(1)D,NO_(2),HONO,H_(2)O_(2),HCHO,and NO_(3),which are the crucial values for the prediction of the atmospheric oxidation capacity(AOC)and secondary pollutant concentrations such as ozone(O_(3)),secondary organic aerosols(SOA).The J-ML can self-select the optimal“Model+Hyperparameters”without human interference.The evaluated results showed that the J-ML had a good performance to reproduce the J-values wheremost of the correlation(R)coefficients exceed 0.93 and the accuracy(P)values are in the range of 0.68-0.83,comparing with the J-values from observations and from the tropospheric ultraviolet and visible(TUV)radiation model in Beijing,Chengdu,Guangzhou and Shanghai,China.The hourly prediction was also well performed with R from 0.78 to 0.81 for next 3-days and from 0.69 to 0.71 for next 7-days,respectively.Compared with O_(3)concentrations by using J-values from the TUV model,an emission-driven observation-based model(e-OBM)by using the J-values from the J-ML showed a 4%-12%increase in R and 4%-30%decrease in ME,indicating that the J-ML could be used as an excellent supplement to traditional numerical models.The feature importance analysis concluded that the key influential parameter was the surface solar downwards radiation for all J-values,and the other dominant factors for all J-values were 2-m mean temperature,O_(3),total cloud cover,boundary layer height,relative humidity and surface pressure.展开更多
The increasing frequency and intensity of natural disasters necessitate advanced prediction techniques to mitigate potential damage.This study presents a comprehensive multi-hazard early warning framework by integrati...The increasing frequency and intensity of natural disasters necessitate advanced prediction techniques to mitigate potential damage.This study presents a comprehensive multi-hazard early warning framework by integrating the multi-source data fusion technique.A multi-source data extraction method was introduced by extracting pressure level and average precipitation data based on the hazard event from the Cooperative Open Online Landslide Repository(COOLR)dataset across multiple temporal intervals(12 h to 1 h prior to events).Feature engineering was performed using Choquet fuzzy integral-based importance scoring,which enables the model to account for interactions and uncertainty across multiple features.Three individual Long Short-Term Memory(LSTM)models were trained for hazard location,average precipitation,and hazard category(i.e.,to detect the potential of natural disasters).These models were trained on varying temporal scales from 12 to 1 h prior to the event.These individual models achieved the performance of Mean Absolute Error(MAE)2.2 and 3.2,respectively,for the hazard location and average precipitation models,and an F1-score of 0.825 for the hazard category model.The results also indicate that the LSTM model outperformed traditional Machine Learning(ML)models,and the use of the fuzzy integral enhanced the prediction capability by 8.12%,2.6%,and 6.37%,respectively,for all three individual models.Furthermore,a rule-based algorithm was developed to synthesize the outputs from the individual models into a 3×3 grid of multi-hazard warnings.These findings underscore the effectiveness of the proposed framework in advancing multi-hazard forecasting and situational awareness,offering valuable support for timely and data-driven emergency response planning.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U2342208)support from NSF/Climate Dynamics Award#2025057。
文摘Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.
文摘The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare IoT(H-IoT)technology,which also provides proactive statistical findings and precise medical diagnoses that enhance healthcare performance.This study examines how ML might support IoT-based health care systems,namely in the areas of prognostic systems,disease detection,patient tracking,and healthcare operations control.The study looks at the benefits and drawbacks of several machine learning techniques for H-IoT applications.It also examines the fundamental problems,such as data security and cyberthreats,as well as the high processing demands that these systems face.Alongside this,the essay discusses the advantages of all the technologies,including machine learning,deep learning,and the Internet of Things,as well as the significant difficulties and problems that arise when integrating the technology into healthcare forecasts.
文摘Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
基金Supported by the National Defense Basic Scientific Research Program of China.
文摘Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),the Ministry of Health&Welfare,Republic of Korea(No.RS-2020-KH088726)the Patient-Centered Clinical Research Coordinating Center(PACEN),the Ministry of Health and Welfare,Republic of Korea(No.HC19C0276)the National Research Foundation of Korea(NRF),the Korea Government(MSIT)(No.RS-2023-00247504).
文摘AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 total deviation values(TDVs)from the first 10 VF tests of the training dataset,VF points were clustered into several regions using the hierarchical ordered partitioning and collapsing hybrid(HOPACH)and K-means clustering.Based on the clustering results,a linear regression analysis was applied to each clustered region of the testing dataset to predict the TDVs of the 10th VF test.Three to nine VF tests were used to predict the 10th VF test,and the prediction errors(root mean square error,RMSE)of each clustering method and pointwise linear regression(PLR)were compared.RESULTS:The training group consisted of 228 patients(mean age,54.20±14.38y;123 males and 105 females),and the testing group included 81 patients(mean age,54.88±15.22y;43 males and 38 females).All subjects were diagnosed with POAG.Fifty-two VF points were clustered into 11 and nine regions using HOPACH and K-means clustering,respectively.K-means clustering had a lower prediction error than PLR when n=1:3 and 1:4(both P≤0.003).The prediction errors of K-means clustering were lower than those of HOPACH in all sections(n=1:4 to 1:9;all P≤0.011),except for n=1:3(P=0.680).PLR outperformed K-means clustering only when n=1:8 and 1:9(both P≤0.020).CONCLUSION:K-means clustering can predict longterm VF test results more accurately in patients with POAG with limited VF data.
基金supported by National Natural Science Foundation of China(32122066,32201855)STI2030—Major Projects(2023ZD04076).
文摘Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.
基金funded by the project supported by the Natural Science Foundation of Heilongjiang Provincial(Grant Number LH2023F033)the Science and Technology Innovation Talent Project of Harbin(Grant Number 2022CXRCCG006).
文摘Stock price prediction is a typical complex time series prediction problem characterized by dynamics,nonlinearity,and complexity.This paper introduces a generative adversarial network model that incorporates an attention mechanism(GAN-LSTM-Attention)to improve the accuracy of stock price prediction.Firstly,the generator of this model combines the Long and Short-Term Memory Network(LSTM),the Attention Mechanism and,the Fully-Connected Layer,focusing on generating the predicted stock price.The discriminator combines the Convolutional Neural Network(CNN)and the Fully-Connected Layer to discriminate between real stock prices and generated stock prices.Secondly,to evaluate the practical application ability and generalization ability of the GAN-LSTM-Attention model,four representative stocks in the United States of America(USA)stock market,namely,Standard&Poor’s 500 Index stock,Apple Incorporatedstock,AdvancedMicroDevices Incorporatedstock,and Google Incorporated stock were selected for prediction experiments,and the prediction performance was comprehensively evaluated by using the three evaluation metrics,namely,mean absolute error(MAE),root mean square error(RMSE),and coefficient of determination(R2).Finally,the specific effects of the attention mechanism,convolutional layer,and fully-connected layer on the prediction performance of the model are systematically analyzed through ablation study.The results of experiment show that the GAN-LSTM-Attention model exhibits excellent performance and robustness in stock price prediction.
基金supported by JSPS KAKENHI Grant Number JP21K14064 and JP23K13239.
文摘Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neural networks(DNN)have been used for prediction;however,they have not been applied to groundwater prediction in Indonesian peatlands.Tropical peatland is characterized by high permeability and forest plantations are surrounded by several canals.By predicting daily differences in GWL,the GWL can be predicted with high accuracy.DNNs,random forests,support vector regression,and XGBoost were compared,all of which indicated similar errors.The SHAP value revealed that the precipitation falling on the hill rapidly seeps into the soil and flows into the canals,which agrees with the fact that the soil has high permeability.These findings can potentially be used to alleviate and manage future fires in peatlands.
文摘1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).
基金supported by General Scientific Research Funding of the Science and Technology Development Fund(FDCT)in Macao(No.0150/2022/A)the Faculty Research Grants of Macao University of Science and Technology(No.FRG-22-074-FIE).
文摘With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning.
基金funded by the International University,VNU-HCM,under grant number T2023-01-BME.
文摘Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull structures canbe straightforwardly predictedfromthe head,but a fullheadshapemust be available.Most scanning devices can only capture the face shape.Consequently,a method that can quickly predict the full skull structures from the face is necessary.In this study,a novel face-to-skull prediction procedure is introduced.Given a threedimensional(3-D)face shape,a skull mesh could be predicted so that its shape would statistically fit the face shape.Several prediction strategies were conducted.The optimal prediction strategy with its optimal hyperparameters was experimentally selected through a ten-fold cross-validation with 329 subjects.As a result,the face-to-skull prediction strategy based on the relations between face head shape and back head shape,between face head shape and face skull shape,and between back head shape and back skull shape was optimal.The optimal mean mesh-to-mesh distance(mean±SD)between the predicted skull shapes and the ground truth skull shapes was 1.93±0.36 mm,and those between the predicted skull meshes and the ground truth skull meshes were 2.65±0.36 mm.Moreover,the prediction errors in back-skull and muscle attachment regions were 1.7432±0.5217 mm and 1.7671±0.3829 mm,respectively.These errors are within the acceptable range of facial muscle simulation.In perspective,this method will be employed in our clinical decision support system to enhance the accuracy of biomechanical head simulation based on a stereo fusion camera system.Moreover,we will also enhance the accuracy of the face-to-skull prediction by diversifying the dataset intomore varied geographical regions and genders.More types of parameters,such as BodyMass Index(BMI),coupled with head-to-skull thicknesses,will be fused with the proposed face-to-skull procedure.
基金supported by innovation consortium project of China Petroleum and Southwest Petroleum University (No.2020CX010201)Sichuan Science and Technology Program (No. 2024NSFSC0081)。
文摘The Canglangpu Formation in the JT1 well area of the Sichuan Basin exhibits strong lateral heterogeneity and complex overpressure mechanisms, leading to ambiguous pore pressure distribution characteristics. Conventional prediction methods, such as the Equivalent Depth Method, are either inapplicable or yield unsatisfactory results (e.g., Fillippone’s method), contributing to frequent drilling incidents like gas kick, overfl ow, and lost circulation, which hinder the safe and effi cient exploration of natural gas. To address these challenges, this paper integrates lithology, physical properties, and overpressure mechanisms of the Canglangpu Formation. From a petrophysical perspective, a pore pressure prediction model independent of lithology and overpressure mechanisms was developed by combining the poroelasticity theory, linear elastic Hooke’s Law, and Biot’s eff ective stress theory, with an analysis of the relationship between carbonate rock strain, external stress, and internal pore pressure. Unlike conventional methods, the model does not rely on the establishment of a normal compaction trend line. Pre-stack seismic inversion was applied to achieve 3D pore pressure prediction for the formation. Results indicate high accuracy, with a relative error of less than 5% compared to measured data, and strong consistency with actual drilling events. The proposed method provides robust technical support for pore pressure prediction in carbonate formations and drilling geological design.
基金supported by the National Natural Science Founion of China(U2241285).
文摘Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.
基金financially supported by the Shenzhen Science and Technology Project(Nos.JCYJ20210324095210028,JSGGZD20220822095201003)the National Natural Science Foundation of China(U21A2087)。
文摘Polymer optical materials are becoming increasingly important in modern technologies owing to their unique properties.This study applies coupled perturbed density functional theory(DFT)to predict the refractive index(RI)and Abbe number of polymers.Using the LorentzLorenz equation,the frequency-dependent polarizability and molecular volume were calculated to estimate RI.Wavelength-dependent RI values were used to derive the Abbe numbers.Our results show a strong correlation with experimental data,with Pearson coefficients of 0.912 for RI and 0.968 for Abbe number,enabling the introduction of linear correction functions to minimize discrepancies between theoretical predictions and experimental results.By categorizing polymers into classes such as poly(methyl methacrylate)(PMMA)-,polyethylene(PE)-,polycarbonate(PC)-,polyimide(PI)-,and polyurethane(PU)-based materials,this method enables precise predictions and reduces discrepancies using linear correction functions.This efficient and direct computational framework avoids the complexity of traditional models and offers a practical tool for the design and optimization of advanced optical materials.
基金supported by the National Key Project of the Ministry of Science and Technology of China(No.2022YFC3701200)the National Natural Science Foundation of China(No.42090030).
文摘Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-values of O^(1)D,NO_(2),HONO,H_(2)O_(2),HCHO,and NO_(3),which are the crucial values for the prediction of the atmospheric oxidation capacity(AOC)and secondary pollutant concentrations such as ozone(O_(3)),secondary organic aerosols(SOA).The J-ML can self-select the optimal“Model+Hyperparameters”without human interference.The evaluated results showed that the J-ML had a good performance to reproduce the J-values wheremost of the correlation(R)coefficients exceed 0.93 and the accuracy(P)values are in the range of 0.68-0.83,comparing with the J-values from observations and from the tropospheric ultraviolet and visible(TUV)radiation model in Beijing,Chengdu,Guangzhou and Shanghai,China.The hourly prediction was also well performed with R from 0.78 to 0.81 for next 3-days and from 0.69 to 0.71 for next 7-days,respectively.Compared with O_(3)concentrations by using J-values from the TUV model,an emission-driven observation-based model(e-OBM)by using the J-values from the J-ML showed a 4%-12%increase in R and 4%-30%decrease in ME,indicating that the J-ML could be used as an excellent supplement to traditional numerical models.The feature importance analysis concluded that the key influential parameter was the surface solar downwards radiation for all J-values,and the other dominant factors for all J-values were 2-m mean temperature,O_(3),total cloud cover,boundary layer height,relative humidity and surface pressure.
文摘The increasing frequency and intensity of natural disasters necessitate advanced prediction techniques to mitigate potential damage.This study presents a comprehensive multi-hazard early warning framework by integrating the multi-source data fusion technique.A multi-source data extraction method was introduced by extracting pressure level and average precipitation data based on the hazard event from the Cooperative Open Online Landslide Repository(COOLR)dataset across multiple temporal intervals(12 h to 1 h prior to events).Feature engineering was performed using Choquet fuzzy integral-based importance scoring,which enables the model to account for interactions and uncertainty across multiple features.Three individual Long Short-Term Memory(LSTM)models were trained for hazard location,average precipitation,and hazard category(i.e.,to detect the potential of natural disasters).These models were trained on varying temporal scales from 12 to 1 h prior to the event.These individual models achieved the performance of Mean Absolute Error(MAE)2.2 and 3.2,respectively,for the hazard location and average precipitation models,and an F1-score of 0.825 for the hazard category model.The results also indicate that the LSTM model outperformed traditional Machine Learning(ML)models,and the use of the fuzzy integral enhanced the prediction capability by 8.12%,2.6%,and 6.37%,respectively,for all three individual models.Furthermore,a rule-based algorithm was developed to synthesize the outputs from the individual models into a 3×3 grid of multi-hazard warnings.These findings underscore the effectiveness of the proposed framework in advancing multi-hazard forecasting and situational awareness,offering valuable support for timely and data-driven emergency response planning.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.