Bone resorption by osteoclasts is a critical step in bone remodeling,a process important for maintaining bone homeostasis and repairing injured bone.We previously identified a bone marrow mesenchymal subpopulation,mar...Bone resorption by osteoclasts is a critical step in bone remodeling,a process important for maintaining bone homeostasis and repairing injured bone.We previously identified a bone marrow mesenchymal subpopulation,marrow adipogenic lineage precursors(MALPs),and showed that its production of RANKL stimulates bone resorption in young mice using Adipoq-Cre.To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone,we generated inducible reporter mice(Adipoq-CreER Tomato)and RANKL deficient mice(Adipoq-CreER RANKLflox/flox,iCKO).Single cell-RNA sequencing data analysis and lineage tracing revealed that Adipoq+cells contain not only MALPs but also some mesenchymal progenitors capable of osteogenic differentiation.In situ hybridization showed that RANKL mRNA is only detected in MALPs,but not in osteogenic cells.RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae due to diminished bone resorption but had no effect on the cortical bone.Ovariectomy(OVX)induced trabecular bone loss at both sites.RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass.Furthermore,bone healing after drill-hole injury was delayed in iCKO mice.Together,our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis,postmenopausal bone loss,and injury repair.展开更多
Rockburst precursors are critical for disaster warning,yet the complexity of rockburst has hindered the identification of a unified precursor.Furthermore,the influence of loading rates(LRs)on acoustic emission(AE)prec...Rockburst precursors are critical for disaster warning,yet the complexity of rockburst has hindered the identification of a unified precursor.Furthermore,the influence of loading rates(LRs)on acoustic emission(AE)precursors in different rock types remains poorly understood.This study investigates the AE characteristics and early warning times of rockburst in slate and mica-schist under four LRs(0.05,0.15,0.25,and 0.5 MPa/s)using true triaxial unloading tests.The micro-crack state of the samples was evaluated using entropy,while critical slowing down(CSD)theory was applied to interpret AE precursors.The results reveal that as the LR increases,the rockburst stress of both rocks initially rises and then declines,with mica-schist exhibiting more severe damage and a higher dominance of tensile cracks.Notably,identifying rockburst precursors in mica-schist proved more challenging compared to slate.Among the methods tested,AE amplitude variance outperformed entropy in precursor identification.Additionally,the rockburst early warning time was found to be negatively correlated with the LR,with mica-schist consistently showing shorter warning times than slate.The CSD-derived precursor,due to its enhanced sensitivity,is recommended for early warning systems.These findings provide new insights into the role of LRs in rockburst dynamics and offer practical guidance for improving precursor identification and disaster mitigation strategies.展开更多
INTRODUCTION.On May 1st,2024,around 2:10 a.m.,a catastrophic collapse occurred along the Meilong Expressway near Meizhou City,Guangdong Province,China,at coordinates 24°29′24″N and 116°40′25″E.This colla...INTRODUCTION.On May 1st,2024,around 2:10 a.m.,a catastrophic collapse occurred along the Meilong Expressway near Meizhou City,Guangdong Province,China,at coordinates 24°29′24″N and 116°40′25″E.This collapse resulted in a pavement failure of approximately 17.9 m in length and covering an area of about 184.3 m^(2)(Chinanews,2024).展开更多
The increasing sophistication of cyberattacks,coupled with the limitations of rule-based detection systems,underscores the urgent need for proactive and intelligent cybersecurity solutions.Traditional intrusion detect...The increasing sophistication of cyberattacks,coupled with the limitations of rule-based detection systems,underscores the urgent need for proactive and intelligent cybersecurity solutions.Traditional intrusion detection systems often struggle with detecting early-stage threats,particularly in dynamic environments such as IoT,SDNs,and cloud infrastructures.These systems are hindered by high false positive rates,poor adaptability to evolving threats,and reliance on large labeled datasets.To address these challenges,this paper introduces CyberGuard-X,an AI-driven framework designed to identify attack precursors—subtle indicators of malicious intent—before full-scale intrusions occur.CyberGuard-X integrates anomaly detection,time-series analysis,and multi-stage classification within a scalable architecture.The model leverages deep learning techniques such as autoencoders,LSTM networks,and Transformer layers,supported by semi-supervised learning to enhance detection of zero-day and rare threats.Extensive experiments on benchmark datasets(CICIDS2017,CSE-CIC-IDS2018,and UNSW-NB15)demonstrate strong results,including 96.1%accuracy,94.7%precision,and 95.3%recall,while achieving a zero-day detection rate of 84.5%.With an inference time of 12.8 ms and 34.5%latency reduction,the model supports real-time deployment in resource-constrained environments.CyberGuard-X not only surpasses baseline models like LSTM and Random Forest but also enhances proactive threat mitigation across diverse network settings.展开更多
Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as ...Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as they tend to be laborious,time-consuming,or technically difficult.Disinfection byproducts(DBPs)are a family of well-known secondary pollutants formed by the reactions of chemical disinfectants with DBP precursors during water disinfection treatment.Since DBP precursors have various origins(e.g.,natural,domestic,industrial,and agricultural sources),and since the formation of DBPs from different precursors in the presence of specific disinfectants is distinctive,we argue that DBPs and DBP precursors can serve as alternative indicators to assess the contamination in water sources and identify pollution origins.After providing a retrospective of the origins of DBPs and DBP precursors,as well as the specific formation patterns of DBPs from different precursors,this article presents an overview of the impacts of various natural and anthropogenic factors on DBPs and DBP precursors in drinking water sources.In practice,the DBPs(i.e.,their concentration and speciation)originally present in source water and the DBP precursors determined using DBP formation potential tests—in which water samples are dosed with a stoichiometric excess of specific disinfectants in order to maximize DBP formation under certain reaction conditions—can be considered as alternative metrics.When jointly used with other water quality parameters(e.g.,dissolved organic carbon,dissolved organic nitrogen,fluorescence,and molecular weight distribution)and specific contaminants of emerging concern(e.g.,certain pharmaceuticals and personal care products),DBPs and DBP precursors in drinking water sources can provide a more comprehensive picture of water pollution for better managing water resources and ensuring human health.展开更多
Climate change is an important issue facing the world today and carbon reduction has become the fo-cus of attention for all countries.Alternative bio-fuels are an important means to achieve carbon emis-sion reduction....Climate change is an important issue facing the world today and carbon reduction has become the fo-cus of attention for all countries.Alternative bio-fuels are an important means to achieve carbon emis-sion reduction.The production of jet fuel precursors from biomass by hydrothermal liquefaction(HTL)has received a lot of attention due to its mild conditions and environmental friendliness.Lignocellulosic biomass and algal biomass are considered as the second and the third generation biomasses as promising raw materials for alternative fuel preparation.Among them,lignocellulosic biomass has been extensively studied due to its wide range of sources and can be divided into one-step HTL and stepwise HTL accord-ing to the process method.Algal biomass has been extensively studied experimentally due to its short growth cycle and the fact that it can sequester large amounts of carbon without taking up arable land.In this paper,the feedstock composition of different biomasses is reviewed for the HTL of biomass.A detailed review of the process characteristics,reaction pathways and influencing factors for the HTL pro-duction of jet fuel precursors from lignocellulosic biomass and algal biomass is also presented.Theoretical references are provided for further process optimization and bio-crude quality upgrading.展开更多
Si_(3)N_(4)/SiCN ceramics have been extensively explored for applications in the aerospace,mechanical engineering,and biomedical fields.Recently,there has been significant focus on the additive manufacturing(AM)of pol...Si_(3)N_(4)/SiCN ceramics have been extensively explored for applications in the aerospace,mechanical engineering,and biomedical fields.Recently,there has been significant focus on the additive manufacturing(AM)of polymer-derived ceramic(PDC)technology for fabricating Si_(3)N_(4)/SiCN ceramics.The chemical structure and composition of the preceramic polymer precursors have a crucial influence on the performance of ceramic products.In this paper,recent advances in the use of polysilazane and polycarbosilazane precursors in AM are reviewed and an outlook for future development is presented.The findings of this study could spark inspiration and reflection regarding AM applications and synthetic technology.It is believed that the development of PDCs in ceramic fabrication will become more versatile and application-oriented and provide more freedom in the design of high-performance ceramics.展开更多
The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty pro...The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty process of acid leaching-selective electrodeposition-deep impurity removal-regeneration was proposed to recovery of the CuS slag,which has been efficient transferred to high purity cathode copper and commercially available ternary precursors.Copper cathode with a purity of 99.67%was prepared under electrochemical reaction conditions at-0.55 V for 2 h.A novel impurity remover-Mn powder,which was used to remove the residual impurities and as a feedstock for the ternary precursor.Finally,NCM523 was regenerated by co-precipitation.The process is superior to the traditional process in economy,energy consumption,CO_(2)emissions,product purity and process duration.This study provides a new approach for solid waste recovery and precious metal enrichment.展开更多
Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device perform...Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device performance and reproducibility.Here,we utilize a reductive natural amino acid,Nacetylcysteine(NALC),to stabilize the precursor solution for printable carbon-based hole-conductorfree mesoscopic perovskite solar cells.We find that I_(2) can be generated in the aged solution containing methylammonium iodide(MI) in an inert atmosphere and speed up the MA-FA^(+)(formamidinium) reaction which produces large-size cations and hinders the formation of perovskite phase.NALC effectively stabilizes the precursor via its sulfhydryl group which reduces I_(2) back to I^(-)and provides H^(+).The NALC-stabilized precursor which is aged for 1440 h leads to devices with a power conversion efficiency equivalent to 98% of that for devices prepared with the fresh precursor.Furthermore,NALC improves the device power conversion efficiency from 16.16% to 18.41% along with enhanced stability under atmospheric conditions by modifying grain boundaries in perovskite films and reducing associated defects.展开更多
[Objective] This study was to explore the effect of three precursors on the accumulation of principal volatile oil constituents in tissue culture plantlets of Atractylodes lancea (Thunb.) DC. with the aim to provide...[Objective] This study was to explore the effect of three precursors on the accumulation of principal volatile oil constituents in tissue culture plantlets of Atractylodes lancea (Thunb.) DC. with the aim to provide references for the improvement of artificial cultivated A. lancea quality. [Method] Three precursors were added into the MS rooting medium for A. lancea tissue culture plantlets and the volatile oil was extracted by ultrasonication after cultured for several days. The content of atractylon, atractylol, β-eucalyptol and atractydin in the volatile oil were determined by using gas chromatography method. [Result] The addition of xylose, isoprene and tetrahydrofuran impacted the growth indicators, yield of volatile oil and relative percentage content of the four constituents of A. lancea tissue culture plantlets. In the 6 g/L xylose optimized medium, the atractylon and β-eucalyptol content reached up to 4.23% and 56.34%, respectively, 1.41% and 1.66% higher than the control; although the addition of isoprene into medium raised the atractylon content, the accumulation of total volatile oil was inhibited that it decreased by 23.67%, 31.06% and 7.10% to the control; for the tetrahydrofuran optimized medium, the content of atractylon, atractylol and atractydin all increased, and the total volatile oil content increased by 49.97% to the control when the concentration of tetrahydrofuran was 0.07 g/L. [Conclusion] The addition of xylose and tetrahydrofuran promoted the accumulation of principal constituents of the volatile oil, whereas the addition of isoprene inhibited the accumulation.展开更多
Two series of Mn/beta and Mn/ZSM‐5catalysts were prepared to study the influence of how different Mn precursors,introduced to the respective parent zeolites by wet impregnation,affected the selective catalytic reduct...Two series of Mn/beta and Mn/ZSM‐5catalysts were prepared to study the influence of how different Mn precursors,introduced to the respective parent zeolites by wet impregnation,affected the selective catalytic reduction(SCR)of NO by NH3across a low reaction temperature window of50–350°C.In this study,the catalysts were characterized using N2adsorption/desorption,X‐ray diffraction,X‐ray fluorescence,H2temperature‐programmed reduction,NH3temperature‐programmed desorption and X‐ray photoelectron spectroscopy.As the manganese chloride precursor only partially decomposed this primarily resulted in the formation of MnCl2in addition to the presence of low levels of crystalline Mn3O4,which resulted in poor catalytic performance.However,the manganese nitrate precursor formed crystalline MnO2as the major phase in addition to a minor presence of unconverted Mn‐nitrate.Furthermore,manganese acetate resulted principally in a mixture of amorphous Mn2O3and MnO2,and crystalline Mn3O4.From all the catalysts screened,the test performance data showed Mn/beta‐Ac to exhibit the highest NO conversion(97.5%)at240°C,which remained>90%across a temperature window of220–350°C.The excellent catalytic performance was ascribed to the enrichment of highly dispersed MnOx(Mn2O3and MnO2)species that act as the active phase in the NH3‐SCR process.Furthermore,together with a suitable amount of weakly acidic centers,higher concentration of surface manganese and a greater presence of surface labile oxygen groups,SCR performance was collectively enhanced at low temperature.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to ana...This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to analyze ozone sensitivity to its precursors,and to develop emission reduction measures.The results suggest that the model can accurately simulate the compound pollution process of photochemistry and haze.When VOCs and NOx were reduced by the same proportion,the effect of O_(3)reduction at peak time was more obvious,and the effect during daytime was more significant than at night.The degree of change in ozone was peak time>daytime average.When reducing or increasing the ratio of precursors by 25%at the same time,the effect of reducing 25%VOCs on the average ozone concentration reduction was most significant.The degree of change in ozone decreased with increasing altitude,the location of the ozone maximum change shifted westward,and its range narrowed.As the altitude increases,the VOCs-limited zone decreases,VOCs sensitivity decreases,NOx sensitivity increases.The controlled area changed from near-surface VOCs-limited to high-altitude NOx-limited.Upon examining the EKMA curve,we have found that suburban and urban are sensitive to VOCs.The sensitivity tests indicate that when VOCs in suburban are reduced about 60%,the O_(3)-1h concentration could reach the standard,and when VOCs of the urban decreased by about 50%,the O_(3)-1h concentration could reach the standard.Thus,these findings could provide references for the control of compound air pollution in Beijing.展开更多
Two polyborosiloxanes (PBSis) with char yield up to 74.13% at 800 ℃ were synthesized by the direct polycondensation of boric acid with phenyltrimethoxysilane in diglyme. The PBSis were characterized by gel permeati...Two polyborosiloxanes (PBSis) with char yield up to 74.13% at 800 ℃ were synthesized by the direct polycondensation of boric acid with phenyltrimethoxysilane in diglyme. The PBSis were characterized by gel permeation chromatography, IR spectroscopy as well as ^1H-, ^29Si- and ^11B-NMR. PBSi modified phenol-formaldehyde resins (PBSi/PFs) were prepared at different PBSi/PF mass ratios and were cured at 150 ℃. The PBSi/PFs were characterized by IR spectroscopy, scanning electron microscopy, thermogravimetric analysis and tensile test. The results revealed that the cured PBSi/PFs had sea-island morphology and higher char yield than the common PF. PBSi/PF blend with PBSi/PF mass ratio of 0.4:1 had char yield up to 70.83% at 800 ℃. The PBSi/PFs had tensile strength similar to PF. The ceramization of PBSi/PFs was also studied. The silicon boron oxycarbide (SiBOC) ceramics formed were characterized by IR spectroscopy and elemental analysis. This method provided a valuable way to prepare easily shapeable polymer blends as ceramic precursors.展开更多
Due to the influences of precursors emissions,meteorology,geography and other factors,ozone formation sensitivity(OFS)is generally spatially and temporally heterogeneous.This study characterized detailed spatial and t...Due to the influences of precursors emissions,meteorology,geography and other factors,ozone formation sensitivity(OFS)is generally spatially and temporally heterogeneous.This study characterized detailed spatial and temporal variations of OFS in Guangdong-Hong Kong-Macao Greater Bay Area(GBA)from 2012 to 2016 based on OMI satellite data,and analyzed the relationships of OFS with precursors emissions,meteorology and land use types(LUTs).From 2012 to 2016,the OFS tended to be NOx-limited in GBA,with the value of FNR(HCHO/NO 2)increasing from 2.04 to 2.22.According to the total annual emission statistics of precursors,NOx emissions decreased by 33.1%and VOCs emissions increased by 35.2%from 2012 to 2016,directly resulting in OFS tending to be NO x-limited.The Grey Relation Analysis results show that total column water(TCW),surface net solar radiation(SSR),air temperature at 2 m(T2)and surface pressure(SP)are the top four meteorological factors with the greatest influences on OFS.There are significant positive correlations between FNR and T2,SSR,TCW,and significant negative correlations between FNR and SP.In GBA,the OFS tends to be NO x-limited regime in wet season(higher T2,SSR,TCW and lower SP)and VOCs-limited regime in dry season(lower T2,SSR,TCW and higher SP).The FNR displays obvious gradient variations on different LUTs,with the highest in“Rural areas”,second in“Suburban areas”and lowest in“Urban areas”.展开更多
Anisotropic magnets were obtained by hot deformation with the partial crystallized precursor prepared via spark-plasma sintering (SPS). Amorphous powders with the nominal composition of Nd_28.72Fe_balCo_5.66 Ga_0.59...Anisotropic magnets were obtained by hot deformation with the partial crystallized precursor prepared via spark-plasma sintering (SPS). Amorphous powders with the nominal composition of Nd_28.72Fe_balCo_5.66 Ga_0.59B_0.92 (wt%) were used as the starting material. The results show that the amorphous powders would suffer varying degrees of crystallization even below the crystal- lization point during the SPS process under high pressure. And the pre-crystallized grains in precursors have great impacts on the microstructure and magnetic properties of the hot-deformed magnets. The final obtained anisotropic magnets exhibit homogeneous microstructure consisting of well-aligned and platelet-shaped Nd_2Fe_14B grains without abnormal growth. It can be found that a reasonable pro- portion of pre-crystallized gains could promote the pref- erential orientation in the magnet, leading to the achievement of optimal magnetic properties among the magnets with identical composition and best magnetic performance is achieved in the magnet hot deformed from the 490 ℃ high-pressure hot-pressed precursor.展开更多
Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning e...Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.展开更多
The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF)...The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF) process. Two pilot-scale experiments(ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter(DOM)and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane(TCM) precursors and 20% of dichloroacetonitrile(DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF.Three-dimensional fluorescence spectroscopy(3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.展开更多
Chilled chicken has become the mainstream of chicken consumption.In order to explore the effect of post-mortem aging on water-soluble flavor precursors of chicken,pH,adenosine triphosphate(ATP)degradation,flavor nucle...Chilled chicken has become the mainstream of chicken consumption.In order to explore the effect of post-mortem aging on water-soluble flavor precursors of chicken,pH,adenosine triphosphate(ATP)degradation,flavor nucleosides,free amino acids and water-soluble low molecular weight peptides were determined using Qingyuan partridge yellow-feathered broilers as material during 0-4℃ post-mortem aging in 48 h.The results showed that the pH value fell to the limit pH 5.64(4 h)in chicken breast and 6.21(3 h)in thigh.Regardless of chicken breast or thigh,ATP dropped rapidly within 3 h.It was found that the K-value in chicken thigh was the lowest at 2 h indicating the freshness was the best.Considering the equivalent umami concentration(EUC),the value at 3 h and 4 h was relatively high,but the corresponding electronic tongue umami value was not high,which further showed that the water-soluble low molecular taste peptide played an important role on the post-mortem aging process.Combined with cluster analysis and partial least squares discriminant analysis(PLS-DA),it was preliminarily inferred that the optimal time for chilled chicken during 0-4℃ post-mortem aging was 2 h,which could provide a theoretical basis for the further processing of fresh chicken.展开更多
Continuous aggravated surface O_(3) over North China Plain(NCP)has attracted widely public concern.Herein,we evaluated the effects of changes in aerosols,precursor emissions,and meteorology on O_(3) in summer(June)of ...Continuous aggravated surface O_(3) over North China Plain(NCP)has attracted widely public concern.Herein,we evaluated the effects of changes in aerosols,precursor emissions,and meteorology on O_(3) in summer(June)of 2015–2019 over NCP via 8 scenarios with WRF-Chem model.The simulated mean MDA8 O_(3) in urban areas of 13 major cities in NCP increased by 17.1%∼34.8%,which matched well with the observations(10.8%∼33.1%).Meanwhile,the model could faithfully reproduce the changes in aerosol loads,precursors,and meteorological conditions.A relatively-even O_(3) increase(+1.2%∼+3.9%for 24-h O_(3) and+1.0%∼+3.8%for MDA8 O_(3))was induced by PM_(2.5) dropping,which was consistent with the geographic distribution of regional PM_(2.5) reduction.Meanwhile,the NO_(2) reduction coupled with a nearconstant VOCs led to the elevated VOCs/NOx ratios,and then caused O_(3) rising in the areas under VOCs-limited regimes.Therein,the pronounced increases occurred in Handan,Xingtai,Shijiazhuang,Tangshan,and Langfang(+10.7%∼+13.6%for 24-h O_(3) and+10.2%∼+12.2%forMDA8 O_(3));while the increases in other citieswere 5.7%∼10.5%for 24-h O_(3) and 4.9%∼9.2%for MDA8 O_(3).Besides,the meteorological fluctuations brought about the more noticeable O_(3) increases in northern parts(+12.5%∼+13.5%for 24-h O_(3) and+11.2%∼+12.4%for MDA8 O_(3))than those in southern and central parts(+3.2%∼+9.3%for 24-h O_(3) and+3.7%∼+8.8%for MDA8 O_(3)).The sum of the impacts of the three drivers reached 16.7%∼21.9%,which were comparable to the changes of the observed O_(3).Therefore,exploring reasonable emissionsreduction strategies is essential for the ozone pollution mitigation over this region.展开更多
Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the n...Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0.展开更多
基金supported by NIH grants NIH/NIA R01AG069401(to L.Q.)NIH/NHLBI U54HL165442(to K.T.)P30AR069619(to Penn Center for Musculoskeletal Disorders).
文摘Bone resorption by osteoclasts is a critical step in bone remodeling,a process important for maintaining bone homeostasis and repairing injured bone.We previously identified a bone marrow mesenchymal subpopulation,marrow adipogenic lineage precursors(MALPs),and showed that its production of RANKL stimulates bone resorption in young mice using Adipoq-Cre.To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone,we generated inducible reporter mice(Adipoq-CreER Tomato)and RANKL deficient mice(Adipoq-CreER RANKLflox/flox,iCKO).Single cell-RNA sequencing data analysis and lineage tracing revealed that Adipoq+cells contain not only MALPs but also some mesenchymal progenitors capable of osteogenic differentiation.In situ hybridization showed that RANKL mRNA is only detected in MALPs,but not in osteogenic cells.RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae due to diminished bone resorption but had no effect on the cortical bone.Ovariectomy(OVX)induced trabecular bone loss at both sites.RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass.Furthermore,bone healing after drill-hole injury was delayed in iCKO mice.Together,our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis,postmenopausal bone loss,and injury repair.
基金supported by the National Natural Science Foundation of China(Nos.52374119,42477142 and 42277154)Natural Science Foundation of Jiangsu Province(No.BK20242059)+1 种基金the open fund of State Key Laboratory of Hydraulics and Mountain River Engineering(No.SKHL2306)the High-level Talent Introduction Project of Changzhou University(No.ZMF24020037)。
文摘Rockburst precursors are critical for disaster warning,yet the complexity of rockburst has hindered the identification of a unified precursor.Furthermore,the influence of loading rates(LRs)on acoustic emission(AE)precursors in different rock types remains poorly understood.This study investigates the AE characteristics and early warning times of rockburst in slate and mica-schist under four LRs(0.05,0.15,0.25,and 0.5 MPa/s)using true triaxial unloading tests.The micro-crack state of the samples was evaluated using entropy,while critical slowing down(CSD)theory was applied to interpret AE precursors.The results reveal that as the LR increases,the rockburst stress of both rocks initially rises and then declines,with mica-schist exhibiting more severe damage and a higher dominance of tensile cracks.Notably,identifying rockburst precursors in mica-schist proved more challenging compared to slate.Among the methods tested,AE amplitude variance outperformed entropy in precursor identification.Additionally,the rockburst early warning time was found to be negatively correlated with the LR,with mica-schist consistently showing shorter warning times than slate.The CSD-derived precursor,due to its enhanced sensitivity,is recommended for early warning systems.These findings provide new insights into the role of LRs in rockburst dynamics and offer practical guidance for improving precursor identification and disaster mitigation strategies.
基金supported by the National Natural Science Foundation of China(Nos.42371094,41907253)partially supported by the Interdisciplinary Cultivation Program of Xidian University(No.21103240005)the Postdoctoral Fellowship Program of CPSF(No.GZB20240589)。
文摘INTRODUCTION.On May 1st,2024,around 2:10 a.m.,a catastrophic collapse occurred along the Meilong Expressway near Meizhou City,Guangdong Province,China,at coordinates 24°29′24″N and 116°40′25″E.This collapse resulted in a pavement failure of approximately 17.9 m in length and covering an area of about 184.3 m^(2)(Chinanews,2024).
文摘The increasing sophistication of cyberattacks,coupled with the limitations of rule-based detection systems,underscores the urgent need for proactive and intelligent cybersecurity solutions.Traditional intrusion detection systems often struggle with detecting early-stage threats,particularly in dynamic environments such as IoT,SDNs,and cloud infrastructures.These systems are hindered by high false positive rates,poor adaptability to evolving threats,and reliance on large labeled datasets.To address these challenges,this paper introduces CyberGuard-X,an AI-driven framework designed to identify attack precursors—subtle indicators of malicious intent—before full-scale intrusions occur.CyberGuard-X integrates anomaly detection,time-series analysis,and multi-stage classification within a scalable architecture.The model leverages deep learning techniques such as autoencoders,LSTM networks,and Transformer layers,supported by semi-supervised learning to enhance detection of zero-day and rare threats.Extensive experiments on benchmark datasets(CICIDS2017,CSE-CIC-IDS2018,and UNSW-NB15)demonstrate strong results,including 96.1%accuracy,94.7%precision,and 95.3%recall,while achieving a zero-day detection rate of 84.5%.With an inference time of 12.8 ms and 34.5%latency reduction,the model supports real-time deployment in resource-constrained environments.CyberGuard-X not only surpasses baseline models like LSTM and Random Forest but also enhances proactive threat mitigation across diverse network settings.
基金supported by the National Natural Science Foundation of China(52325001,52170009,and 52091542)the National Key Research and Development Program of China(2021YFC3200700)+3 种基金the Program of Shanghai Academic Research Leader,China(21XD1424000)the International Cooperation Project of Shanghai Science and Technology Commission(20230714100)the Key-Area Research and Development Program of Guangdong Province(2020B1111350001)Tongji University Youth 100 Program.
文摘Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as they tend to be laborious,time-consuming,or technically difficult.Disinfection byproducts(DBPs)are a family of well-known secondary pollutants formed by the reactions of chemical disinfectants with DBP precursors during water disinfection treatment.Since DBP precursors have various origins(e.g.,natural,domestic,industrial,and agricultural sources),and since the formation of DBPs from different precursors in the presence of specific disinfectants is distinctive,we argue that DBPs and DBP precursors can serve as alternative indicators to assess the contamination in water sources and identify pollution origins.After providing a retrospective of the origins of DBPs and DBP precursors,as well as the specific formation patterns of DBPs from different precursors,this article presents an overview of the impacts of various natural and anthropogenic factors on DBPs and DBP precursors in drinking water sources.In practice,the DBPs(i.e.,their concentration and speciation)originally present in source water and the DBP precursors determined using DBP formation potential tests—in which water samples are dosed with a stoichiometric excess of specific disinfectants in order to maximize DBP formation under certain reaction conditions—can be considered as alternative metrics.When jointly used with other water quality parameters(e.g.,dissolved organic carbon,dissolved organic nitrogen,fluorescence,and molecular weight distribution)and specific contaminants of emerging concern(e.g.,certain pharmaceuticals and personal care products),DBPs and DBP precursors in drinking water sources can provide a more comprehensive picture of water pollution for better managing water resources and ensuring human health.
基金supported by National High-tech Research and Development Program,China(No.2018YFB1501505).
文摘Climate change is an important issue facing the world today and carbon reduction has become the fo-cus of attention for all countries.Alternative bio-fuels are an important means to achieve carbon emis-sion reduction.The production of jet fuel precursors from biomass by hydrothermal liquefaction(HTL)has received a lot of attention due to its mild conditions and environmental friendliness.Lignocellulosic biomass and algal biomass are considered as the second and the third generation biomasses as promising raw materials for alternative fuel preparation.Among them,lignocellulosic biomass has been extensively studied due to its wide range of sources and can be divided into one-step HTL and stepwise HTL accord-ing to the process method.Algal biomass has been extensively studied experimentally due to its short growth cycle and the fact that it can sequester large amounts of carbon without taking up arable land.In this paper,the feedstock composition of different biomasses is reviewed for the HTL of biomass.A detailed review of the process characteristics,reaction pathways and influencing factors for the HTL pro-duction of jet fuel precursors from lignocellulosic biomass and algal biomass is also presented.Theoretical references are provided for further process optimization and bio-crude quality upgrading.
基金supported by Natural Science Basic Research Pro-gram of Shaanxi in China(Grant.No.2023-JC-YB-388)National Nat-ural Science Foundation of China(Grant.No.52005392)Fundamental Research Funds for the Central Universities in China,and the Youth In-novation Team of Shaanxi Universities in China.
文摘Si_(3)N_(4)/SiCN ceramics have been extensively explored for applications in the aerospace,mechanical engineering,and biomedical fields.Recently,there has been significant focus on the additive manufacturing(AM)of polymer-derived ceramic(PDC)technology for fabricating Si_(3)N_(4)/SiCN ceramics.The chemical structure and composition of the preceramic polymer precursors have a crucial influence on the performance of ceramic products.In this paper,recent advances in the use of polysilazane and polycarbosilazane precursors in AM are reviewed and an outlook for future development is presented.The findings of this study could spark inspiration and reflection regarding AM applications and synthetic technology.It is believed that the development of PDCs in ceramic fabrication will become more versatile and application-oriented and provide more freedom in the design of high-performance ceramics.
基金financially supported by the Key Project of Research and Development Plan of Jiangxi Province(Nos.20223BBG74006 and 20201BBE51007)the National Science Foundation of China(No.52060018)the National Science Fund for Distinguished Young Scholars(No.52125002)。
文摘The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty process of acid leaching-selective electrodeposition-deep impurity removal-regeneration was proposed to recovery of the CuS slag,which has been efficient transferred to high purity cathode copper and commercially available ternary precursors.Copper cathode with a purity of 99.67%was prepared under electrochemical reaction conditions at-0.55 V for 2 h.A novel impurity remover-Mn powder,which was used to remove the residual impurities and as a feedstock for the ternary precursor.Finally,NCM523 was regenerated by co-precipitation.The process is superior to the traditional process in economy,energy consumption,CO_(2)emissions,product purity and process duration.This study provides a new approach for solid waste recovery and precious metal enrichment.
基金financial support from the National Natural Science Foundation of China(grant nos.52172198,51902117,and 91733301)。
文摘Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device performance and reproducibility.Here,we utilize a reductive natural amino acid,Nacetylcysteine(NALC),to stabilize the precursor solution for printable carbon-based hole-conductorfree mesoscopic perovskite solar cells.We find that I_(2) can be generated in the aged solution containing methylammonium iodide(MI) in an inert atmosphere and speed up the MA-FA^(+)(formamidinium) reaction which produces large-size cations and hinders the formation of perovskite phase.NALC effectively stabilizes the precursor via its sulfhydryl group which reduces I_(2) back to I^(-)and provides H^(+).The NALC-stabilized precursor which is aged for 1440 h leads to devices with a power conversion efficiency equivalent to 98% of that for devices prepared with the fresh precursor.Furthermore,NALC improves the device power conversion efficiency from 16.16% to 18.41% along with enhanced stability under atmospheric conditions by modifying grain boundaries in perovskite films and reducing associated defects.
基金Supported by the National Natural Science Foundation of China(31070443)the National Science Foundation of China for Talent Training in Basic Research(J1103507)+1 种基金The Priority Academic Program Development of Jiangsu Higher Education Institutions,Innovation Promotion Project of Nanjing Municipal Science and Technology Commissions(201105058)the Practice and Innovation Training Program for the Students of Nanjing Normal University~~
文摘[Objective] This study was to explore the effect of three precursors on the accumulation of principal volatile oil constituents in tissue culture plantlets of Atractylodes lancea (Thunb.) DC. with the aim to provide references for the improvement of artificial cultivated A. lancea quality. [Method] Three precursors were added into the MS rooting medium for A. lancea tissue culture plantlets and the volatile oil was extracted by ultrasonication after cultured for several days. The content of atractylon, atractylol, β-eucalyptol and atractydin in the volatile oil were determined by using gas chromatography method. [Result] The addition of xylose, isoprene and tetrahydrofuran impacted the growth indicators, yield of volatile oil and relative percentage content of the four constituents of A. lancea tissue culture plantlets. In the 6 g/L xylose optimized medium, the atractylon and β-eucalyptol content reached up to 4.23% and 56.34%, respectively, 1.41% and 1.66% higher than the control; although the addition of isoprene into medium raised the atractylon content, the accumulation of total volatile oil was inhibited that it decreased by 23.67%, 31.06% and 7.10% to the control; for the tetrahydrofuran optimized medium, the content of atractylon, atractylol and atractydin all increased, and the total volatile oil content increased by 49.97% to the control when the concentration of tetrahydrofuran was 0.07 g/L. [Conclusion] The addition of xylose and tetrahydrofuran promoted the accumulation of principal constituents of the volatile oil, whereas the addition of isoprene inhibited the accumulation.
基金supported by the National Science and Technology Program of China(CDGC01-KT16)~~
文摘Two series of Mn/beta and Mn/ZSM‐5catalysts were prepared to study the influence of how different Mn precursors,introduced to the respective parent zeolites by wet impregnation,affected the selective catalytic reduction(SCR)of NO by NH3across a low reaction temperature window of50–350°C.In this study,the catalysts were characterized using N2adsorption/desorption,X‐ray diffraction,X‐ray fluorescence,H2temperature‐programmed reduction,NH3temperature‐programmed desorption and X‐ray photoelectron spectroscopy.As the manganese chloride precursor only partially decomposed this primarily resulted in the formation of MnCl2in addition to the presence of low levels of crystalline Mn3O4,which resulted in poor catalytic performance.However,the manganese nitrate precursor formed crystalline MnO2as the major phase in addition to a minor presence of unconverted Mn‐nitrate.Furthermore,manganese acetate resulted principally in a mixture of amorphous Mn2O3and MnO2,and crystalline Mn3O4.From all the catalysts screened,the test performance data showed Mn/beta‐Ac to exhibit the highest NO conversion(97.5%)at240°C,which remained>90%across a temperature window of220–350°C.The excellent catalytic performance was ascribed to the enrichment of highly dispersed MnOx(Mn2O3and MnO2)species that act as the active phase in the NH3‐SCR process.Furthermore,together with a suitable amount of weakly acidic centers,higher concentration of surface manganese and a greater presence of surface labile oxygen groups,SCR performance was collectively enhanced at low temperature.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金This study is funded by Air Pollution Special Project of the Ministry of Science and Technology(Grant No.2017YFCOZ10006)the National Natural Science Foundation of China(Grant No.41975173)。
文摘This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to analyze ozone sensitivity to its precursors,and to develop emission reduction measures.The results suggest that the model can accurately simulate the compound pollution process of photochemistry and haze.When VOCs and NOx were reduced by the same proportion,the effect of O_(3)reduction at peak time was more obvious,and the effect during daytime was more significant than at night.The degree of change in ozone was peak time>daytime average.When reducing or increasing the ratio of precursors by 25%at the same time,the effect of reducing 25%VOCs on the average ozone concentration reduction was most significant.The degree of change in ozone decreased with increasing altitude,the location of the ozone maximum change shifted westward,and its range narrowed.As the altitude increases,the VOCs-limited zone decreases,VOCs sensitivity decreases,NOx sensitivity increases.The controlled area changed from near-surface VOCs-limited to high-altitude NOx-limited.Upon examining the EKMA curve,we have found that suburban and urban are sensitive to VOCs.The sensitivity tests indicate that when VOCs in suburban are reduced about 60%,the O_(3)-1h concentration could reach the standard,and when VOCs of the urban decreased by about 50%,the O_(3)-1h concentration could reach the standard.Thus,these findings could provide references for the control of compound air pollution in Beijing.
文摘Two polyborosiloxanes (PBSis) with char yield up to 74.13% at 800 ℃ were synthesized by the direct polycondensation of boric acid with phenyltrimethoxysilane in diglyme. The PBSis were characterized by gel permeation chromatography, IR spectroscopy as well as ^1H-, ^29Si- and ^11B-NMR. PBSi modified phenol-formaldehyde resins (PBSi/PFs) were prepared at different PBSi/PF mass ratios and were cured at 150 ℃. The PBSi/PFs were characterized by IR spectroscopy, scanning electron microscopy, thermogravimetric analysis and tensile test. The results revealed that the cured PBSi/PFs had sea-island morphology and higher char yield than the common PF. PBSi/PF blend with PBSi/PF mass ratio of 0.4:1 had char yield up to 70.83% at 800 ℃. The PBSi/PFs had tensile strength similar to PF. The ceramization of PBSi/PFs was also studied. The silicon boron oxycarbide (SiBOC) ceramics formed were characterized by IR spectroscopy and elemental analysis. This method provided a valuable way to prepare easily shapeable polymer blends as ceramic precursors.
基金This work was supported by the National Natural Science Foundation of China(No.41605092)and the National Key R&D Program of China(No.2017YFC0212801)We acknowledge the Tropospheric Emission Monitoring Internet Service for OMI tropospheric NO 2 column and HCHO column products.We also thank Tsinghua University,ECMWF and NASA for free access to the Multi-resolution Emission Inventory for China(MEIC)data,the reanalysis meteorological data(ERA-Interim)and the MODIS land cover type product(MCD12Q1),respectively.
文摘Due to the influences of precursors emissions,meteorology,geography and other factors,ozone formation sensitivity(OFS)is generally spatially and temporally heterogeneous.This study characterized detailed spatial and temporal variations of OFS in Guangdong-Hong Kong-Macao Greater Bay Area(GBA)from 2012 to 2016 based on OMI satellite data,and analyzed the relationships of OFS with precursors emissions,meteorology and land use types(LUTs).From 2012 to 2016,the OFS tended to be NOx-limited in GBA,with the value of FNR(HCHO/NO 2)increasing from 2.04 to 2.22.According to the total annual emission statistics of precursors,NOx emissions decreased by 33.1%and VOCs emissions increased by 35.2%from 2012 to 2016,directly resulting in OFS tending to be NO x-limited.The Grey Relation Analysis results show that total column water(TCW),surface net solar radiation(SSR),air temperature at 2 m(T2)and surface pressure(SP)are the top four meteorological factors with the greatest influences on OFS.There are significant positive correlations between FNR and T2,SSR,TCW,and significant negative correlations between FNR and SP.In GBA,the OFS tends to be NO x-limited regime in wet season(higher T2,SSR,TCW and lower SP)and VOCs-limited regime in dry season(lower T2,SSR,TCW and higher SP).The FNR displays obvious gradient variations on different LUTs,with the highest in“Rural areas”,second in“Suburban areas”and lowest in“Urban areas”.
基金supported by the National Natural Science Foundation of China (No. 51171122)the Sichuan Province Science and Technology Support Program (Nos. 2014GZ0090 and 2016GZ0262)
文摘Anisotropic magnets were obtained by hot deformation with the partial crystallized precursor prepared via spark-plasma sintering (SPS). Amorphous powders with the nominal composition of Nd_28.72Fe_balCo_5.66 Ga_0.59B_0.92 (wt%) were used as the starting material. The results show that the amorphous powders would suffer varying degrees of crystallization even below the crystal- lization point during the SPS process under high pressure. And the pre-crystallized grains in precursors have great impacts on the microstructure and magnetic properties of the hot-deformed magnets. The final obtained anisotropic magnets exhibit homogeneous microstructure consisting of well-aligned and platelet-shaped Nd_2Fe_14B grains without abnormal growth. It can be found that a reasonable pro- portion of pre-crystallized gains could promote the pref- erential orientation in the magnet, leading to the achievement of optimal magnetic properties among the magnets with identical composition and best magnetic performance is achieved in the magnet hot deformed from the 490 ℃ high-pressure hot-pressed precursor.
基金the National Natural Science Foundatlon of China under grant No.50172004,50273002 ,50333070.
文摘Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.
基金supported by the National Natural Science Foundation of China (No. 51778208)the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2017ZX07201002)the Qing Lan Project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The organic matter and two types of disinfection byproduct(DBP) precursors in micropolluted source water were removed using an iron–carbon micro-electrolysis(ICME)combined with up-flow biological aerated filter(UBAF) process. Two pilot-scale experiments(ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter(DOM)and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane(TCM) precursors and 20% of dichloroacetonitrile(DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF.Three-dimensional fluorescence spectroscopy(3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.
基金supported by China Agriculture Research System of MOF and MARA (CARS-41)Wens Fifth Five R&D Major Project (WENS-2020-1-ZDZX-007)
文摘Chilled chicken has become the mainstream of chicken consumption.In order to explore the effect of post-mortem aging on water-soluble flavor precursors of chicken,pH,adenosine triphosphate(ATP)degradation,flavor nucleosides,free amino acids and water-soluble low molecular weight peptides were determined using Qingyuan partridge yellow-feathered broilers as material during 0-4℃ post-mortem aging in 48 h.The results showed that the pH value fell to the limit pH 5.64(4 h)in chicken breast and 6.21(3 h)in thigh.Regardless of chicken breast or thigh,ATP dropped rapidly within 3 h.It was found that the K-value in chicken thigh was the lowest at 2 h indicating the freshness was the best.Considering the equivalent umami concentration(EUC),the value at 3 h and 4 h was relatively high,but the corresponding electronic tongue umami value was not high,which further showed that the water-soluble low molecular taste peptide played an important role on the post-mortem aging process.Combined with cluster analysis and partial least squares discriminant analysis(PLS-DA),it was preliminarily inferred that the optimal time for chilled chicken during 0-4℃ post-mortem aging was 2 h,which could provide a theoretical basis for the further processing of fresh chicken.
基金supported by the National Natural Science Foundation of China(Nos.51978010,52022005).
文摘Continuous aggravated surface O_(3) over North China Plain(NCP)has attracted widely public concern.Herein,we evaluated the effects of changes in aerosols,precursor emissions,and meteorology on O_(3) in summer(June)of 2015–2019 over NCP via 8 scenarios with WRF-Chem model.The simulated mean MDA8 O_(3) in urban areas of 13 major cities in NCP increased by 17.1%∼34.8%,which matched well with the observations(10.8%∼33.1%).Meanwhile,the model could faithfully reproduce the changes in aerosol loads,precursors,and meteorological conditions.A relatively-even O_(3) increase(+1.2%∼+3.9%for 24-h O_(3) and+1.0%∼+3.8%for MDA8 O_(3))was induced by PM_(2.5) dropping,which was consistent with the geographic distribution of regional PM_(2.5) reduction.Meanwhile,the NO_(2) reduction coupled with a nearconstant VOCs led to the elevated VOCs/NOx ratios,and then caused O_(3) rising in the areas under VOCs-limited regimes.Therein,the pronounced increases occurred in Handan,Xingtai,Shijiazhuang,Tangshan,and Langfang(+10.7%∼+13.6%for 24-h O_(3) and+10.2%∼+12.2%forMDA8 O_(3));while the increases in other citieswere 5.7%∼10.5%for 24-h O_(3) and 4.9%∼9.2%for MDA8 O_(3).Besides,the meteorological fluctuations brought about the more noticeable O_(3) increases in northern parts(+12.5%∼+13.5%for 24-h O_(3) and+11.2%∼+12.4%for MDA8 O_(3))than those in southern and central parts(+3.2%∼+9.3%for 24-h O_(3) and+3.7%∼+8.8%for MDA8 O_(3)).The sum of the impacts of the three drivers reached 16.7%∼21.9%,which were comparable to the changes of the observed O_(3).Therefore,exploring reasonable emissionsreduction strategies is essential for the ozone pollution mitigation over this region.
基金supported by the Open Foundation of Key Laboratory of the Ministry of Educationof Nonferrous Metal Alloys and Processes(No.EKL09002)The Ph.D.Fund Project of Lanzhou University of Science and Technology(No.BS01200904)
文摘Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0.