期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Achieving ultrahigh strength and ductility via high-density nanoprecipitates triggering multiple deformation mechanisms in a dual-aging high-entropy alloy with precold deformation 被引量:1
1
作者 Liyuan Liu Yang Zhang Zhongwu Zhang 《Journal of Materials Science & Technology》 2025年第2期27-41,共15页
How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will... How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity. 展开更多
关键词 High-entropy alloy precold deformation Precipitation behavior Ultrahigh strength Deformation mechanism
原文传递
超细晶粒形变热处理钢丝的组织特征及强韧化 被引量:2
2
作者 朱达明 刘春海 +1 位作者 王伯键 李臻 《金属热处理学报》 CSCD 1992年第3期52-58,共7页
研究了经预冷变形快速加热低温形变复合热处理65Mn 钢丝的显微组织及强韧化机理。工作表明为了获得超细晶粒组织,原始组织应全伪共析化,先共析铁素体的出现将产生粗大的亚晶。当加热速度超过12℃/s,预冷变形钢快速加热时将仅出现多边化... 研究了经预冷变形快速加热低温形变复合热处理65Mn 钢丝的显微组织及强韧化机理。工作表明为了获得超细晶粒组织,原始组织应全伪共析化,先共析铁素体的出现将产生粗大的亚晶。当加热速度超过12℃/s,预冷变形钢快速加热时将仅出现多边化,而未见再结晶过程。快速加热稍高于 A_c3温度,淬火后钢中将出现若干呈块状的无板条界位错马氏体,其中含有高密度位错和均匀析出的ε碳化物。热形变淬火后的组织特征是位错胞和亚晶均匀地分布在基体上,主体为马氏体及形变诱发转变下贝氏体和碳化物。碳化物主要沿晶界,滑移带界面析出成杉树状。钢丝经超细晶粒形变热处理后可获得很好的综合性能和表面质量,晶粒号为11~13级。最后讨论了本工艺的强韧化机理。 展开更多
关键词 超细晶粒 形变热处理 钢丝 强韧化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部